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of hard spheres may be expected to yield, to a first
approximation, in place of (41):

X/(V b)—= (2n MkT/k')8"g„p ",— (46)

where b is the region of configuration space excluded by
the spheres. This raises T&. Roughly the same correction
would apply to (42) for the clustering gas, so that the
comparison between ct.ustering and non-clustering gases
is not essentially altered by the correction. On the
other hand it may be remarked that long-range repulsive
forces might be expected to lower the lambda-tempera-
ture because they would oppose the condensation, and
attractive forces conversely may raise the temperature.

These effects are very small, however, even compared
with the volume eGect" in (46). It is only insofar as the
attractive forces are sufEcient to cause clustering that
they have any appreciable eBect, and this is to lower
the transition temperature right down to the saturated
vapor line. The physical reason for this is simply that
the degenerate Bose-Einstein gas prefers to go into the
lowest energy states, and these are the clustered ones;
it may even be asserted that the lambda-condensation
itself forces the condensation into the liquid phase and
can never occur without it.

'o L. I. SchiE, Phys. Rev. 59, 758 (1941).
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An example of a two-dimensional crystal in which each lattice point interacts with six neighbors is the
so-called "triangular Ising lattice. "The unit cell is a parallelogram with interactions along each of the sides
and along the shorter diagonal. The thermodynamic properties of this lattice can be calculated for arbitrary
interaction constants in the three independent directiolls by a simple extension of the procedure used
previously by the author to solve the two-dimensional rectangular Ising lattice.

The triangular lattice generally has an order-disorder transition of a type very similar to that of the
rectangular lattice, which is indeed but a limiting case of the triangular problem, The only lattice having
no transition is that for which one or three of the three interactions are antiferromagnetic (negative) and
the two interaction constants of smallest absolute magnitude have equal absolute value.

I. INTRODUCTION

A GKNERAI. technique for calculating the thermo-
dynamic properties of certain two-dimensional

crystal problems has been developed by Onsager' and
Kaufman. ' One makes use of the known relationships
between the 2n-dimensional orthogonal group and its
2"-dimensional spinor representation. Wannier' has
recently reported that the two-dimensional triangular
Ising lattice can also be solved, at least in the case of
equal interactions in all directions, by making use of
the dual transformation4 which relates the triangular
problem to one essentially the same as the rectangular
problem.

The triangular problem can also be solved for arbi-
trary interaction constants in the three directions using
the procedure recently applied to the two-dimensional
rectangular lattice' in which a matrix M is associated
with each lattice point of the crystal instead of with an
entire row.

Using the notation of reference 5, the triangular

' L. Onsager, Phys. Rev. 65, 117 (1944).' B. Kaufman, Phys. Rev. ?6, 1232 (1949).
3 G. H. Wannier, Phys. Rev. ?8, 341 (1950).' G. H. Wannier, Rev. Mod. Phys. 1?, 50 (1945).
~ G. F. Newell, I hys. Rev. ?8, 444 (1950).

lattice is obtained from the rectangular one by adding
an interaction

—J2P jgj+n —l

between the jth point and the (j+n 1)th —The p.ar-
tition function is

nm

Z= Q exp(g(Hopjpj+j+Hlpjljj+tl
p,~'~+1 j~l

+H, l,q,+. i)j, (1)

Ho =Jp/kT, Hi =Ji/kT, H2 =J2/k—T. —

Ke introduce a matrix M defined by

Ks'. ~g', ~a ~t=expghA pn) exp(HO@ pz)
n —1

Xexp(H p p~) II ~(p,' p;+~) (2)—
Z can be written as

z= Q II Mp„+, p;+g, I „+; g"
ps=+1 i=1

Z=traceM""=P X ""

where ); are the 2" eigenvalues of the matrix M.



CRYSTAL STATISTI CS

M, which may be considered either as an operator
de6ned in a 2"-dimensional vector space or as a 2"-
dimensional matrix, can be expressed in terms of the
operators C„, 8„, and R defined in reference 5.

M= exp(H, s.s ~)(e '+e-"oC.) exp(H2s s 2)R

or, with
H*= tanh '(e—2~o),

M = (2 sinh2Hp) t exp(H&s„s„2)

Xexp(H*C ) exp(H2s„s„2) R. (4)

5K' —— 000.
000 ~

a b0.
cd 0.
e f0

~ ~ 1
~ 0

0
~ 0
~ 0

0 0 , (6)
1 0
0 g
0 h

0

a=%i(cis2+sic*e2), e=&is C2

c =%(sls2+c1e c2)q 5 =&sls
g =c].c2+syc c2) d =W zcIS
I2= 2(sge2+C2C—S2), f= WC

t = —s*s2, s„=sinh2II „, c„=cosh2H„
s~ =sinh2H~, c*=cosh2H~

The eigenvalues e' of 5K~ can be found by solving
the determinantal equation

det(5R~ e'I) =0. —

This leads to the equation

coshnz icos=h(n 1)s+—b coshs+c,

II. SOLUTION OF THE EIGENVALUE PROBLEM

Equation (4) differs from Eq. (9) of reference 5 only
by the factor containing H2 Since. exp(H2s s 2) is a
representative of a rotation in a 2e-dimensional space,
the new problem is but slightly more complicated than
the rectangular one. The reduction of the problem to a
2n-dimensional eigenvalue problem follows in an
obvious manner from reference 5, Sections 3 and 4.
Equation (27) of reference 5 is replaced by

M= (2 sinh2Hp)&L2'(1+U)c+M++2'(1 —U)e M j,
M„—=exp( —iH2P Q„r) exp(iH'P Q„)

Xexp( —iH2P„Q„2)A+, (5)

M —=exp( —iH2P„Q„2) exp(iH"P„Q„)

Xexp( —H,P.Q. ,)A,

where P;, Q, , U, c~ and A~ have the same meanings as
in reference 5.

M~ are spin representatives of rotations 5R+ in
2e-dimensional space.

00t00. .
00010.
00001

Fio. 1. The dashed line shows s0 sinny, the solid line—seisin(e —1}y, s2, $0&0, for s»$0, $2=s0, $2&$0. The circles
occurring at the intersection of the two curves are the solutions
of Eq. (9a}.There are three such solutions in the interval shown
if $2($0,' one if $2%$0.

sp sinhnx sinny+s2 sinh(n —1)x sin(n —1)y
~si sinhx siny =0, (9)

P sos2s2+ cpc2c2 sinh2Ho sinh2H2 sinh2H2
+cosh280 cosh2IIg cosh2H2.

Of particular interest is the solution of Eqs. (8) and
(9) for n»1. For simplicity, let us assume that as
n—+po, x=R (nx does not go to zero). In this limit (8)
and (9) becomes

s2 coshnx siny/sinny&s2 cosy = WP, (8a)

sp sinny = —s2 sin(n —1)y.

If one considers a plane triangle with sides so and s2,
then he can take as the opposite angles —(n —1)y and
ny, respectively, in agreement with (9a). The law of
sines for the third angle and side gives

s2 siny/sinny = (so'+so'+2sos2 cosy) &

from which

(10)

coshnx = W (p —sr cosy) (sop+$22+ 2sps2 cosy)-&. (11)

With but few exceptions, there is a solution of (9a)
for y in each interval rrr/n(y& (r+1)pr/n. This interval
can be made arbitrarily small by choosing n suKciently
large. The solutions nx of (11) in turn can be found
exactly in the limit e~~, since it contains only cosy
(not cosny). Equation (10) determines the sign of the
square root appearing in (10) and (11). In general,
siny/sinny alternates in sign as r increases by integral
steps. Equation (10) has a solution only if the right side
is positive; thus half of the y-values go with 5R+, the
other half to 5K . The only exceptions to the above-

or, substituting s=x+iy, one obtains the two real
equations

sp coshnx cosny+so cosh(n 1)x—cos(n —1)y
%$2 coshx cosy =%PI (8)
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TAsLE I. Data at T= T, where x=O. J;, J;, JI, stand for some
permutation of Jp, Ji, Jp, such that

I J;I &&IJ;I, I JpI. The first
column gives those constants which are positive, the remaining
ones being negative. The second column gives the number of the
equation in the text which locates the temperature T,. The third
column has the value of y for which x=0. The last column denotes
the space (odd or even) to which the value x=O belongs. Case A,
8 are so classi6ed in the text following Eqs. (19) and (20).

(+) exp(-', Q e„s,), e,= W1 (14)

those of M as

values of y are in each case densely distributed in the
interval 0&y(2~.

The eigenvalues of M+ can be written in the form

Tc

(19)

(ao)

Value of y Space

odd

Qdd

n

(a) exp(-,' P e„'s„'), e„'=a1
r=l

(15)

J;or JI,

none

(20)

(19)

(20)

m if J,=—J1
m. if J;—=JI
0 if JI,—=J1
m if JI(0
0 if JI&0
m if J;gJI
0 if J;—=J1

case A
case B
even

case B
even

case A
even

where s„=x„+iy„are the n solutions of (8) and (9)
with the upper sign and s„'=x„'+iy„' are the n solutions
of (8) and (9) with the lower sign. The 2" eigenvalues
result from taking all possible sign combinations of e„,
e„' = ~1 and. one of the signs in front.

III. SELECTION OF EIGENVALUES

stated rules, for 0&y&2m, are aty=O, y=xandy~2x.
These are also the only points for which (11) could fail
to justify the assumption that x—4 as n~~. These
solutions must be considered separately.

The number of discrete solutions of (9a) depends on
the relative values of so and s~. Figure 1 shows a graph
of sp sinny and —sp sin(n —1)y for sp sp) 0' pr 7r/(n —1)
(y(pc+pc/(n —1). If sp&sp there are three solutions in
the interval shown, but as s2 is increased past so these
three points converge at y = m, giving only one solution
for s() (s&. For s&, st) &0 there is one solution y =0 in the
interval (y/ prnbut none in the interval 2pr —pr/n

&y&2x. There are all together 2n solutions if so&s~,
but only 2n —2 solutions if s2&so.

For so, s2 not necessarily positive one finds 2n solu-

s2 have the same sign, the "missing" solutions are at
y = x, but if so, s2 have opposite signs they are at y =0.
To find the "missing" solutions in the former case, we
consider Eq. (8) with y= pr. This becomes

sp coshnx —sp cosh(n —1)x= W ( —1)"(P+si coshx). (12)

For so&s2&0, the left side is positive for all x. If the
right side is also positive, there is only one solution.
This solution satisfies the condition x~0 as n~oc and
is correctly given by (11). H sp&sp&0 and the right
side is negative, there is a solution for which x—4 as
n—&~; but irrespective of the sign of the right side,
there is a solution of (12) for which x does not go to
zero. As n—+ac this solution becomes

$0 8 = $2 (13)

Solutions of the type (13) are obtained in all cases

I s, I
&

I
s I, not only ss) sp) 0.

The complete set of solutions are as follows: If
I»l) I»l Eq (10) gives 2n v»ues « I*I half of
which go with ~+ half with ~- If Ispl & I»I Eq
(10) gives, for each choice of sign, n —1 solutions for

I xl. The remaining two solutions are of type (13).The

To obtain the eigenvalues of M, one must select those
eigenvalues (14) and (15) belonging to the odd and even

spaces respectively, in agreement with (5), and deter-
mine the sign in front of these expressions. The rule
governing the selection of eigenvalues is that those
eigenvalues of (14) and (15) with an even number of
e„=—1 belong to one of the two spaces (even or odd),
those with an odd number of minus signs belong to the
other space. Since (8) and (9) do not determine the sign
of s;, it is necessary to adopt some convention for this
sign.

Any s; whose real part x; does not vanish for any
value of T can be chosen positive. If x; does vanish for
some temperature T, at which dx;/dTNO, then one
must allow the sign of x; to change at this point if x; is
to be an analytic function of T. In this case, we shall
take x, to be positive for T)T,. The same convention
applies to the s . (This is the opposite convention to
that used in reference 5 for xp. )

According to a theorem by Frobenius and Olden-

burger, "the largest eigenvalue of M, max'A+, comes
from M+, it is real and non-negative. If the z; are so
ordered that x;&x~ if j&k, then either x~ ——x~ and s2

is the complex conjugate of sj or x& is a unique smallest
and y&

——0 or ~. This is a consequence of the fact that
if s is a solution of (8) and (9), then so is its complex
conjugate, but no solution is multiple. y = ~ and y = —x
are however the same solution.

From (14) we see that the largest eigenvalue of M+
for the even space has e„=+1,2 &r &n but ei depends
on whether the eigenvalues of the even space have an
even or odd number of values e; = —1. If y» /0, ~ then
~~

——+1, for if it were —1 the corresponding eigenvalue
of M would be complex, contrary to Frobenius' the-
orem. If yI =0, x Frobenius' theorem is of no help.

The choice of the correct e~ if y~
——0, m depends on the

calculation of Z in the limit of large temperatures in
which case all x; are positive and Z is known to be 2"

' S. B. Frobenius, Preuss, Akad. Wiss. , p. 514 (1909).
7 R. Oldenburger, Duke Math. J. 6, 357 (1940).
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as evaluated from (1). This results from (3) if max'~
is non-degenerate and e~ ——+1. If e~

———1, Z is com-
plicated because of near degeneracies of max'+ with
those eigenvalues having e~ ——+1 and some e;= —1,
i/1 and also with the largest eigenvalues of M . In
no case does ~~ ———1 give the correct limit Z=2" .
The eigenvalues of M+ belonging to the even space
must therefore be those with an even number of ~; = —i.

max'+ ——(2 sinhi 2Hpi )» exp(-', P x;).
i=1

(16)

The determination of the number of allowed e,' = —1
rests on the above-mentioned requirement that max'+
be a unique largest eigenvalue of M for T)T,. The
eigenvalue (15), belonging to the odd space, with the
largest absolute magnitude has ~ =+1, 2 & i&n, if the
s are ordered as were the s;.

For T)T„all x are positive and if e~' ——+1, the
largest odd eigenvalue, max), of M is real. As n~~,
the x,' form a dense sequence of values interspaced
between the x;. Zx —+Ex, and the largest eigenvalue of
M becomes degenerate with the largest eigenvalue of
M+. To avoid a degeneracy of max)+, one must
assume that the eigenvalues of M belonging to the
odd space have an odd number of e = —1. In general
max' will not be real.

The eigenvalues of M are:
n

(+)(2 sinh2Hp)»c+ exp(-', P e;s;),
s~l

(17)

(~)(2 sinh2Hp)»c exp(-', P e z ),
i=1

IV. DEGENERATE EIGENVALUES

As was true in the rectangular Ising lattice, the
existence of values of x which pass through zero means
that the largest eigenvalues become degenerate as
n~~ for temperatures below the point T, where some
s is zero. If all the interaction constants J; are positive,
one obtains a twofold degeneracy, as was true of the
rectangular case, but if some of the J; are negative, the
degeneracy may be many-fold. The reason for this can
be traced to the fact that for some J; negative, in
general one cannot obtain a state of as high degree of
order as for J;)0.

Though these deviations from "complete order" at
low temperature are usually caused by the screw type
periodic boundary conditions which were introduced
merely to simplify the problem, and have no physical
significance, the manner in which this anomalous

c+ ———i, c =1, for n odd,
c+=1, c = —i, for n even.

The signs in front are chosen such that Z is positive
for all T. The number of e;= —1 is even; the number
of ~,'= —1 is odd.

(x)—0—o—

(p)—„x,—x—g ———

(x n 0&+, Onq 0—P

I

l~e a ~~P
X Xn-t

Fro. 2. State of highest order Hq&0, Hp&0, [Hp[&[Hp[,
[H&[. The crosses denote one sign of n;; the circles, the opposite
sign. The screw-type boundary condition is indicated by repeating,
in parenthesis, the nth column in its relation to the 6rst. HI is the
interaction constant in the row, II0 in the column, and H~ along
the diagonal.

behavior appears in the theory is of some interest from
the mathematical point of view.

To investigate this, one must find those x;, x which
pass through zero for some temperature. These can be
found from (11) by minimizing the right side as a
function of y and setting the left side equal to unity.
The values of y which make the right side a minimum
will be either 0 or ~ depending on which of the J; are
negative and which

i
J;i is the smallest. The results are

given in Table I. The formulas, as indicated in Table I,
for the temperature at which x =0 are

is; s;[+[s, s&[+[s; ss[ =1, (19)

is; s, i

—is, sp[+is; s„[ = —1. (20)

In (20), is;i & is, i, [ss[. Case A and 8 of Table I
are classified as follows: For case A, x=0 belongs to
the even space if so) s2 and n is odd or if s«s2 and n
is even. It belongs to the odd space if so) s2 and n is
even or so &s2 and n is odd. If so ——s2, there is no solution
x=0. For case 8, x=0 belongs to the even space if
sp&0 (ss) 0) and I is even or st&0 (sp) 0) and n is
odd. Otherwise x=0 belongs to the odd space.

It is significant that for any fixed value of J,, there
is, at most, one solution x=0 of (11). This solution
belongs to either the even space or the odd space, not
both. That

i x;i or ix, 'i which is smallest of its respec-
tive set for one temperature, is the smallest for all
temperatures. In view of the convention for ordering
the x;, x,', that x; or x which is zero at T=T, is either
xt or xt'. There is no solution x =0 if one or three of the J;
are negative and there is no Nnzgle smallest J;.This case
will be called type I in the following.

If there is no degeneracy for large T and no x;, x
changes sign, then there is no degeneracy for low tem-
peratures. For a type I lattice, max)+ is sufhcient to
determine Z for all temperatures, assumining m&&i.

A lattice for which x~' ——0 at T = T, will be called a
type II lattice; that for which x&

——0 at T =T, a type
III lattice. Type II is the type considered in the rec-
tangular model with positive interactions. For T&T„
max), which is in this case real, contains the sum of
positive numbers ix i by virtue of the negative xt
counteracting the one minus sign e~' ———1; max'+,
which has no x, =0 retains its positive definite sum
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I

n-S r7-2. n-i ~ n

Fro. 3. State of highest order H&)0, H&(0,
I
B&

I
&

~
&& I, I H&l.

H1 is the interaction. constant in the row, H0 in the column, and
H2 along the diagonal. The diagonal dashed ling represents the
position of the discontinuity in the pattern.

below T,. The next largest eigenvalues contain two
negative quantities in the exponent and therefore are
not to be considered with the above. The degeneracy
become twofold as max) ~max)+ for T&T„n—+~.

For a type III lattice, max'+ has one negative term
in the sum over e;x; if T&T, as does max' for all T.
They are +x~ and —x~' respectively. As n~~, the
values of lx;I form a dense sequence with lxtl as a
lower limit. By changing the sign of ~~ and one other e;
for which x,~l xr

I
as n~oo, one obtains another eigen-

value with a permissible number of e;= —1. The same
is also true for the x . The absolute magnitude of these
eigenvalues tend toward max)+ as n—+Oc. Max'+ is
thus the upper limit of a dense sequence of

I &t+I and
l)& I. This sequence for IHpl & IHsl contains 2n eigen-
values, n from X+ and n from X, corresponding to the
n ways of assigning one minus sign to the n x s If
I
Hp

I
&

I
Hs I, x„and x ' satisfy (13) and are not of a size

comparable with the set of x;, x satisfying (11).In this
case there are only 2n —2 eigenvalues in the above
sequence instead of 2n.

Substituting the values X+, X in Eq. (3), neglecting
all but the largest eigenvalues, we obtain the following
expressions for Z.

To obtain Eqs. (22) to (24), it has been assumed that
m is of the same order as n, thus 0(m/n')«1. This is
used for instance to justify replacing -,'nmP x,' by
—', nm P x;. In (23) and (24) one makes use of the fact
that the s;, s,' occur in complex conjugate pairs to
remove the imaginary part of the X's. The & sign of
(23) and (24) must be determined by some extra con-
ditions such as the low temperature limit discussed in
the next section.

V. LOVf TEMPERATURE EFFECTS OF THE BOUNDARY

In this section, we shall be concerned primarily with
the interpretation of the rather complicated form of
Eqs. (23) and (24).

The quantity in the bracket of (23), we shall call Br.
Each term of its sum is, in absolute magnitude, less
than exp( —nmlxtl) for s, finite.

I Btl & 2n exp( —nml xt I).
The equality can be true only in the limit T—4. For

ny„~(2r+1)rr
2IH, +H,

l
for H, )O

ny '~2r~
nx ~ng + nxg + (25)

ny ~2rK
2

I
H, —H,

I
for Hp&0 I

I ny„' +(2r+-1)pr

The simple form of (25) is based on the limit
ss/sp —4. We thus obtain

Br~exp( —nm
I
xt I ) [(n&n)+terms of order ss/sp

or smaller j. (26)

If the minus sign is correct we obtain for Z an expression
of the form ~ 0 which cannot be evaluated in this
order of approximation. If the plus sign is correct, we
obtain for Z, the expressions

Type I lattice or type II, III with T& T,

Z=(2lspl)i" exp(-', nm P x;).
1

(21)

Z +2n exp—(nml Hpl) exp[m(n —2) I HQ+Htl j,
Hp) 0&

(27)~2n exp(nmlHpl) exp[m(n 2) lHe —Htl j, —
Hp &0.

Type II lattice, T&T,

Z= 2(2 I sp I)i""exp(-,'nm Q x,). (22)

Type III lattice, 2'&T. IHoI) IHsl

Z=(2I»l)'"" exp(snm 2 I* I)L 2 exp( —nml*'I)
1 s=l

Xcosnm(y, yt) &exp—( nml x,'I) —cosnmy j. (24)

n n

Z=(2lspl)i" exp(-', nm Pl x, l)[g exp( —nmlx;I)
1 i~1

Xcosnm(y; —yr) &exp( nml x I) co—snmy j. (23)

Type III lattice, 2'&2'. , IHpl & IHsl

Many of the cases given in Table I are of the type to
which (23) applies. We shall consider as an example
Ht)0, He&0, IHsl & IHpl, IHtl. The state of lowest
energy is shown in Fig. 2. It is apparent from the 6gure
that the interactions between the points jn and jn+1,
j=1, 2, ~ ~ ~ is not the favorable one. This discontinuity
in the pattern may with equal probability be located
along any one of the n columns. An additional com-
plication will arise if ns is odd due to the periodic
boundary conditions between the 1st row and the mth.
The pattern is unchanged if all the p; are changed to
—p;. Assuming ns even, there are thus 2n equivalent
states of lowest energy. The energy contribution from
the column interactions is nm Jp, that from the row and
diagonal interactions —(n —2)m(Jt —Js). This checks
with the expression (27).
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If m is odd, one chooses the minus sign in (26). An
exact calculation is dHFicult because the erst n —1
corrections to (26) will also vanish, until the expression
for Z contains factors m —2 in the exponent instead of
m. The degeneracy of the lowest state being of order nm".

We conclude that the complications of (23) are in
this case due entirely to the forced boundary conditions
which prevent the system from attaining a state of
complete order. Further examples would show that this
is true in all cases in which (23) applies.

The bracket of (24), which we denote by Bo, is even
more cumbersome to analyze for T—4. nx„, nx„', y„'
now satisfy

(n 1)—y,~(2r —1)x
o

(n 1)y—,'-+2rx
'PZXr ~PZXr~ 'PZXI

(n —1)y„-+2ror
2IHo H&I for Ho&0

(n —1)y„' (2r —1)or

(28)

To this order of approximation, 82 vanishes unless
nm is an integer multiple of n —1, and vanishes even
then for one of the choices of sign in (29). Higher order
calculations ~ill show that 8 is of order

n[m exp(I 2HoI —
I 2Ho I))~,

y =nm mod(n —1) for one choice of sign and of order
n[m exp(I2HoI —I2HoI)j +" ' for the other choice.

The source of the complication is again apparent if
we consider an example. Suppose

I
Ho I &

I
Hi I, I HoI '

II2&0, BI&0. The lowest energy state is of the form
shown in Fig. 3, The discontinuity in the pattern occurs
along the diagonal line j(n —1), j=1, 2, ~ ~ ~ . This
pattern will not satisfy the periodic boundary conditions
between the mth row and the fj.rst unless nm is an
integer multiple of 2(n —1).

If such be the case, the degeneracy of the state is
2(n —1). There are n positions in a row through which
the discontinuity can pass but one of the resulting n
patterns is the same as that obtained by changing all

p; to —p, ;.
By the proper choice of sign in (29), one can force B&

to vanish in 6rst order unless Nm is an even multiple of
n 1 In th—is c. ase, B&—+2(n 1) exp( nm—Ix&I)—which
is in agreement with the above picture.

If the pattern of Fig. 3 fails to close on itself, then
each additional unfavorable interaction caused by this
failure to close may be placed in any one of the nz rows
adjacent to the discontinuity already present. The
resulting degeneracy is of order nm, a =nm mod2(n —1)
or a=2(n —1) nm mod2(n —1), a&n —1 w—hich by a

to order sojso.

IBoI~exp( —nmI x, I)

.-~ ( mn2rx mn(2r —1)or)
g g I

cos icos (29)
n —1

nx(y) is given by (11).
Though Z cannot be expressed in closed form, the

internal energy and specihc heat can. By differentiation
under the integral sign, one obtains integrals of the form

dn[f(n)/Q& j
0

0
kT/g J

c
L

L

Fro. 4. Graph of the internal energy per lattice point es. the
temperature. Curve A is for the square lattice Jo=J2—=J, J1=0.
Curve 8 is for the equilateral triangle lattice Jo=JI=J~—J.
The vertical line corresponds to the transition point.

proper choice of sign in (29) leads to at least qualitative
agreement even in these cases.

We are forced to conclude that the quantities in the
brackets of both (23) and (24) are only an expression of
the effects caused by the imposed boundary conditions.
Their contribution to the thermodynamic properties of
the system as a whole is negligible at all temperatures,
except perhaps in the immediate vicinity of T =0. The
entropy at T =0 for instance is appreciably changed by
the boundary conditions, though it is essentially zero in
either case. The smallness of these efI'ects can be verified
mathematically as well as by physical arguments. .

The thermodynamic properties of the system will in
all cases be calculated from (21) instead of the more
complicated forms (23) and (24).

VI. THERMODYNAMIC PROPERTIES

In deriving the thermodynamic properties of the
system, one replaces the sum of (21) by an integral.

1 1
logZ=-', log2Is, I+—' dynx(y)

nm 4X 4p
(3o)
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T=T,. There is, therefore, no discontinuity in tlie
internal energy but the specific heat has a logarithmic
singularity at T = T,.

If J& ——J2 ——J, most of the thermodynamic expressions
are simplified considerably by the substitution

0

coth2L=—exp(2Hi) cosh2H.

The transition point occurs at

~
exp(2Hi) sinh2H~ =1.

The internal energy is

(33)

(34)

FIG. 5. Graph of the speci6c heat per lattice point vs. the t m-

perature. Curve A is for the square lattice JO=J2—=J, J1=0.
Curve 8 is for the equilateral triangle lattice Jo=J1=J2—=J.

p 2+SO +» +$2 ~ (32)

Equation (32) is equivalent to Eqs. (19) and (20), thus
some s =0 implies that k~ ——1 and vice versa.

As was true in the rectangular case, E(ki), which is

logarithmically infinite at k&=1, is multiplied in the
expression for V by a factor that vanishes linearly at

I=cosy and Q is a fourth-degree polynomial in u. The
method for transforming such integrals to elliptic
integrals is well known. The expression for the internal

energy per lattice point, U, will in general involve both

E(ki) and IIi(N, ki), the complete elliptic integral
(Legendre standard form) of the first and third kind
respectively. The latter can be re-expressed in terms of
incomplete elliptic integrals of the first and second
kinds.

Finding the explicit form of U for arbitrary J; is
somewhat tedious. The resulting expression is not
simple and will not be given here.

The important feature of the expression is the argu-
ment k~ of the elliptic integrals.

k '=4&/(~+I)'& I f =[0' (I+ra'+—»'+»')]' (31)

It follows that kj, ——j. if 8 =1,

U= —Ji coth2Hi (2—/ir) f
k' sin8(Ji+ J coth2H)E(ki)

+(Ji coth2Hi —J coth2H) LE(ki)F(k', 8)

where

—E,(k,)F(k', 8) —E(k,)E(k', 8)]I, (35)

sinh2H+ sinh2I,
sin8= k'=

cosh2H cosh2L

sinh2H —sinh21.
7

sinh2H+ sinh2I.

kg'= 1—k".

E(ki), Ei(ki) are the complete elliptic integrals of the
first and second kind, respectively; F(k', 0), Z(k', 8)
are the incomplete elliptic integrals.

If all three J; are equal, this reduces to

U = —J coth2H[1+(2/ir)k'
X sin 8(1+tanh2H) E(ki) j. (35a)

If one of the three J, is zero, the triangular lattice
reduces to the rectangular net which has been treated
in some detail. '

In Figs. 4 and 5, the internal energy and specific heat
are plotted as functions of the temperature, for the two
simple cases Jo ——J2—=J, Ji=0 (square lattice) and
Jp =Ji =J2=J)0 (equilateral triangle lattice).
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