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It is shown that the Tomonaga method for obtaining an intermediate coupling approximation in meson
theory can be formulated very simply and will in general give accurate results in the limits of weak and
strong coupling. The problem of nuclear forces in the charged scalar theory is studied. The ratio of ordinary
to exchange forces is given as a function of the coupling strength. Photo-meson production is studied in the
intermediate coupling region for both charged scalar and charged pseudoscalar theories. The method is

seriously limited in that nucleon recoil is neglected.

I. INTRODUCTION

OMONAGA! has given an intermediate coupling
approximation for meson theory based on an
Hartree approximation. In this method of treatment the
mesons in the self-field of a nucleon are assumed to be
in a finite set of orbital states, reducing the infinite
number of degrees of freedom characteristic of field
theory to a finite number. Rigorous results are obtained
in the two extremes of weak and strong coupling.

The method is seriously limited in that it necessitates
the neglect of nucleon recoil effects and requires the
introduction of a finite “‘size” for the nucleons, making
the theory non-relativistic. However, there exists no
satisfactory theory for including the reactive effects of
nucleon motion in a relativistically satisfactory manner:
first, because the relativistic wave equation satisfied by
free nucleons is not known ; second, because the existing
relativistically covariant meson theories involve di-
vergent integrals which cannot be made finite even by
renormalization of mass and mesonic charge, but must
be handled by formal tricks;? third, the not-weak
couplings between meson and nucleon in relativistic
theories must be treated as if weak through the use of
perturbation methods, casting considerable doubt on
even the qualitative conclusions drawn from these
theories. Whereas the Tomonaga method ignores the
first two difficulties, it seems to permit at least a quali-
tative estimate of the effect of couplings which are
neither strong nor weak. It may thus be of value in
estimating the conditions under which perturbation
theory will give untrustworthy results.

In the present paper the Tomonaga treatment will be
reformulated in a manner which makes in particularly
easy to apply. By way of illustration it will then be
applied to the problem of nuclear forces in the charged
scalar meson theory and to the problem of photo-meson
production for charged scalar and charged pseudoscalar
meson theories.
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II. FORMULATION OF THE METHOD

We consider the interaction of nucleons with a meson
field characterized by a set of field variables ¢z (x)
(A=1,2, - - -n). We neglect relativistic effects pertaining
to the nucleons, considering them to obey a Schrodinger
equation. Associated with the field variables ¢)\(x), will
be a set of canonical variables m\(x) with the usual com-
mutation relations

ilmo(r), a(x)]=drb(x' —x),

all other combinations commuting.

The Schrodinger equation for the system consisting
of N nucleons coupled to the meson field will be of the
form?

M

[(Ho+H,+H']Q=1(0Q/dt), (2)

where

N
H0=Z Piz/ZMy H,‘=H,,(7r, ¢))

i=1

N n 3 g ad @
H'=Z Z [gO)‘qS)‘(Z,)-*-kZ: _O)\k“""d’)\(zi)]-

i=1 A=l =1 %k

Here p; is the momentum operator of the #’th nucleon,
z; is its space coordinate, and M is its mass. H, repre-
sents the Hamiltonian operator for free mesons, g and
g’ are coupling constants (of which one can in general
be taken to be zero), and O, and O, are matrix opera-
tors. Letting u represent the meson mass, we write

w=pl—A, 4)
and introduce the variables
Ur(x) =1/V2[ ¢ (x) +iwtmi(x)], )
Ux*(x) =1/V2[ () —iwtm(x)],
which satisfy the commutation relations
LUM®), Ust(x') ]=drod(x—x),
(6)

[ON), Ue(x")]=[Ux*(x), Us*(x")]=0.

In terms of these variables, H, and H’ will have the
form (for vector and pseudovector theories a somewhat

8 We use units in which A=c¢=1,
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modified treatment is necessary)
H,=3% | Uy (@)wlUs(), )
A=1
(neglecting the vacuum fluctuation term) and

H=% 3 2”‘w"*(zi){g0x[Ux(Zf)+ U (a)]

=1 A=1

s g a
+ 2 —On—LUxGE)+UxF(E) ] (8)
k=1 pu Oz
The field angular momentum in this representation is

M=3

A=1 .

d*xUxH(x)[xX (1/5)V]Ux(). 9)

We now seek a unitary transformation, S, on Eq. (2)
which diagonalizes H,+H’, i.e.,

Sea HyaptHag' 180" =00 € (10)
in matrix form. Writing
=% Su ™',
Eq. (2) becomes ’
[(Ho+ e)dor+ (g STHo, S7111¢) JQ' =109,/ /0t (2')

The quantity S[H,, S'] represents the effects of
nucleon recoil. Even if S were known, this term would
make a general solution of Eq. (2’) difficult. However,
if this term is considered to be small, it can be treated
as first order perturbation and Eq. (2’) becomes

{Ho+ 0+ Soa[ Ho, Sao™ "]} Q' =1(9%"/ 08),

where we represent the lowest eigenstate of Eq. (10)
by ¢=0. For the problems which we are to consider the
term Soa Ho, Sa0™"] gives no contribution and will
henceforth be dropped.

From Eq. (6) we see that a Fock* representation can
be used for Uy and Uy*. For instance, the operator

@

J\r")‘= fd3xe+Ux (11)
has integral eigenvalues and represents the number of
mesons of “type N’ in the field. Let us now expand U,,
U,* in a complete set of orthonormal functions, ¥,(x):

Ur(x)= Z a)\p‘l’p(x), Urt(x) =Z a)\p+'pn*(x)) (12)

where it follows from Egs. (6) and (11) that aea, and
a\," are absorption and emission operators respectively
for the state p and m,,=ax, %@y, is the occupation number
of this state p by mesons of the type A.

The essence of the Tomonaga method involves the
determination of the functions ¥,(x) so that to a first

4V. Fock, Zeits. f. Physik 75, 622 (1932).

919

approximation one can keep only a finite number of
terms in Eq. (12), thus reducing the number of degrees
of freedom to a finite number. Drawing a rough analogy
to the case of atomic structure, we may expect that the
mesons will show a tendency to be bound in that par-
ticular state y,, (or set of states if there is degeneracy)
for which the energy of the system is a minimum for
just one meson, since they obey Bose statistics. In
particular, it would seem reasonable on this assumption
to find these lowest states from lowest order perturba-
tion theory and assume that the additional mesons ap-
pearing from higher order terms will be bound in these
same states. We now show that this choice of states
satisfies simultaneously the weak and strong coupling
hypotheses.

Consider the self-energy of a single nucleon with coor-
dinate z in the weak coupling case. Using a Fock* repre-
sentation in which the coordinate of the 7’th meson of
type X is x;*, we can write to lowest order in g, g’ the
eigenvalue equation

(H,+H')x= ex, (13)

as
w(®MCi(x*)+ 2**{ goxw“*(xl)‘)fs(xl)"‘ z)

gl
-3 —Onw )
Eop

o(x*—1z) }Cozo (14)

axu}

or

Ci(x)=— 2_§lg0)‘w_g(xl)‘)5(xl)‘— z)

g 9
—5 & oneia) a<xo—z>]co, (15)
L axu}

where x in Eq. (13) is the matrix {C,} with » repre-
senting the occupation number of the mesons in the
field. From Egs. (12) and (15) we see that the ground
state eigenfunction y,(x) can be taken as

o) = L} H(x)8(x—2), (16)

if there is no gradient coupling. Here L is chosen to
normalize ¥, to unity. For the term with the gradient
coupling, we have from Eq. (15) three such states,

Yi(x) = — Lt H(x) (9/9x1) 8 (x—2),

where L, is chosen to normalize y¥; to unity.

Since the expressions for L and L, involve divergent
integrals, we adopt the cut-off convention of expressing
all divergent integrals in momentum space and replacing

(7

fo “ftar by f " a,

whenever the first integral diverges. It will be assumed
that eu<1.
According to Egs. (16) and (17), the Tomonaga ap-
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proximation involves rewriting Eq. (12) as

D@ =n@TE owh®  (9)
and the corresponding adjoint equation. Using Egs.

(7), (8), and (18), we write the Tomonaga approximation
to Eq. (13) as

I 3 Il I
—axotanetY. —antan+g——O0\ arotaret
; I A0 Ao I?;lLl e Ak g(ZL)* x[ oY) xo]
/ [1

(2L )i 1023 O)‘k[a)‘k+dw+]]x= €X, (19)
M 1) k=1

where

I= [\/L w—§(x)¢0(x)]z==z;

1 3 d
11=[—\/L1 5 w-*—m(x)]
3 k=1 %y Z=z

Defining canonical variables gro and pra (@=0, 1, 2, 3)
by

Pa=2"HOraFOraT),
Eq. (19) becomes
I1
L2

o= —12"Hara—arat), (20)

I
2 2__1
;{ C2% ol H_g—o\/L I

3 I 1 g/ I,
+El I:z; E(i’)\kz—*}-lhk?_ 1)+-;- \/—LIOMQMC] }X= ex. (21)

To obtain the strong coupling approximation to Eq.
(13), we split the field ¢, into coupled and uncoupled
parts, as usual:

1
o\(x)= ¢x°}w“2(x)5(X~ z)

3 1 9
+k§l ¢7\k°_I__w—2(x)—————-§(x__ Z) + ¢)‘/(x>’ (22)

1 ox

where ¢’ is not coupled to the nucleon. The portion of
the Hamiltonian involving just ¢\° and ¢x:° is

1 3Tl g
> ;(¢x°>2+gox¢x°+kz[I—<¢M°>2+—omw]]. (23)
-1

1 M

Defining ¢x°= (I/v/L)g\ and ¢ri’= (I1//L1)gni in Eq.
(23), we see that this then agrees with the part of Eq.
(21) that depends on the ¢’s. Whenever the eigenvalue
in the strong coupling limit depends only on the ¢’s (and
not on the canonical momenta) it is apparent that the
Tomonaga method will indeed give correctly both the
weak and strong coupling solutions with the choice of
wave function given by Egs. (16) and (17). With two
nucleons present, a similar analysis applies.

K. M. WATSON AND E. W. HART

As in strong coupling theory, we can expect to
improve our approximation by including first-order
effects from the remainder of the field that was neglected
in the approximate Eq. (18).

To specialize Eq. (19) to particular cases, we consider
first the charged scalar theory. It is convenient to
introduce complex fields ¢ and ¢+ with respective
canonical variables = and #*. Fock variables U and V
are introduced through the relations

¢=Qu)U+VY], ¢*=Qw)[UT+V],

=127 Ut-V], xt=—i273d[U-V"]. (24)
The total mesonic charge is
Q=efd3x{ Ut(x)U@)—V+H(x)V(x)}. (25)

Comparing this with Eq. (11), we see that U, U™ are
field variables for positive mesons while V, V+ are those
for negative mesons. The interaction term H’ of Eq. (3)
is now

H'=g[r.¢*(s) +7-¢(2)], (26)

where 7, is the operator in isotopic spin space changing
a proton into a neutron and 7_ is its adjoint.
In accordance with Eq. (16) we take

U=ao(x), V="byo(x) (27)
and the corresponding adjoint equations.
The eigenvalue Eq. (19) becomes
(I/L){a*a+btb+g2~ /L 7 (a*+D)
+7_(a+b") ] x=ex. (28)

For the pseudoscalar theory with pseudovector
coupling we keep the definitions (24) of the field vari-
ables U and V. The interaction, H’, is now

H'=(g/woV.[7,61(z) +7-¢(2)].
In accordance with Eq. (17) we take

(29)

V@)=Y ale), V)= :glbkm), (30)

k=1

and the corresponding adjoint equations. Introducing
vector notation for the a’s and &’s and the canonical
variables

g=2"%a+b*), p=i2-i(at—b), (31)
we obtain the eigenvalue equation
5L
—{p*-pt+at-q—3
+(g/wv/Lio-[riat+7qlix=ex. (32)

The angular momentum [Eq. (9)] and charge [Eq.
(25)] operators for the “bound” field have the re-
spective forms:

L=gXp+g*Xp*, Q=iefq*-pt—aq-p] (33)
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III. NUCLEAR FORCES IN THE CHARGED
SCALAR THEORY

We shall suppose the dynamical system to contain
two nucleons with respective coordinates z;, and z;. The
eigenvalue problem is of the form of Eq. (13) with

HY =gl O gH(e) 47002
+7, @ (z) +7_Dp(2)]. (34)

Introducing the Fock variables of Eq. (24) and
following the analysis leading to Eq. (15), we find that
the ground state for the mesons is doubly degenerate

with wave functions of the form
x1= w0} (2)6(x—21), x2=wH(x)d(x—2s),

corresponding to mesons bound to either nucleon. From
these we construct two orthogonal wave functions.

Y1=NVlxa+bx2], ¥o=N[bx1+x2], (35)
where
N=2=L+02L+2bJ, b=—J/[L+(L*—J?}¥],
(36)
J=fX1X2d3x=w_3(21)6(11_22)‘ (36)

and L is defined in connection with Eq. (16). We note
that if P is the permutation operator interchanging the
two nucleons, then

PIP1=II/2, P‘p‘Z:‘//L (37)

The Tomonaga approximation implies that we write
the Fock variables of Eq. (24) as

U=a1+B4¥: V=ay1+B-ys, (38)

and similar equations for the adjoint operators U+, V+.
Substituting these definitions into H' of Eq. (34) and
into H, of Eq. (7) gives the Tomonaga approximation
to Eq. (13). To write this as a differential equation it is
convenient to introduce four pairs of canonical vari-
ables, (qi, p1), (¢2, p2), and the corresponding adjoint
quantities by the relations

oy =3[q14g+i(prt+po) ],
a—=%[qx++q2++i(1’l+?2)]: (39)
Bi=3[q1— g2 +i(prr—paM)], :

B_=3lat— gt +i(p1—p2) ],

and the corresponding adjoint equations. Denoting the
g-variables by a single symbol, ¢, the eigenfunctions for
our approximation to Eq. (13) corresponding to an
eigenvalue ¢, will be of the form x,(¢). Identifying x,(q)
with S—1 of Eq. (10), we see that the solution, ©, of Eq.
(2) will have the form

Q=Z X'(q) QPI[SI’ SZ) 2y, z?]) (40)

where S; and S; are the spin variables of the nucleons.
With the assumption of small nucleon recoil effects [use
of Eq. (2”7)7], we can keep only the term in Eq. (40) with

921

re=(); ie.,
2= x0(q)Q'[S1, S2, 21, 22]. (40"

Denoting the triplet and singlet isotopic spin states
by Z:* (u=1,0, —1) and Z, respectively, xo(¢) will have
the structure

x0(g) = Z1'R1(q) +21°R2(q) +ZoR3(q) +217'R ().  (41)

We are now able to establish certain symmetry con-
ditions on the R’s of Eq. (41), since the permutation
operator interchanging the two nucleons must change
the sign of Q by the Pauli principle. Since P commutes
with the Hamiltonian in Eq. (2"), we may take Q¢ to
be an eigenfunction of P; i.e.,

PQo, = 890/. (42)

Here e= +1 depending upon whether Q' is symmetric

or antisymmetric in the spins and coordinates of the two

nucleons. According to Egs. (37), (38) and (39) the

interchange of the two nucleons is equivalent to leaving

¢1, (17 unchanged and replacing ¢s, g2* by —¢q2, —¢2t.
Further symmetry relations are

P21“=21”, on= —Eg.
Applying the operator P to Eq. (40’) and using Egs.
(41) and (42), we have

Ri(gy, @1, g2, g27) = —eRi(qy, ¢1t, — g2, —¢2),
(1=1,2,4) (43)
Ry(qy, g1%, g2, g2%) =eRs(q, 1, — @2, —q2™).
Denoting by R the matrix {Ry, Ry, Rs, Rs}, the eigen-
value problem for determining ¢ is

[H+V]R=€R, (44)

where

H={YV*prpi+qtqa—1]
+V[ptpatgetqe—11}u  (45)

(u is the unit 4X4 matrix) and

V=g[ 0 Ttqit —T—¢ot 0
T+q, 0 0 THq,*
—T-¢ 0 0 T-gt| ©O
l 0 T+ql T—QQ 0
with
Yt=(+K)/(L+J), Y-=(I—-K)/(L-J),
T+=(I+K)/(L+J)}, T-=I—-K)/(L-J)}, (47)

K= w(21)6(21—22)
= (4m) " exp[ — | 21— 22| J/ (| 21— 22]).
(I, L and J have their previous definitions.)
Introducing polar coordinates® and writing Eq. (44)
as a differential equation, the solution can be found
easily in the limits of weak and strong coupling. For
weak coupling this is the usual perturbation solution

o= —g2[I— P'K] (48)

8 R. Serber and S. Dancoff, Phys. Rev. 63, 143 (1942).
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where P’ is the operator permuting coordinate and spin
variables of the nucleons.

In the strong coupling limit the results of Serber and
Dancoff® are obtained:

«=—3g’[/+K] (49)

for $g?K large compared to the separation of isobaric
states of the individual nucleons. When }g?K is small
compared with the separation of isobaric states,

o=—3g[/-3P K] (50)

The solution to Eq. (44) for the neutron-proton
system was further studied to obtain an estimate of ¢
in the intermediate coupling range. Equation (44) was
solved by perturbation methods to (and including)
terms of order g® (For any finite order perturbation
calculation in the Tomonaga method there is only a
finite number of intermediate states, making perturba-
tion theory relatively easy to apply.) The fourth-order
ordinary potential was repulsive, while the sixth-order
ordinary potential was attractive. For g?/4r=1, the
leading term was still the lowest order (of order g?)
exchange Yukawa potential. For large g?/4r a varia-
tional calculation was made using an expansion in terms
of harmonic oscillator functions with a displaced origin.
The results of these calculations are given in Fig. 1 as
the ratio of ordinary to exchange force as a function of
g/(4m)Y. The perturbation result was joined to that
calculated by the variational method at g/(4w)}=1. The
two curves joined quite smoothly at this point. (The
cut-off radius, a, was chosen so that au=4%§.)

More precisely, the quantity plotted in Fig. 1 is

R=fw rVo(r)dr/fx rVe(r)dr,
0 0

where V), is the ordinary and V, the exchange force.

(1)

T T T T T

Fi16. 1. The ratio, R, of ordinary to exchange force as a function
of the coupling constant for the charged scalar theory. The
ordinate, R, is defined in Eq. (51).

K. M. WATSON AND E. W. HART

R changes sign because the ordinary force is repulsive
for small g and attractive for large g. The exchange
force for all values of g is attractive for states antisym-
metric in the nucleon coordinates and repulsive for
symmetric states. The ordinary force has a very short
range® for small values of g, going over into the usual
Yukawa potential for large g.

IV. PHOTO-MESON PRODUCTION IN THE
CHARGED SCALAR THEORY

The calculation of the self-field of a nucleon in the
charged scalar theory permits an immediate calculation
of the production of mesons by photons. The calculation
is made treating the electromagnetic charge of the
meson, e, as being small in magnitude. Then the term
in the Hamiltonian for the system which is most im-
portant for photo-meson production is

H'=— f P2A-, (52)

where A is the vector potential for the electromagnetic
field and

=il ¢1Vop— Vot (53)

We must calculate the matrix element of H” for a
transition from the state represented by a nucleon, its
self-field and a photon to a state containing the nucleon,
its self-field and one free meson with momentum
vector k.

The eigenfunction for the self-field of the nucleon is
determined by the solution of Eq. (28). To obtain the
Tomonaga Hamiltonian for the state containing a free
meson, we note that according to Eq. (52) the wave
function of the meson produced cannot have any partial
waves of zero angular momentum, since the photon
cannot be in a zero angular momentum state. This
means that we can take the wave function for the
outgoing meson to be a plane wave minus the partial
wave of zero angular momentum. Because the meson
field coupling to the nucleon is scalar, we can conclude
that the meson produced by the photon will not be
coupled to the nucleon.

The wave function of the meson produced with
momentum k is then

exp(ik- z)ui(x)=V"1 exp(tk-z)

sink|x—z|
X {exp(ik- (x—2z))— (54)

x—1z|

normalized in a large volume V. The Fock variables U
and V of Eq. (27) are modified as

U=ayo(x) +aiur(x), V=0byo(x)+bui(x), (55)

(with similar equations for Ut and V+) where ¢, is
given by Eq. (16) and the phase factor exp(ik-z) is

8 K. A. Brueckner and K. M. Watson, Phys. Rev. 78, 495
(1950).



TOMONAGA INTERMEDIATE COUPLING METHOD

absorbed in the operators a; and b;. Also a;, b, commute
with ¢*, bt, etc.
The Schrédinger equation for the system now becomes

{ko[a1+dl +b1+b]+HT} X’= GIX,, (56)

where ko= (k2+pu2)} and Hr is the Hamiltonian of Eq.
(28). The desired solution to Eq. (56) is of the form

€=et+ky, x'=1%,

where e and x are the quantities obtained from Eq. (28)
and v is the eigenfunction of

ko[(11+(ll +b1+b1:|'0= ko‘v. (57)

The matrix element for the production of a positive
meson from a proton is ((2), H"Q(1)), where according
to Egs. (2) and (2”)

o) =x2(1), Q)=x'2(2), (58)

and Q'(1) and ©'(2) represent respectively the proton
in state “1” and the neutron in state “2”. The de-
pendence of this matrix element on the meson field
variables is given by

) e(2m)*k- ¢, exp[i(p—k)-z]
O POk (k— ) 7]
X (x, [a+b%1x) (59)

obtained by using the definitions of U and V of Eq.
(55) in the current j of Eq. (52). In Eq. (59), p is the
momentum of the photon and &, is its polarization
vector. The exponential, exp[i(p—k)-z], gives total
momentum conservation when combined with the wave
functions @'(1) and @'(2) [Eq. (58)] of the nucleons. It
should be noted that our formulation of the neglect of
nucleon recoil effects for virtual emission and absorption
[Eq. (2")] does not imply such a neglect for real emis-
sion and absorption processes.

As the quantity (x, [a+b*]x) is independent of the
free meson momentum, we see that the angular dis-
tribution and energy dependence of the cross section
will be independent of the coupling constant, g. (This
conclusion is independent of the Tomonaga approxima-
tion, depending only on the fact that a meson produced
by the photon is not coupled to the nucleon.)

The differential cross section for the production of a
meson depends thus on the coupling only through the
multiplicative factor

[ (x, [a+b%]x) |2

It will differ from that of perturbation theory by the
deviation of this factor from its perturbation limit. As
the perturbation cross section has been given by several
authors,” we give only the ratio of the differential (and
total) cross section to its perturbation limit in Fig. 2
as a function of the coupling constant (the cut-off was
was chosen as au=%). For the determination of the

7K. A. Brueckner, Phys. Rev. 79, 641 (1950).

’ 1"

(X', H

923

Lo T T T T T T

2 ASYMPTOTIC LIMIT = Y5 ]

0 1 1 1 1 !

!
o <5 10 l52 20 25 30

.

4w

F16. 2. The ratio of the photo-meson production cross section
in the charged scalar theory to its value obtained from lowest
order perturbation theory given as a function of the coupling
constant. The dotted line gives the asymptotic limit of this ratio
for large g?/4w.

wave function x, a variational method (shown to give
good results by Tomonaga') was used in which the trial
wave functions were

Xn=exp(—3D?)- (n!)~*D" (60)

in a representation in which » represents the number
of virtual mesons in the field and D is the variational
parameter.

V. PHOTO-MESON PRODUCTION IN THE
CHARGED PSEUDOSCALAR THEORY

The self-field of the nucleon is determined by the
solution of Eq. (32). In the strong coupling limit Eq.
(32) can be handled by the methods of Pauli and
Dancoff.® We obtain then the result of these authors,

&= —(1/4ma®)(g"/4mp?), (61)

where ¢ is the cut-off radius and au<1.

To calculate photo-meson production, we must now
evaluate the matrix element of H” [Eq. (52)] for the
transition from a state consisting of a photon and a
proton to a state with a neutron and a meson. For pseu-
doscalar theory the meson current occurring in Eq. (52)
is

(@) =ie[ ¢ (%) V() — p(x) Vo +(x) ]
— (ieg/w)[$(x) 7—— ¢ (x) 7 J3(x—2z)o,

where z is again the nucleon coordinate.

In Fig. 3 is plotted the differential cross section for
the production process in both the strong and weak
coupling limits. The angular distribution is the same
in both limits, the cross section in the strong coupling
limit being just } that for weak coupling. The flatness
of the angular distribution has been noted by Bruckner.?
This is due primarily to the fact that for energies not
too far above threshold the second term in Eq. (62)
(which is linear in the meson-field variables) is respon-
sible for the greater part of the cross section. Indeed,

8 W. Pauli and S. Dancoff, Phys. Rev. 62, 85 (1942).

(62)
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this term causes interaction only with mesons of zero
angular momentum with respect to the nucleon coor-
dinate.

The above discussion indicates that we can calulate
photo-meson production to a good approximation by
including just the term in j(x) that is linear in ¢ and ¢+,
This approximation makes the calculation especially
simple, since the mesons produced will not interact
directly with the nucleon through H’ of Eq. (29).
[Equation (29) couples only mesons in p-states; the
linear term in Eq. (62) couples only those inm s-states.]

Taking the wave function of the photo-meson to be

(63)

where k is its momentum and # normalizes « in a large
volume U, we can write the Tomonaga approximation
to U and V [Eq. (30)] as

u(x)=n sink|x—z|/k|x—1],

U= z a(e) Fan(),
(64)
V)= gi:lbkwk(x)a—bu(x),

(and similarly for U* and V).
As with the scalar theory, the Tomonaga eigenvalue
problem is separable into Eq. (32) and

klata+btbJo= kv (65)

with wave function x'=wvx and eigenvalue ¢ =e+k, .
Using Eq. (64) in Eq. (62), we obtain for the matrix
element of the transition from a state consisting of
proton and a photon to one consisting of a neutron and
a meson:

@I H"| p)= —ie(gn/VZuke)) (1, a*v0)

X (xwn,0mxp) A, (66)

where 7 and v, are the solutions of Eq. (65) for states
represented by no free meson and one free meson, re-
spectively; xp and xw are solutions of Eq. (32) for the
self-field of a proton and neutrons, respectively ; and A’
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Fi1c. 3. The angular dependence for both strong and weak
coupling cross section, ¢, for the charged pseudoscalar theory with
pseudovector coupling, plotted in arbitrary unitsin thebarycentric
system. Photon energy in the laboratory system is 260 Mev.
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is the matrix element of the electromagnetic potential
for the absorption of the initial photon.

To obtain information concerning Eq. (66) in the
intermediate coupling region, (2|H"’|1) was evaluated
by perturbation methods to the seventh power of g.
This gave the cross section to terms including g.® The
result for an unpolarized photon incident on a proton
of random spin orientation is given in Fig. 4. The
quantity plotted is the ratio of the cross section to its
value obtained by using only the lowest order per-
turbation formula. For g?/4r >0.2 the power series in
g apparently becomes invalid (the cross section seeming
to fall off too rapidly). The asymptotic value for large g
(obtained from the strong coupling solution) for the
ratio is §. The rapid approach to the strong coupling
limit is due to the strong singularities introduced by the
gradient coupling in H' [Eq. (29)]. It is interesting
that carrying perturbation theory to a high enough
order seemed to bridge the gap between the weak and
strong coupling limits (a similar expansion in powers of
the coupling constant for photo-meson production in the
charged scalar theory gave good agreement with the
variational calculation used in obtaining the results
shown in Fig. 2).

VI. CONCLUSIONS

The discussion of the validity of the Tomonaga ap-
proximation is considerably hampered by the non-
existence of a satisfactory theory to which it can be
considered as an approximation. While the neglect of
nucleon recoil effects is almost certainly not valid at
high energies, it is not known whether there exists a
range of energies for which such effects can be considered
as small.

Granting the form of meson field theory in which the
motion of the nucleon is nelgected, there still remains
the question of the validity of the Tomonaga approxi-
mation to this theory. We have seen that the approxi-
mate method gives exact results in both the weak
coupling and strong coupling limits. Extending the
calculation to higher order terms will give some indi-
cation of the error incurred in the Tomonaga method.
Assuming the cut-off, g, is such that au<1, the fourth-
order nucleon self-energy turns out to be:

Scalar Theory

W®=g41/2m)%(1/a) In(1/(ap)?)
(Tomonaga approximation)
Wt=g%1/2m)%(1/a) In 4 (rigorous)

Pseudoscalar Theory

W®=(g'/48)(1/2m)4(1/a)(1/ap)*
(Tomonaga approximation)
W4=0.92(g*/48)(1/27)*(1/a)(1/au)* (rigorous).

(The factor, 0.92, comes from the evaluation of nu-
merical factors.) The energy of separation of isobaric
nucleon states is:



TOMONAGA

Scalar Theory

AW =[27*u/au[Inap P I[(m*—1)/g*]
(Tomonaga approximation)

AW =8wu(m?*—1)/g* (rigorous)®

Pseudoscalar Theory

AW = (4n*ua/g?)[2(j+1)—m*—5/4]
(Tomonaga approximation)
AW = (37%u2a/g")[25(j +1)—m2—5/4] (rigorous)®

where m is the isobaric quantum number and j is that
for the total angular momentum. In each case the
Tomonaga method is incorrect by a numerical factor.
The fourth-order nuclear forces in the charged scalar
theory had the correct sign and very nearly the correct
shape as given by the Tomonaga method, but again
were multiplied by incorrect numerical factors. (It
should be emphasized that by carrying the Tomonaga
approximation one step farther, one could expect to
obtain agreement in the above examples. One might, for
instance, introduce variation parameters into the trial
wave function as did Tomonaga ;! or one might introduce
formally the remainder of the meson field that is
neglected in the first approximation, as is done in strong
coupling theory. Also the introduction of additional
trial wave functions seems capable of giving improved
results. However, the equations obtained by the lowest
order approximation in the Tomonaga method are suf-
ficiently complicated that it is desirable to carry the
approximation no further, when permissible.)

The source of the error in the Tomonaga method can
be easily seen when higher order perturbation calcula-
tions by this method are compared with those of the
rigorous theory. The same virtual emission and absorp-
tion processes occur, but the integrals occuring in the
rigorous theory as replaced in the Tomonaga approxi-
mation by “average” values of the integrands, which
are obtained from the corresponding lowest order
perturbation values.

We can then conclude that exact numerical accuracy
will certainly not be obtained by the Tomonaga ap-
proximation. However, it seems quite probable that
satisfactory qualitative conclusions may often be drawn
from results obtained by this method.

The rapidity with which one leaves the region of
weak coupling with increasing g is indicated in Figs. 1,
2, and 4. It is highly doubtful whether the strong
dependence on cut-off characteristic of the pseudoscalar
theory is real. Thus one would hesitate to determine a
numerical value for the coupling constant in this
theory. The persisting flatness of the angular distribution
for photo-meson production as the coupling increases
may be significant, however, since this is in agreement
with the experiments of Steinberger and Bishop.?

Since only the logarithm of the cut-off is important
in determining the strength of the coupling in the scalar
theory, somewhat more reasonable conclusions may

9 J. Steinberger and A. S. Bishop, Phys. Rev. 78, 493, 494 (1950).
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F1c. 4. The ratio of the photo-meson production cross section
in the charged pseudoscalar theory to its value obtained from
lowest order perturbation theory. The dotted line gives the
asymptotic value for large g2/4.

here be drawn about coupling strength. Referring to
Fig. 1, the strength of coupling to give about equal
exchange and ordinary forces (as observed!?) is g2/4r~2
which is well within the intermediate coupling region.
From Fig. 2 and from Brueckner’s? total cross section
in the perturbation limit, we can fit the total cross
section for photo-meson production® in the scalar
theory with g2/4w~2.5. There is, of course, little reason
to take the scalar meson theory seriously ; however, the
fact that one finds couplings from it that are neither
weak nor strong may be meaningful.

Strong evidence against the scalar theory is the incor-
rect angular distribution of photo-meson (which is
independent of the coupling constant) and the fact that
the exchange force for the neutron-proton system has
the wrong sign for all values of the coupling constant
—according to the Tomonaga approximation. The
evidence from photo-meson production seems to be
particularly valid (in view of the results of Brueckner?)
that nucleon recoil effects are unimportant for the
lowest order perturbation calculation and first-order
radiative corrections in scalar theory, and since for this
theory it seems that these perturbation calculations may
have some qualitative validity.

As a final conclusion, we may venture to suggest that
there seems to be little justification for treating meson-
nucleon couplings as weak, and that the problem of
understanding intermediate couplings may be as sig-
nificant and as important as the understanding of the
nature of relativistic effects and divergences in meson
theory.
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