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A method is described whereby the S-matrix can be formulated directly in the Heisenberg representation.
This has the advantage over the customary formulation in the interaction representation in that the concepts
of space-like surfaces and their normals need never be introduced. Quantum electrodynamics and the
P formalism of charged mesons are treated as illustrative examples; in particular, it is shown that general
rules for writing down the elements of the S-matrix for the latter case may be immediately inferred.

In the second part of this paper, a covariant procedure, independent of the canonical formalism, is carried
out for making the transition from the Heisenberg to the interaction representation and is applied to several
typical cases; in this way, the S-matrix of the Heisenberg picture is identified with that of other authors.

INTRODUCTION to express each Heisenberg variable as the sum of two
parts, the one being a solution of the homogeneous
free-6eld equation (and, indeed, also satisfying the
free-6eld commutation relations), the other being a
solution of the inhomogeneous equation.

That the two methods must inevitably lead to the
same Gnal results is of course clear. Yet there are
distinct advantages to the formulation in the Heisen-
berg representation which become readily apparent as
soon as one considers a situation where one has deriva-
tive coupling (as in the pseudoscalar theory with

pseudovector coupling) or where one has dynamically
dependent field variables (as in the neutral vector
meson theory). It is well known that for these cases one
is led in the interaction representation to considerable
complications involving space-like surfaces and normals
thereto which however drop out at the very end on
the other hand, as v ill be seen below, all meson theories
are no more diKcult to handle in the Heisenberg
picture than is the case of quantum electrodynamics.

In fact, it will become apparent that one can infer
the rules for writing down the elements of the S-matrix
for all meson theories from the rules which Feynman
has established for quantum electrodynamics.

The discussion which follows has been divided into
two distinct sections. In the 6rst, the S-matrix is
defined in the Heisenberg representation for the case
of quantum electrodynamics and then, as an illustration
of a more complicated situation, for the case of charged
scalar and vector mesons interacting with the electro-
magnetic Geld (for the sake of compactness, the

P formalism is used). In the second section, it is shown

by working through several typical examples that the
S-matrix of the Heisenberg picture may be identified
with the results of the interaction-representation
formulation; here, the method of passing from the
Heisenberg to the interaction representation is of
especial interest since it is eGected in a covariant
manner without having to use the canonical formalism. '

N the recent work of Tomonaga' and Schwinger, '
~ ~ these authors, in their successful attempts to cast
quantum electrodynamics (and, in actual fact, all
meson theory) into a completely covariant and practical
form, found it necessary to introduce the concept of
the interaction representation. The essential virtue
of this representation is that it leads to an equation
of motion for the state vector of the system which
is covariant in all its aspects (unlike the Schrodinger
representation) while, at the same time, the 6eld
variables obey free-field equations of motion and com-
mutation relations (in marked contrast with the cor-
responding situation in the Heisenberg representation).
Upon using this form of the theory, it becomes a simple
matter to derive the S-matrix and, indeed, Dyson' has
shown that the quantum electrodynamics of Tomonaga
and Schwinger leads to the well-known rules of Feyn-
man, 4 which enable one to calculate immediately the
elements of the S-matrix.

The object of this note is to describe a method where
the S-matrix may be formulated directly in the Heisen-

berg representation. Heretofore, the complexity of the
commutation relations of the Geld quantities in this
representation has been regarded as a principal deter-
rent to the development of a practical Geld theory in the
Heisenberg picture. However, if one makes the basic
assumption that it is valid to employ a weak-coupling
approximation (which actually is already characteristic
of all current relativistic 6eld theories), then a knowl-

edge of the complete commutation relations in the
Heisenberg representation is not needed provided one
can e8ect a separation of the motion of the system into
that of a free-6eld part plus that of an interacting part.
Tomonaga and Schwinger have done this by going over
to the interaction representation. A completely equiva-
lent procedure which we follow in this paper is simply

* Now at the Department of Physics, University of Rochester,
Rochester, New York.
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In fact, the so-called interaction-representation Hamil-
tonian will appear, in a certain sense, as the density of
the S-matrix, so that all conditions of integrability are
automatically satisfied.

(y„8/Bx„+m)P = icy„A „if,

(Bg/Bx.)v, mg = —ieg—y„A „
O'A, /Bxi'= —j„

j.=sie(4 v.4 4'v.9'—);
in addition, one has the supplementary condition

(BA./Bx.)C =0,

(&)

(I')

(2)

(2')

(3)

where 4 is the state vector of the system.
Equation (2) can be integrated in the usual manner

of classical electrodynamics where A„ is expressed as
the sum of a freely oscillating incoming field A„'" and
a retarded potential, iis. ,

A.(x) =A,"(x)+ ID"'(x x')d'xj'„(x')-.
J

The D"'(x—x') function is defmed, in terms of
Schwinger's notation, ' as

D"'(x x') =D(x x—') 'D(x x—') —-(5—)
The corresponding function which leads to advanced
potentials is

D'P" (x x') =D(x x') +—pD(x —x')—. (5')

Upon defming S"'(x—x') and S'e~(x—x') in a similar
manner, it is clear that (I) and (I') may be integrated
to give

P(x) =P'~(x) ie)tS"'(—x x')d'x'y„A—.(x')P(x') (6)

and

g(x)=P'"(x) —ie PI( x)y. A( x)
'd'xSae( 'x—x). (6')

Equations (6), (6'), and (4) should be regarded as
defining the incoming fields P', f' and A„'.' It is

~ We use natural units throughout with k c 1. The notation
A~ denotes the transpose of the matrix A.' These equations have also been obtained by G. Khllhn. The
authors wish to thank Dr. KI116n for sending them his manuscript
before pub1ication,

I. DEFINITION OF THE 8-MATRIX

A. Quantum Electrodynamics

We now proceed to show how to formulate the
S-matrix directly in the Heisenberg representation
without having to make any mention of spacelike
surfaces or their normals. We consider first the case of
quantum electrodynamics.

The field equations for the Heisenberg variables A,
and P are'

already clear that these 6elds satisfy the homogeneous
free-6eld equations and that, in terms of these variables,
the supplementary condition (3) is simply

(BA„' /Bx„)C =0. (3')

To see that Eqs. (7) hold, we notice that at t= —oo

the fields P'", f'", and A n (and their derivatives) are
identical with the true fields f, g, and A„(and their
derivatives) which in turn satisfy the free-field com-
mutation relations at t= —~. Moreover, P', P'", and
A„'" develop with time according to the free-field equa-
tions so that Eqs. (7) follow as immediate consequences.

It is evident that, besides Eqs. (6), (6'), and (4),
one can write down another set of solutions of the
Heisenberg field equations which are expressed in terms
of freely oscillating outgoing fields and advanced
potentials, i.e.,

f(x) =P'"'(x) —ze S' "(x x')d—'x'p „A„(x')P(x')

P(x) =P'"'(x) ie "P—(x') y„A „(x')d'x'S~'(x' x) . (—g)

A.( )=A "'( )+ "D "(* ')d'*j'(*')—

Once again, the outgoing fields P'"' P'"' and A '"'
obey the interaction-free equations and the simple
commutation relations

[P ""'(x) fp""'(x')] = —iS~p(x —x') '

[A ""'(x),A&«'(x')]=ib, &D(x—x') ~. (9)

[A '"'(x), P '"'(x') j=0
Physically, the meaning of the incoming fields is

clear. They coincide at t= —00 with the Heisenberg
fields and would represent the development of the
Heisenberg fields with time if the interaction were
absent. A similar meaning holds for the outgoing fields
except that they reduce to the true Heisenberg variables
at t= +. Since both the incoming and outgoing fields
satisfy the identical commutation relations (7) and (9),
we conclude that they are related by a unitary trans-
formation in the following way:

Pout(&) S—
lyin(x) S

Pou'(x) =S-'P"(x)S

A;"'(x) S-'A, ' (x)S

(&0)

It is especially important that the incoming fields also
satisfy the free-field commutation relations:

Q.'"(x), gp' (x') j+—— iS—.p(x x—')

[A„'"(x),A), '"(x')]=ib„gD(x—x')

[A ' (x), P '"(x')]=0
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The unitary matrix S is the S-matrix of Heisenberg, It
is uniquely determined by Eqs. (10) except for an
arbitrary multiplicative phase factor. Ke shall defer
until Section II the proof that the S-matrix thus
defined is indeed identical with the S-matrix which is
dealt with in the more customary interaction-repre-
sentation formulation.

In order to write down explicitly the matrix elements
of S, it is possible to proceed by solving Eqs. (6), (6'),
and (4) by successive approximations in powers of e
and then using Eqs. (8) and (10). In this way, general
rules can be formulated for writing down the various
terms to any order in e but, for practical computations,
they are usually more complicated than Feynman's
rules.

u(x) =u" (x) i—e I T '(x—x')d'x'P„A„(x')u(x')

uf(x) = uf'"(x) ie—~uf(x')P„
4

XA, (x')d4x'T s.(x'—x)

. (15)

the future light cone of x'. One may also de6ne the P'~
and T» functions by replacing 6"' in (13) by 5«" and
hp, respectively. '~

The solutions of (11) may now be written in the fol-
lowing integral form.'

B. The Electromagnetic Properties of Charged
Mesons in the g-Formalism

The S-matrix formalism may be readily extended to
this case in the following way. The equations of motion
in the Heisenberg representation now read

[P„(8/8x„)+fs]u =ieP„A,u
(8uf/8x„) P„put—= —seufP, A „~, (11)

8'A„/8~s= —j,
where

j„=~sic(ufP„u+urP„rute);

we follow here the notation used by Pauli. ' Besides
Eqs. (11), there is also the usual supplementary con-
dition given by Eq. (3). As before, one may replace the
differential equations (11) by corresponding integral
equations with the aid of appropriate Green's functions.
To determine these, we observe that

( 8 ) 8 1/ 8)s
+u l

p-~

8x, ) 8x, uE 8x),)

1P 8s) f' 8'
(»)

u E 8xss& I 8x,' )

It is once again essential to note that the incoming
fields u', u~' and A, '" are to be regarded as defined

by Eqs. (15).They not only satisfy the free-field equa-
tions but also, by an argument similar to that used in
our earlier discussion of quantum electrodynamics, the
free-field commutation relations, viz. ,

8
[u '"(x), uet(x'))= —i p,

OX'

1( 8)--l p, —
l

~(x—x');«6)
fs E 8xj e

[A „' (x), Ag'"(x')) = ib„gD(x—x')

[A.'"(x) u ' (x'))=0

the supplementary condition reduces as before to Eq.
(3')

One can write down, besides Eqs. (15), another set
of integral solutions of (11):

u(x) =u'"'(x) ie ~ T'—"(x x') d'x'P, A „(x'—)u(x')

whence, defining T"'(x—x') by

u~(x) = f'"u'( ) xie uf(—x )P,

XA „(x')d4x'T '(x' x)—. (17)

it follows that

1( 8'q
, l

~" (* x )~ (13) A, (x) =A "«(x)+JI D«" (x x')d4xj', (x')—
p, & Bx2

The outgoing fields u'"', u~'"', and A '"' obey the free-
field equations and commutation relations. It therefore
follows that there exists a unitary transformation con-

It should be noticed that, in virtue of the properties of
the g»'-function, T»'(x —x') vanishes if x lies outside» The &»-function which we use is identical with Dyson's. We

shall later also use the Sp function which is de6ned by

'%. Pauli, Rev. Mod. Phys. IS, 203 {1941). Sy{s-s') I p)i, {8/8~)—mQy(x-x').
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necting the incoming and outgoing quantities, cia.,

I'"'(x) S 'I' (x)S

ut'"'(x) = S 'ut'"(x)S

q ou~. (x) S—iA m(x)S

where S is once again the S-matrix of Heisenberg.
One can calculate the elements of the S-matrix from

Eqs. (15) to (18) following a procedure which is
identical with that described for the case of quantum
eh;ctrodynamics. It is therefore clear that at no point in
the evaluation of S is it necessary to resort to the
concept of space-like surfaces and their normals. It is
an essential advantage of the formulation of the
S-matrix in the Heisenberg representation that the
extraneous complications associated with space-like
surfaces do not enter. "

A further advantage of this procedure is that it
becomes possible to formulate rules for writing down
the elements of the S-matrix which are the exact
analogues of the Feynman-Dyson rules of electro-
dynamics. In fact, it is only necessary to replace the Sp
function" of electrodynamics by the Tp function, and
the y„-matrices by P„-matrices; the sign of the term
corresponding to any Feynman diagram divers in the
P-formalism from quantum electrodynamics by a factor

(—1) ' where l is the number of closed meson loops. "
The proof is based upon the fact that, while the

Tomonaga-Schwinger equations for the various cases
which are encountered in meson theory assume a more
or less complicated form according to whether one does
or does not have derivative coupling or dynamically
dependent 6eld components, the equations dehning
the S-matrix in the Heisenberg representation are of a
comparatively simple nature and, in fact, are very
similar to one another in form. This last fact enables
one to infer immediately the above-mentioned rules for
the case of the P-formalism from the corresponding
Feynman-Dyson rules for electrodynamics. The factor
(—1)' is a complication which arises due to the fact that
the particles with which we are dealing obey Bose
statistics. "

We wish 6nally to remark that all of these con-
siderations (ais , the defi. nition of the S-matrix in the
Heisenberg representation a,nd its subsequent charac-
terization by a set of Feynman-like rules for writing

"For a discussion of charged meson theories in the interaction
representation with the P-formalism see M. Neuman and W. H.
Furry, Phys. Rev. 76, 1677 {1949};R. G. Moorhouse, Phys. Rev.
76, 1691 (1949);D. C. Peaslee, Phys. Rev. (to be published); and
T. Kinoshita, Prog. Theor. Phys. (to be published).

"Similar results have been noted by R. P. Feynman using his
method of space-time approach to field theory. Cf. footnote 24,
Phys. Rev. 76, 769 {1949}.

"The easiest way to see this is to derive first the rules for the
case of two scalar fields rp1 and q~ coupled by the term ql~yiqm.
This can be done by Dyson's method just as easily as in quantum
electrodynamics, since there are no complications due to surfaces
and their normals. One has then only to compare the equations
defining the 8-matrix in this case with Eqs. {15}to (18) to arrive
at the rules for the P formalism.

down the various matrix elements) may be directly
extended to the various cases of meson-nucleon coup-
lings.

II. IDENTIFICATION OF THE 8-MATRIX

A. Quantum Electrodynamics

It rema, ins to verify that the S-matrix as defined in
the Heisenberg representation is indeed the same as
that which emerges from the Tomonaga-Schwinger
theory. We shall see that, by generalizing suitably the
concepts of incoming and outgoing 6elds which were
introduced earlier, we are led directly to a product repre-
sentation for the S-matrix which is, in fact, Dyson s
representation.

In order to go to over to the interaction representation,
let us introduce a set of space-like surfaces a(x) and
denote their normals by n„(x). Define the function
D'(x, x'), where x and x' are not necessarily on the
surface 0., in the following way:

D'(x, x') =D"'(x—x') if x' is later than a,

D'(x, x') =D'a" (x x') if x'—is earlier than a,

that is,

1—a(o, x')
D'(x x') = D"'(x x')—

2

where
a(o, x') = +1 if a is later than x',
a(o, x') = —1 if a is earlier than x'.

It is clear that an equivalent representation of D'(x, x')
is given by

D'(x, x') = —xa[e(x—x') —a(o, x') jD(x—x'), (19')

where a(x—x') equals +1 or —1 according as x is later
or earlier than x'.

Let us also de6ne

S (x, x') = [y„(8/Bx„)—m]A (x, x'). (19")

Then, with aid of the generalized Green's functions
D'(x, x') and S'(x, x'), Eqs. (1) and (2) may be integrated
to give the following:

P(x) = P(x, a) ~e S'(x—, x')d'x'y„A „(x')P(x')

A„(x)=A.(x, a)+ D'(x, *')d'x'j. (x')

The quantities f(x, a) and A„(x, a) are to be regarded as
defined by Eqs. (20). For fixed a, they satisfy the free-

6eld equations and, when x is ap o, they reduce to the
Heisenberg fields f(x) and A„(x); this reduction holds
also for 8A„(x, &r)/8n.
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It a&ill be convenient for what follows to introduce
the symbols f(x/a) and Brlr(x/a)/Bx„by

4(x/a) =L4(x, a)]"-.,
8$( x/ a)/8 x.= [8&(x, o)/Bx„].....

Kith this notation, one then has

order as r~o'. Ke accordingly write

U(a, o') =1 i—t H(x'/a)d4x'+

where

H(x'/a) =i[bU(o, a')/bo (x')],

(26)

(26')

The commutation relations of the P(x, o) and
A, (x, o) are the usual free-Geld expressions:

LP.(x, o), $e(x', a)]+= iS.e—(x x')—

LA, (x, o), Ag(x', a)]=ib,),D(x—x') ~. (22)

[A„(x, a), P.(x', a)]=0

These are obviously correct for x and x' on cr and, since
P(x, o) and A„(x, a) satisfy free-Geld equations, they
are true in general.

Now, a set of Eqs. (22) holds for every surface a
whence it follows that there exists a unitary trans-
formation U(a, a'), such that

P(x, a) = U '(a, o') P(x, o') U(a, a')
(23)A.(x, a) = U '(a, o') A, (x, a') U(o, o')

It is clear that U(po, —po) is the S-matrix which we
have defined earlier.

Ke proceed next to obtain an explicit representation
for the S-matrix. To do this, we note that the following
relation is valid:

U(o, a') = U(o", o') U(o, o").

It is therefore natural to write

(24)

S= U(ao, —po)

U(ap, o i) U(o, , a p) U(ap, oi), (25)

0(x/a) =4(x), A.(x/a) =A.(*),
BA„(x/a)/Bxi= BA,(x)/Bxi.

Note that, as o + —po—, D'(x, x') +D~'(x—x') so —that
A, (x, o) goes over into the incoming Geld A„'"(x). Cor-
respondingly, as a—r+ po, D'(x, x') +D'o-"(x x') —so
that A„(x, a) goes over into the outgoing field A„'"'(x)."

In contrast to Eq. (3'), the supplementary condition
becomes in terms of A„(x, o)

BA„(x, o)—t D(x—x')j„(x')do.' C =0. (21)
I9Xs

d0

S= 1 i H(—x/o)d4x
d

1 pH(x/—o)d'x .. (25')
dg

To find H(x/o. ), we differentiate (23) with respect to
0. and set a=0'; then,

bg(x, a)
=Q(x, o), H(x'/o)]

ha(x')

bA„(x, a)
i =LA„(x, o), H(x'ja)]

bo (x')

Now, from (20), we have

f(x, o)—P(x, a') =ie) [S'(x, x') —S"(x,x')]

Xd'x'y, A „(x')P(x')

(2?)

d

=ie S(x x')d'x'y„A, (x—')f(x'),

(28)

A„(x, o)—A„(x, o') = — D(x x')d'x'j„(x')—(28')

But, bf(x, a)/ba(x') and bA, (x, o)/bo(x') can be deter-
mined directly from (28) and (28') whence

Lg(x, o), H(x'/o)]= eS(x x—')y, —
XA„(x'/a)y(x'j. ) . (29)

[A„(x,o), H(x'/a)]= iD(x x—')j,( /—x)a

Strictly speaking, we should have used the notation
H(x', a) in place of H(x'/o) in Eq. (26); however, the
procedure which we have followed is not inconsistent
since, in the end, r is made to approach 0'.

Substituting (26) into (25), we get

where . 0.
&, 00, 0 &,

- denote an infinite sequence
of space-like surfaces which proceed steadily into the
past. To obtain an explicit expression for S, we let the
surfaces approach one another so that (25) expresses S
as the product of in6nitesimal unitary transformations.
It is therefore sufhcient to obtain U(o, o') to the Grst

It is at once clear from (29) and (22) that

H(x'/o) = —j.(x'/a) A, (x'/a),

so that the S-matrix assumes the form

S=
~

1+i I' j.(x/a)A, (x/o)d'x
~

(30)

14 We are indebted to Dr. R. J. Glauber for pointing out this
generalization of the incoming and outgoing Gelds and their
relation to the Hamiltonian in the interaction representation.
Cf. also M. Neuman and W. H. Furry, reference 11;K. V. Roberts,
Phys. Rev. 77, 146 (1950);J. S. de Wet, reference 6.

X( 1+i I j.(x/a)A, (x/o)d'x
~

. . (31)
dO
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To complete the identi6cation with Dyson's result,
we note that Eqs. (23) imply

4(x/a)-U '(a, —~)f"(x)U(a, —~)
t (32)

A, (x/a) = U-'(o, —oo)A. ' (x) U(o, —oo) )

OI

U(a, —~)4(x/a) =0' (*)U(a —~)
(32')

U(a, —oo)A, (x/a) =A.' (x) U(o, —oo)

It is clear from (32') that pulling a factor iI(x/a)
[or A„(x/a)] through from the right to the left of
U(o, —oo) converts it into a P'"(x) [or A„'"(x)7. By
applying this procedure successively to all the factors
of Eq. (31) taken in the order of decreasing time, we find

(S=
~

1+i j'"(x)A "(x)d4x
~)

1 8'
[A.(x, a), Ai(x', a)]=i( 8„r,

r '8x.8x &

X~(x—x')

[A.(» ) 4-(*' )j=o

. (38)

8A. (x, a)/8x, ~0.
It is important to note that, when x is on a, A„(x, o)

and its derivatives do not reduce to A„(x) and its
derivatives; in fact,

A„(x/o) =A„(x)—(1/p') n„nz j),(x). (37)

On the other hand, it is the A„(x/o) and not the A„(x)
which obey the free-particle commutation relations; as
a consequence, the following equations are valid:

[P.(x, o), go(x', a)j~———zS.o(x—x')

which is identical with Dyson's expression if we take
the Geld quantities in the interaction representation to
be the incoming fields.

j.=k&f(4v.k 4'v'4')- (34')

Note that these equations have been put into a form
which is invariant with respect to charge conjugation.

The solutions of (34) are

P(x) =P(x, o)—siif) S'(x, )dx' yx.

X [A„(x')P(x')+ P(x') A „(x')]
. (35)

tt 1 8'
A, (x)=A, (x, a)+~i i

b,r,
p' 8x„8')

Xa (x, x')d'x'q, (x').

It is here necessary to include the term involving second
derivatives in the Green's function in order to guarantee

B. Neutral Vector Mesons vrith Vector Coupling

In the remainder of this paper, we shall consider
briefly those complications which arise on making the
transition to the interaction representation when the
field components are not all dynamically independent
or when one has derivative coupling. The case of neutral
vector mesons interacting with nucleons through vector
coupling will serve as an illustration of the former situ-
ation. The equations of motion of the Geld variables in
the Heisenberg representation are

Lv.(8/8x.)+jrl]k= k&fv.(A.4+PA.)
8A „/8x„=0 (84)

(8'/8'' —y') A.= —j,
where

P(x, o)—P(x, o') =-', if I S(x—x')d'x'y,
If

X [A„(x')P(x')+ P(x') A „(x')],
1 8'

p' 8x,8xr l

(4o)

X t A(x —x')d'x'j), (x'). (40')

One Gnds ultimately that

[f(x, a), H(x'/a)]= ——,'fS(x—x')y,

X[A,(x')P(x')+P(x')A„(x')], (41)

1 8'
[A„(x..), ~(x'/. )j=-'( 8,,—

p' 8x.8x.)
Xa(x—x')j,(x'). (41')

Equs, tion (41) may be rewritten in the following form
with aid of (37):

[4(*,a), &(x'/o) j
fS(x x') y. A(x—'/ )Pa(—x'/a)
—(f/2n) n.(x')»(x')S(*—*')v.

X[ji(x'/a)4(x'/a)+0(*'/a)ji(x'/a)] (41")

It is therefore evident from (36) and (38) that, for any
two surfaces 0 and 0', there exists a unitary trans-
formation U(o, o') such that

f(x, a) = U-'(o, a')P(x, a') U(o, a')
(39)

A.(x, o)= U '(o, )aA„( ax')U(a, a')

We now take over Eqs. (26), (26'), and (25') from the
preceding case and proceed to calculate H(x'/a). The
method is exactly the same as before; in place of Eqs.
(28) and (28'), however, we have
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S = 1 i—
)

H' (x/a)d4x
'O

where"

X 1 i — H' (x/a)d4x (43)
&-1

H'"(x/o) = —j.' (x)A, ' (x)—(1/2l')Ln (x)j"(x)]' (44)

C. Pseudoscalar Mesons with
Pseudovector Coupling

As a last example, let us consider a situation where
we have derivative coupling, vis. , the case of pseudo-
scalar mesons interacting with nucleons through pseudo-
vector coupling. The equations of motion have the form

( B g ( By By
] v.—+~ )u=ligvv,

( u +-Bx„j E Bx„Bx„ i

One must therefore have

H(x'/o) = —j.(x'/o)A„(x'/o)
—(1/2n')[n. (x')j (*'/ )]' (42)

It is evident from the discussions of the previous case
that the S-matrix is 6nally given by By choosing the Green's function in this way, we have

arranged for y(x, o) to satisfy the following boundary
conditions:

y(x/o) = y(x)
. (47)

By(x/o)/Bx„= By(x)/Bx„+n„n), j&(x)

The term involving the normals is precisely what is
needed in order that the commutation relations of the
f(x, o) and y(x, o) shall reduce to those of the free-field
quantities, i.e.,

[P.(x, o), fo(x', o)]+=—iS.s(x—x')

[y(x, o), y(x', o)]=i~(x x')—

[y(x, o), P,(x', o)]=0
'. (48)

From this point on, things go exactly as before. One
is led to

[P(x, o), H(x'/o)]= —-', gS(x—x') p,p.

By(x') By(x')
X 4(*') + 4(x'), (49)

BXy BXp

function in (46') so as to give

( B~(x x')
y(x) = y(x, a) —

)I d'x'j„(x'). (46")

t' 82 ) Bj„

&Bx.' ) Bx„

', (45) B~(x—x')
[y(x, o), H(x'/o)]=i j„(x'). (49')

where

j.=k&g(A'a 4 4'v. "v '—p)
The solutions of (45) are

P(x) =P(x, o) ',ig)I'S—-(x, x')d'x'ygy,

We rewrite Eq. (49) using (47):

4 )
[4(x, o), H(x'/o)]

= —gS(x—x') y&y„P(x'/o)[By(x'/o)/Bx, ']
+,'gn„(x')-),(n)Sx(x x')7gy-„

X[P(x'/o) j&,(x'/o)+j), (x'/o)f(x'/o)].

One has therefore

(49lr)

, By(x) By(x)
X f(x') +— l'(x'), (46)

~X@ ~Xv

By(x'/o)
H(x'/ )= j(x'/o)— +2Ln. (*')j.(*'/ )]' (5o)

BX)p

Bj,(x')
y(x) = y'(x, o)— 6 (x, x')d'x'

Evidently Eq. (43) can be taken over for the present
case with

(46')

Actually, it is more appropriate to modify the Green's

'~ Cf. Y. Miyamoto, Prog. Thcor. Phys. 3, 124 (j.948).

H' (x/o) = —j ' [By'~(x')/Bx '],
+-Ln (x')j '"(*')]' (50')
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