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A microwave method of measuring the average energy of electrons in a gas in the presence of a d.c. field
has been developed through a measurement of the ratio between the electron diffusion and mobility. By
solving for a.c. and d.c. distribution functions it is found possible to compare quantitatively the effective
a.c. ionization coefficient and the first Townsend coefficient in hydrogen. It is then possible to calculate the
first Townsend coefficient from a.c. breakdown data in hydrogen and these values are compared with pre-
viously determined values. Measurements of average energy have been made and values calculated from
theory compared with previous measurements of average energy. All measurements are in substantial
agreement with each other and with the theoretically determined values.

I. INTRODUCTION

OLUTIONS for the energy distribution function of
electrons in a gas show a very close similarity
between the distribution functions under the action of
a.c. and of d.c. fields. This similarity makes it possible
to compare quantitatively the first Townsend coef-
ficient of a gas with the a.c. ionization coefficient. In
addition, it makes possible an experiment for the
determination of the average energy of the electrons by
measuring the ratio of the diffusion coefficient of elec-
trons, D, to the mobility coefficient, u. The gas in a
resonant cavity will break down when the losses of
electrons to the walls are replenished by ionization in
the body of the gas.! When an a.c. field is applied, the
breakdown depends upon D. If a small d.c. field is
applied to the gas as well, a greater number of electrons
will be lost and the breakdown of the gas will depend on
u as well as on D. Breakdown measurements with and
without d.c. fields applied permit a determination of
the ratio D/pu.

II. THE BOLTZMANN EQUATION

The electron energy distribution function f can be
determined with the aid of the Boltzmann transport
equation which is the phase space continuity equation
for electrons?

C=0f/0l+v-Vi+a-V.,f, 1)

where C is the net rate at which electrons appear in an
element in phase space, v is the velocity, a the accelera-
tion, ¢ the time, and V, the gradient operator in velocity
space.

The distribution function can be expanded in
spherical harmonics in the velocity

f=fotv-t)/v+-- . (2)
The spherically symmetric term f, is much larger than
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the higher order terms because of the disordering effect
of collisions. This expansion is rapidly convergent for
the cases to be considered here.

The production term C arises from collisions and can
be expanded in spherical harmonics. The electric field
is given by E, and an energy variable #=m1?/2e, in
electron volts, is introduced; 7 is the mass and e the
charge of an electron. Substitution of these terms into
Eq. (1) gives a scalar and a vector equation

afe v 0 v
Co=————(uE-£,)+-V-1f,, 3)
ot 3uodu 3
C1= (afl/at)—l—vao —T)E(af()/au) (4)

Elastic collisions contribute to Co and C;. By con-
sidering an elastic collision as an instantaneous process
transferring an electron from one point in phase space
to another, Morse, Allis, and Lamar? have shown that

Co, et=(2mv/ Mu)d(u*fo/1)/du 5
and

Cl, el= “”fl/l, (6)

where / is the electronic mean free path and M is the
mass of the gas molecule. The remaining contribution
to the Co term results from inelastic collisions and is
given by — (h,+h.)v.fo, where h; and k; are efficiencies
of excitation and ionization and v, is used to represent
v/l, the collision frequency. We assume that electrons
suffering inelastic collisions have no preferred direction
after collision and there is no contribution to the C,
term.
Equations (3) and (4) now give

—_ (h;“"‘ h;) chO
o v 19 6m1l 9 su?
=__+_[V.f1_-—-—-(uE’fl)—_‘__‘(_fO)]y (7)
a 3 u ou M udu\l
of, dfo
0= ,,tf1+__+1,[vfo - E—] (8)
ot ou
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The electric field will be taken as
E= Ed.c.‘l“ﬁEa.c.ei‘“, (9)

where Eq4... represcnts the d.c. field, E... the r.ms.
value of the a.c. field and w its radian frequency. Each
term in the distribution function can be expanded in a
Fourier series in time

f0=f00+\/§folejat+ el (10)
fi=£,04+ V2 fleiet - - -, (11)

for the steady state condition. The fo! term will not be
retained, as solutions will be obtained only for those
cases where the mechanisms for density and energy
decay are so slow that neither density nor energy fluc-
tuations can occur in an r-f cycle. If terms of the same
frequency are grouped and the second harmonic terms
dropped, the product of E with f, and f, gives

Ef0= Ed.c.f00+\/’2-Ea.c.f00eim'+ Tty (12)
E. f1= Ed.c. : f10+ Ea.c. : f1l
+\/2[Ed.c. * fxl+ En..c. * flojemt_l'_ e (13)

The time independent component of Eq. (7) is now
given by

19
_(hz+ht)ycf00_ [V f1 —“‘_(uEdc )
u 0u

1 E g 6m1l 0 1)
‘;':}“ v ""ﬁ@(‘ﬂ)} (

The time independent and first frequency components
of Eq. (8) give two equations

0= ch10+v[Vfoo— Ed.c.afoo/aul (15)
0= (vt jw) fi'—vEq.c.0 0%/ Ou. (16)

£, and f;! can be obtained from Egs. (15) and (16)
and substituted into Eq. (14). If we choose coordinates
so that Ey.., is directed along the z-axis, we obtain

v 9 of
—(hath)vef =-‘ — IV f+IEg.0— —
3 ou 0z
Eq.c. d 19 2 E)
+— (u—f) — —lu[Ed.c.2+ - Ea.c.’]—f
u ou\ 0z u ou ve2+ w? ou
om1l 0
“——-—(~f } 17
M uou

where f is now understood to represent fo°.

III. A.C. AND D.C. DISTRIBUTION FUNCTIONS

Solutions will be sought for the case in which the
collision frequency ». can be assumed to be a constant.
This holds particularly well for helium and hydrogen.4

* A. D. MacDonald and S. C. Brown, Phys. Rev. 75, 411 (1949).

¢ A. D. MacDonald and S. C. Brown, Phys. Rev. 76, 1634
(1949).

The calculations to be made will consider the particular
case of hydrogen for which Brode’s data’ give »,=35.93
X10% (sec.™) (p in mm Hg). It is then possible to
introduce an effective field defined by

ve?

Ee2= Ed.c.2+

;2
2Ea_c, , (18)

vt w
and we shall also use the letter ¢ to represent the
quantity

q=m/e3m/M ”c2/E¢2
=16.17/(E./$)? (for hydrogen). (19)

We shall now consider separately the equations for
the pure a.c. and pure d.c. cases in order to compare
the effective distribution functions for the same fields
in the two cases. We can separate the distribution func-
tions into a space times an energy function. The dif-
ference in the spatial function comes from the factor
exp(az), where a is the first Townsend coefficient, in
the d.c. case because of the multiplication of the elec-
trons in their direction of motion. This differs in the a.c.
case for which a solution of the diffusion equation gives

V2fa.c.=— fa.c./A% where A is the characteristic dif-
fusion length of the container. Substituting
n= a/Ed.c.-
Equation (17) yields for the separate cases
fn. c. fa c.
0= +[qu+z]
3 u  (hahi)Mq
+I:—q - ] s, (20)
2 E2A? 2m
d2fd.c.
0=u——+[(g—2mu+3
du?
Mq
+[%q —$ntn*u— (hz+hi)—]fd.c.. (21)
2m
The substitution of
fa.e.= @a.c. exp(nu) (22)
yields
d Pd.c. ded.c.
0= -H:Qu-i- ]
Mq
+[%Q+qflu - (hz+hz)_] Pd.c.. (23)
2m
If a differential operator L is defined as
d? d Mq
=u—+[qut+3l—+3g—(hth)—, (24
du? du 2m

8 R. B. Brode, Rev. Mod. Phys. 5, 257 (1933).
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Egs. (20) and (23) become
0=[L—u/EAfq.c., (25)
0=[L+nqu]ea.c.- (26)

The term ngu is of the order of magnitude of 10~5x.
Since this is much smaller than other terms in L, it can
be dropped.

0=L‘Pd.c.- (27)

Equations (25) and (27) demonstrate that fa...= ¢a.c.
when E.A is very large. This corresponds to a range of
small E./p. In this range, however, 9 is very small as
well. From Eq. (22), we deduce that

(28)
and the quantities D, u, and » become identical for the
a.c. and d.c. cases.

When E./p is large a comparison of fy... with fa.c.
requires solutions for the distribution functions. Solu-
tions have already been obtained for the a.c. case* and
what is now required are solutions for the d.c. case. We
shall treat separately from the higher energy part of
the function that part of the distribution function
below 8.9 volts where A,4/%;=0.

When #<8.9 volts, MacDonald and Brown* found
the solution for the a.c. case in terms of confluent hyper-
geometric functions. The d.c. equation can be solved by
substituting

fd.c.= B.C.y

Cd.c.= Vd.o. €XP(—3qu) (29)
into Eq. (27) to give
AYae. 5 dae. [§ ¢
- +|—¢—— Wa...=0. (30)
du? u du uw 4

Since ¢? is extremely small for E./p large, the term in
¢? may be dropped to give

dz\bd.c. % d\bd.c. %

+—q¥d...=0. (31)
du? wu du u
The solutions of Eq. (31) are given by
Vd.o.=u"sin(3qu) 4+ H cos(3qu)*] (32)
ac, CASE
- dc’case
[ ] |
0 5 10 5

ELECTRON ENERGY (electron volts)

Fr6. 1. Comparison of a.c. and d.c. energy distribution
functions at E,/p =100 for hydrogen.

AND S. C. BROWN
giving
fa.0.=u"3sin(3qu) 4+ H cos(3qu)?] exp(n—4q)u. (33)
When %> 8.9 volts, the excitation terms become very

important. MacDonald and Brown* have shown for the
a.c. case that an asymptotic expansion

fa.e.=DuT exp(—su)[1+d/u+---]
can be used for this part of the function, where

T=(B/24)-3,
s=(4+1/2b)gb,
d=(B/gb44?)(1— B/24),
b=[14(2/gE.A)*]},
A=[(Mhy/2mgb®)+31},
B=[(Mhyu./2m)+3]/b,

and the excitation-plus-ionization function has been
approximated by

hethi=h(u—u,)
=9.0X10%(x—8.9) (for hydrogen),

(34)

where u is the excitation potential.

Since the excitation term completely dominates the
equation for fa.., Eq. (34) serves equally well for fq...
for the same E,/p. That this is correct was checked in
the following manner. From Egs. (25) and (27), we see
that ¢g.c. and fa... are identical if A—o. @q... deter-
mined in this manner determines f4... with the aid of
Eq. (22). The distribution function f4... so obtained
agrees with Eq. (34) within 0.5 percent at E./p=70 and
within 1 percent at E./p=100 for energies up to 20
volts. This is sufficiently accurate for our purposes.
There are so few electrons at higher energies that they
have little bearing on integrals over the distribution
function.

The constants D and H are adjusted to join solution
(34) smoothly with solution (33) at the patching point?
u,=9.5 volts.

g6 1 ¢
1—2(u,/3q) *[———}———-l—— - 77] tan(3qu,)}
d 2u, 2

H=

)

¢ 1 ¢
2(“;/34)’[g+——+5—n]+tan(39“p)’

Up
1y o LsinGqup)i+ H cos(3quy)!] exp(n —3g)uy
“pT exp( _Sup)(1+d/“p+ cen)

where
qb/®=[df/ fdu Jumu,
IV. IONIZATION COEFFICIENTS

We are now able to determine {, and » from the
distribution functions. The effective a.c. ionization coef-
ficient ¢. is defined by

g’P= Vn.c./Ds-c.Ezzy



AVERAGE ELECTRON ENERGIES AND FIRST TOWNSEND COEFFICIENT 949

where the subscripts a.c. refer to the fact that such
quantities are to be calculated from fa.c.. This quantity
is equal to 1/A%E.? for breakdown in the a.c. case. Ex-
perimental values of 1/A2E,? determine {,.

The first Townsend coefficient  can be calculated
as well. The number of ionizations per centimeter of
electron drift « is va.o./pd.c.Fa.c. Since pa.o.Ea.o. is the
drift velocity. Thus,

n= Vd.o./#d.c.Ed.c.z,

where the subscripts d.c. refer to the fact that such
quantities are to be calculated from fa.c.. If we divide
n by ¢, for the same value of E, (Ea... is the effective
field for the d.c. case) in both cases, we obtain

ﬂ/i’s= 1'd.c.Da.ta./Vm.t:.l-ld.v:.- (35)

The ionization rate mr can be calculated® from the
formula

ny= —8xr(e/m)? f i (u/v)vchifdu,

where u; is the lowest ionization potential. Since
fa.e.=fa.c. for the complete range of integration, it
follows that

Na.c.Va.c.= Nd.c.Vd.c.- (36)
The coefficient of mobility of electrons y is given by
1 pr*b af
p=—= —47v*—dv. (37)
nvy 3 ou
This equation can be integrated by parts to give
le p*1
u=—— —4mv*fdv. (38)
nmJo v

Since

n=fw 41r’u’fd'u=21r(2e/m)*f‘z° wfdu (39)

and », is a constant, Eq. (38) becomes
u=e/mv,

whether we use fa.c. or fq.c.. Thus p without subscript
serves both a.c. and d.c. cases.

When ¢, and 7 are small, as was discussed previously
for low E./p, fa.c. and fq... become identical so that
Vd.c.= Va.c., in which case

n/te=D/n. (40)

For larger E./p, we now can determine the ratio
Vd.c./”a.c.-

From Eq. (39), we see that the contribution to » in
any energy interval is #!f. This quantity (unnormalized)
is plotted in Fig. 1 for E./p=100 volts/cm-mm Hg for
both the a.c. and d.c. functions. There are about 5

¢ Formula (16), reference 4.
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Fic. 2. Block diagram of the experimental apparatus.

percent fewer electrons in the low energy range for the
d.c. than for the a.c. case. From Eq. (36), we see that
this implies that v4q...221.05va.... This fact has a
physical interpretation. In the d.c. case the density
varies as exp(az). This dependence makes for large
density gradients which allow fast electrons to diffuse
back into the gas against the d.c. field, while those which
are swept out by the field are drawn equally from all
energy levels. The larger number of higher energy elec-
trons contributes to the increased ».

In a similar way it can be shown that the diffusion
coefficient calculated from fy... varies less than 5 percent
from that calculated from fa... Since experimental
errors in determinations of 5 and ¢, are frequently
larger than 10 percent, Eq. (40) can be taken to be
sufficiently accurate for E./p<100 volts/cm-mm Hg.

From the integrals for D and the average energy @

1 p*ly 1 p°mo?
D=- —4mvfdv, u=- f —4mv¥do.
nJd, 3 nJo 2e

A comparison with Eq. (38) shows
D/u=1%u, 41

when », is a constant. Hence D/yu is a direct measure
of the average energy of the electrons. Even when ».
is not a constant, Eq. (41) holds reasonably well. For a
Druyvesteyn’ distribution, D/u=0.763%, while for a
Maxwellian distribution we have again, D/u=3%4,
whatever the dependence of v, on energy.

V. THE A.C.-D.C. BREAKDOWN CONDITION

The gas in a cavity will break down when the losses
of electrons to the walls of the cavity are replaced by
ionization in the body of the gas. When an a.c. field
alone is applied, electrons are lost by diffusion. When a
small d.c. sweeping field is applied, electrons are lost
both by diffusion and mobility. The breakdown con-
dition can be formulated mathematically by a con-
sideration of these processes.

The flow of electrons I' is given by

r'=—nuE4...—DVn. (42)
When the electrons that are lost are replaced by new

7M. J. Druyvesteyn, Physica 10, 69 (1930),
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F1G. 3. Schematic diagram of the resonant cavity.

ones resulting from ionization,

V-I'=wn (43)

If the divergence of Eq. (42) is equated to vz, and Eq...
is directed along the z axis, we obtain

Ed.c. on
V24— —+on=0.

D/u 9z )

Equation (44) can be solved readily for the case of a
cylinder of axial height L and axial coordinate g,
radius R and radial coordinate r. Rigorous boundary
conditions require the concentration to be small at a
boundary and to extrapolate to zero outside the
boundary at a distance of the order of a mean free path.
In the range of pressures to be considered, the mean
free path is very small compared to cavity dimensions
and the condition of zero concentration on the cylinder
walls is imposed.

By separation of variables,

n=M(r)N(2),
we obtain two equations

VM +k2M =0,
d*N Ed .. dN
+(ae)ves,

d22 D/ u a
where k,2 is the separation constant and V,? the two-
dimensional Laplacian in the plane perpendicular to 2.
The solutions are

M= const. Jo(kyr), (46)
N =const. sin(r/L)z-exp(— pEq.c.2/2D), (47)

where k,=2.404/R and J, is the zero-order Bessel
function. The exponential represents the deformation
of the sine caused by the sweeping of electrons. This
solution is subject to the condition

v/D=1/Aq...% (48)

where Ag... defines a modified diffusion length given by
the relation

1/Ad.e.2=1/A*+[Ea.../(2D/u) 1% (49)
For this case, the characteristic diffysion length is

(45)
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given by
1/A%=(m/L)*+4 (2.404/R)2. (50)

The only difference between the breakdown condi-
tion (48) in the a.c.—d.c. case and the pure a.c. case is
the substitution of a modified diffusion length Aq... for
the characteristic diffusion length A. It will be noted
that the modified diffusion length of a cavity is smaller
than the characteristic diffusion length. A cavity whose
electron losses are increased by a d.c. sweeping field is
equivalent to a smaller cavity without a sweeping field.

VI. USE OF BREAKDOWN CONDITION IN
DETERMINING D/u

If we divide Eq. (48) by E.?, we obtain
v/DE2=1/Aq4..2E2. (51)

When an a.c. field alone is applied, this quantity defines
the effective a.c. ionization coefficient {, previously con-
sidered. A curve of {. is obtained from a.c. breakdown
measurements alone by plotting 1/A%E.? versus E./p.
Equation (51) shows that this plot is the same as for
1/A4...2E2. If an a.c.—d.c. breakdown is observed at a
given E./p, it is then possible to obtain the appropriate
¢ from data taken with pure a.c. breakdown. The ¢, so
obtained is equated to 1/Aq...2E.? and Ag4... is obtained.
From the definition of Aq..., Eq. (49), D/u is obtained.
The implicit assumption that the distribution function
of electrons is the same for the a.c.—d.c. case as for the
a.c. case alone is best understood from the similarity of
the extreme cases of d.c. field and a.c. field alone.

VII. EXPERIMENTAL PROCEDURE

A block diagram of the experimental apparatus for
observing a.c.—d.c breakdown is shown in Fig. 2. A
continous-wave tunable magnetron in the range of

T T T T T |
g - -
8r 4
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3
§ 3 "/\Toqusaw AND BAILEY
3 .
L 2F P 4
|
I x CALCULATED FROM THEORY
l L 1 L 1 1 1 1 1
10 20 30 40 50 70 90

EeZp (volts/cm -mm Hq)

Fi1G. 4. Comparison of theory and experiments for the
average electron energy.
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10-cm wave-length supplies power to a coaxial line.
For wave-length determinations, a probe in the coaxial
line is connected to a cavity wave meter. A power
divider provides a continuously variable control over
the fraction of the power incident on the cavity, unused
power being dissipated in a matched load. A known
fraction of the power incident on the cavity is coupled
from the line by a directional coupler to a power
measuring thermistor and associate measuring bridge.
A probe and slotted section in the coaxial line permit
measurements of the standing wave pattern in the line
immediately ahead of the cavity. Measurement of the
standing wave ratio and voltage minimum as a function
of frequency permits calculation of the cavity Q as well
as the fraction of the incident power that is actually
absorbed by the cavity. For convenience the power
transmitted through the cavity is calibrated in terms
of the incident power.

Figure 3 shows an oxygen-free-copper resonant
cavity which can be outgassed and which permits the
application of a d.c. field to the discharge region. The r-f
field configuration is identical with a cylindrical
TM-mode cavity of % in. separation with the ex-
ception that there is a d.c. break around the diameter
backed up by an r-f choke. The output loop is not
shown. An insulating gasket made of sheet Teflon served
to position the inner cavity assembly and to make the
vacuum seal. The flanges were clamped together on the
gasket with clamping rings and bolts made of No. 303
stainless steel to match the expansion of the copper.
This arrangement permitted baking the cavity at 290°C.

The field within the cavity was determined by con-
structing an identical cavity structure provided with a
small axial plug which could be inserted into the cavity.
By observing the change in resonant frequency with
plug insertion, after the method of Slater,® the rela-
tionship between the stored energy in the cavity and
the square of the electric field at the point of insertion
of the plug was determined. From the cavity Q and the
power absorbed by the cavity, the field could be cal-
culated. The field determinations were accurate to
about 8 percent.

Measurements of D/u converted to average energy
of electrons have been carried out for hydrogen. The
cavity was outgassed for a week at 290°C. Two liquid
air traps were employed. With the vacuum system
isolated from the oil diffusion pump by a stopcock, the
system held at a pressure of the order of 3X10~7 mm
Hg for over an hour as measured by an ionization

8 J. C. Slater, Rev. Mod. Phys. 18, 441 (1946), Eq. (II1.89).

T 1 1177
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F1c. 5. Comparison of theory and experiments for the first
Townsend ionization coefficients in hydrogen.

gauge. Spectroscopically pure hydrogen was used.
Figure 4 gives values of average energy as a function of
E./p. The experimental error is approximately 8 per-
cent. The broken curve was obtained by Townsend and
Bailey® by observing the lateral diffusion of an electron
beam moving in a uniform d.c. field. Theoretical values
of average energy were calculated here from the dis-
tribution functions. The measurements were taken for
only those pressures where the mean free path was
much smaller than the cavity size.

From the observed value of D/u and ¢, the first
Townsend coefficient 7 is calculated and plotted in Fig.
5 (it is shown as a smooth curve, since it was determined
from two smooth curves); the maximum experimental
error in this curve is about 20 percent. Theoretical
values of n determined from those points for which the
average energy was calculated are shown. It is seen that
the present data are in substantial agreement with
previous data of Ayers!® and Hale.!!
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