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Energy Levels, Selection Rules, and Line Intensities for Molecular Beam Electric
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In the molecular beam electric resonance method the energy levels in an electric field of a diatomic
molecule which is in the ground electronic state, and a low vibrational and rotational state are studied.
Transitions are produced between states with different space quantization of the molecule relative to the
electric field and with different couplings of the angular momenta of the nuclei and of the molecular rotation.
Thus the interaction of the molecule with the field and the internal molecular interactions {e.g., nuclear
electrical quadrupole interactions and nuclear spin —molecular orbit interactions) are measured. In this
paper we give the stationary state energy values and eigenfunctions for "very weak, " "weak, "and "strong"
field conditions for a diatomic molecule in which one nucleus has a spin of $. Selection rules for the transi-
tions are developed and some considerations on line intensities are discussed. Finally, there is presented
the theory of double quantum transitions, which are predicted to occur at one-half the frequency given
by the Bohr condition, AW=hv, provided the radiofrequency field is suSciently intense.

I. INTRODUCTION molecule which has been subjected to a transition in
the C-field arrives in the 8-field in a di8erent state than
it would have had if it had not suGered the transition,
and, furthermore, if in this diferent state it is subjected
to a different force in the B-field, then the transition
mill be observed as a change in the intensity of the
molecular beam which strikes the detector.

The Hamiltonian for a polar diatomic molecule in an
electric field should include a term for the interaction
of the field with the electric dipole moment, terms for
the electrical. quadrupole interactions associated with
the nuclei, terms for the spin-orbit coupling between
each nudear spin and the molecular rotational angular
momentum, and, finally, the magnetic dipole-dipole
interaction between the two nuclei. The energy levels
are studied for field intensities ranging in value from
those for which the field interaction term is negligibly
small relative to the smallest internal interactions
observed ( 10 kc/sec. ) to those for which the field
interaction is large ( several hundred megacycles)
relative to the electrical quadrupole interactions. It will
be convenient to distinguish several special cases
characterized by the relative magnitude of the field
interaction and the internal molecular interactions.

Thus far electric resonance experiments have been
performed primarily with alkali fluoride molecules. '
These molecules are especially simple because there is
only an electrical quadrupole interaction associated
with the alkali nucleus, since the spin of the fluorine
nucleus is —,. This paper will be restricted to the case in
which the molecule has only one electrical quadrupole
interaction. Still, it will be seen that many of the results
can be rather simply extended to the case in which
there are two electrical quadrupole interactions, but
one of them is much smaller than the other. An exten-
sion to the more general case of two electrical quadru-
pole interactions of arbitrary magnitude can be made

ECENT experiments" by the molecular beam
electric resonance method'4 of observing the

~

~

~ ~

energy levels of polar diatomic molecules have raised a
number of questions related to selection rules and
intensities for the spectra observed. In essence the
method consists in selecting for study a single rotational
(usually J=1 and occasionally 7=2) and orientational
state of a diatomic molecule in an electric field. This
selection can be made because the force which an
inhomogeneous electric field exerts on a molecule is
dependent upon its rotational state and upon the
orientation of its rotational angular momentum with
respect to the field direction. The scheme employed is
the familiar one of allowing the molecules to pass
through two inhomogeneous electric fields, designated
as the A and B-fields, which will produce equal and
opposite deQections only for molecules in a single
rotational and orientational state. Hence only these
molecule s mill impinge upon the suitably placed
detector. '

A study of the energy levels of these molecules in an
electric field is made by inserting a homogeneous
electric field, designated as the C-field, between the A
and 8-fields and impressing a radiofrequency field also
in this region. At appropriate frequencies, ordinarily in
the megacycle range, transitions are induced which
bring the molecules to other energy states. In these
difI'erent states the molecules will have different internal
energies and (or) different interactions with the external
field, but their rotational angular momentum and, of
course, their nuclear spins will be unchanged. If the

* This research has been supported in part by the ONR.' L. Grabner and V. Hughes, Phys. Rev. 79, 819 (1950).
s V. Hughes and L. Grabner, Phys. Rev. 79, 314 (1950).' H. K. Hughes, Phys. Rev. 72, 614 (1947).' J. %. Trischka, Phys. Rev. 74, 718 (1948).
'A majority of the molecules in the higher rotational states

are deflected only a very small amount by the inhomogeneous
fields and can most easily be prevented from reaching the detector
by the use of a wire stop.

6 Recently experiments have been performed with TlCP'. See
Lee, Carlson, Fabricand, and Rabi, Phys. Rev. 78, 340A (1950).
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with the help of the results of Bardeen and Townes,
and of Racah. '

The second section of this paper will give the energy
values and the eigenfunctions for several cases char-
acterized by the magnitude of the 6eld interaction. In
the third section we shall present the selection rules
which will apply for stimulated transitions in these
various cases. Line intensities will be discussed in the
fourth section. In this connection an important con-
sideration is the correspondence that exists between
states at low fields and states at high fields, assuming
adiabatic change of the 6eld parameter.

A condition is sometimes realized under very weak
6eld conditions for which the intensity of the radio-
frequency field is larger than that of the static field.
Hence the 6eld, free state must be considered to be
perturbed primarily by the radiofrequency field rather
than by the static 6eld. It turns out that in such a
situation a two quantum transition is predicted. This
matter is discussed in the 6nal section of this paper.

II. STATIONARY STATE ENERGY VALUES
AND EIGENI UNCTIONS

The most general Hamiltonian which it has been
necessary to assume for the alkali fluoride molecule in
an electric 6eld is:

{3(Ii J)'+3(ii J)—Ii2J'}
H= —J' —y K—eqiQi

2A 2Ii(2I i—1)(2J—1)(25+3)

giga V

+c,(I, J)+c2(I, J)+.
r3

momentum and A is the moment of inertia, is the
rotational energy term. The second term gives the
interaction of the external electric held K with the
permanent electric dipole moment of the molecule. The
third term is the electrical quadrupole interaction
between the electrical quadrupole moment of the alkali
nucleus, Qi, and a second derivative of the electric
potential at the position of the alkali nucleus, qi,
produced by the remaining charges in the molecule.
qi and Qi are defined in reference 7a. Here e is the proton
charge. (The subscript 1 refers to the alkali nucleus. )
II is the spin of the alkali nucleus. There is no electrical
quadrupole interaction with the F nucleus because its
spin is 2. This form of the electrical quadrupole inter-
action operator gives only the matrix elements diagonal'
in J. The fourth and fifth terms are cosine couplings
between the nuclear spins (F spin designated by I2)
and the rotational angular momentum of the molecule.
ci and c~ are constants. The last term is the magnetic
dipole-dipole interaction between the alkali and F
nuclei, for which r is the internuclear distance, gi and g2
are the gyromagnetic ratios for the alkali and F nuclei
respectively, and p~ is one nuclear magneton. '

In general it will be true that A'/2A»eqiQi»(c2 or
ci or giga~'/r') We .distinguish three cases which are
of interest experimentally:

p'E'/(h'/2A)«c2 or gigip~'/r'
("very weak" field) (1)

(cg or g ig 2@x /r') «p'E'/(fi'/2A) «eqiQi
("weak" field) (2)

eqiQi«p'E'/(5'/2A)«h'/2A ("strong" field)

[3(Ii J)(I) J)+3(I2 J)(I,.J)—2(I, I,)J(J+1)]
X

(A) Very Weak Field Case

(2J+3)(2J—1) The energy eigenvalues and eigenfunctions for the
very weak field case are given in the literature. ""The

The first term in which J is the rotational angular energy values are:

=k' Cgi
Wz, r, , F,, I,, r =p, ~„M=—J(J+1)—- {~Ei(lt i+1)—Ii(Ii+1)J(J+1)}

2A (2J—1)(21+3)(2Ii) (2Ii—1)

C1E1
+ &c2

F,(F,+1)+J(J+1)—J,(Ii+1)
(Fi+5~2)+

4Fi(Fi+1)
giga+ E

{3Kig —2J(J+1)D' }-
r'(2J+3)(2J—1) 2

6M'
3(~'+ir) —F,(F,+1)% [3D(D 1)—4Fi(Fi+1)J(J—+1)]u'k' 2FI+|.

2J(J+1)(2J—1)(25+3)2Fi(Fi+ 1)(2Fi—1)(2Fi+3)

' ' J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948); " G. Racah, Phys. Rev. 62, 438 (1942).
H. B. G. Casimir, On the Interaction between Atomic Nuclei and Electrons (Teyler's Tweede Genootschap, 1936).' J. M. B. Kellogg et a/. , Phys. Rev. 57, 677 (1940). It is shown that the spi-spin onperator can be written in this form.' ¹ierenberg, Rabi, and Slotnick, Phys. Rev. 73, 1430 (1948). Note that the term involving the field is different in this paper.

Communication with %. Nierenberg established that a misprint was present in the reference.
"Reference given in reference 4. Note that the sign in front of the second term in the bracket differs from that of the reference.
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in which
Fi——Ii+J; F= F,+I, ; K,=F,(F,+1)—I,(I,+1)—J(J+1)

Fi(Fi+1)+J(J+1)—Ii(Ii+1)
D= Fi(Fi+1)+J(J+1)—Ii(I+1)

2Fi(F,+1)
Fi(Fi+1)+Ii(Ii+1)—I(7+1)D'=

2F,(F,+1)
E=F(F+1)—F i(Fi+1)—Ii(I2+1)

n =pE/(Ii'/2A).

The zeroth order eigenfunctions are characterized by
the quantum numbers (J, Ii, Fi, Ii, F, M) and will be
denoted @(J, Ii, Fi, Ii, F, M). Terms 1, 3, and 4 of the
Hamiltonian are diagonal in this representation. The
contribution of terms 5 and 6 was computed by first-
order perturbation theory which neglected ofI'-diagonal
elements connecting different Fj states. The —p K

interaction has no diagonal matrix elements in this
representation, and its contribution was computed by
second order perturbation theory.

(B) Weak Field Case

For the weak held case the energy values are:"

(a) «r Im„+m, l
y0

egg ciEi
O'J. r, F, .r, I,„m,=—J(J+1)— {-',Ki(Ki+1)—Ii(Ii+1)J(J+1)I+

2A (2I—1)(27+3)2Ii(2Ii —1) 2

n'Ii' [3mr ' —Fi(Fi+1)][3D(D—1)—4F (F +1)J(J+1)]
+C2m2m~, g

2A 2J(J+1)(2J—1)(2J+3)2F,(F,+1)(2F,—1)(2F,+3)

(b) for
I mr, +mi

I

=0

gigip~' 3 mimr, D m m iDr'J(J+ 1)
+

r'(2J+3)(2J —1) 2 Fi(Fi+1) Fi(F,+1)

eq,Q, city
lf' r~ F~ Ii). ». Iil= J(J+1) -{-,'Ei(Ki+1) —Ii(Ii+1)J(J+1)}+

2A (2I—1)(27+3)2I,(2Ii —1) 2

u'Ii' [3mr, ' —Fi(Fi+1)][3D(D—1)—4Fi(Fi+1)J(J+1)] cg
&—(F,+-', ~-', )g

2A 2J(J+1)(2J—1)(2J+3)2F,(F,+1)(2F,—1)(2F,+3) 2

giga.v 3 KiD J(J+1)D'
(Fi+$~2)—

r'(2 1+3)(2I—1) 4 Fl(F1+1) 2Fi(Fi+ 1)

in which m p, is the projection of F& on the 6eld direction
and m2 is the projection of I~ on the field direction.
The zeroth-order eigenfunctions are for case (a) char-
acterized by the quantum numbers (I, Ii, Fi, mr„ I2,
m&) and will be denoted by g(J, Ii, Fi, mr„ Ii, m2)
The eigenfunctions for case (b) have the quantum
numbers (J, Ii, Fi, Imr, {

= i„ Ii, Im~I =-', ) and are:

[4&(J, Ii, Fi, —,', Ii, —-', )+4(J, Ii, Fi, —-'„ Ig) +-', )]/v2

[@(I)Ii Fi, k) I~, —k) —0 (I, Ii, Fi, —l, I~, +-,')]/~2.

(The first eigenfunction corresponds to the energy
term with the upper signs. ) With regard to the approxi-
mation involved in our result the same remarks apply
for terms l to 4 as were made for the very weak held

case. ln the computation of the energy contribution
of terms 5 and 6 first-order perturbation theory was
employed and thus oB-diagonal elements connecting
diRerent F~ and mp, states were neglected.

(C) Strong Field Case"

The energy values are:

' This computation is readily made if we use the results of
U. Pano, J. Research Nat. Bur. Stand. 40, 215 (1948) and the
well-known matrix elements for angular momenta. (E. U. Condon
and G. Shortley, Theory of Atomic Spectra (Cambridge University
Press, London, 1935), Chapter IlI.)

'3 Reference cited in reference 10 contains solution to this case
without the inclusion of the magnetic dipole-dipole interaction.
Note that an omission appeared in formula (12) of the reference.
The square sign (i.e., raise to power 2) is missing from the hrst
set of inner brackets following the ~ sign.
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(a) For ~mJ
~
$1 or for (mg~ =1 and ~mz+mi( =Ii or Ii+1

fjt2
- J2 m~2 (J+1)2 m~2

%Jr, r, im, r, mi,ms=, j—(j+1)+~'
2A 2A 2J(2J—1)(2J+1) 2(J+1)(2J+1)(2J+3)
[3m'' —J(J+1)]3m/ —Ii(Ii+1)] 2g 1g2PN—egiQi +cimimg+cim2mq+ mimq[3mr' J—(J+1)]

4Ii(2Ii —1)(2J—1)(2J+3) r'(2I+3)(2J—1)

(b) For
~
mq~ =1 and ~mg+mi

~
(Ii there are two energy values:

h2 h2 J2—1
Wp =—J(J+1)+—a'

2A 2A 2J(2J—1)(2J+1) 2(J+1)(2J+1)(2J+3)
L3—J(j+1)]I [3mi2+6mi+6] —Ii(I,+1)I 2g,g,p~'L3 —J(j+1)]—eq,Q, Ci-

4Ii(2Ii —1)(2J—1)(2I+3) r3(2J+ 3)(2J—1)

(J+1)'—1

3eq,Q,
+ L(j+1)'J'(Ii—mi) (Ii—mi —1)(Ii+m i+1)(Ii+mi+ 2)]

.8Ii(2Ii—1)(2I—1)(21+3)

eeiQiC3 —j(j+1)] 2gig~~x'(mi+1)
(6mi+6)+ci(mi+1)+cim2+ —

t 3—J(J+1)]
I .4Ii(2Ii —1)(2J—1)(2J+3) r'(2J—1)(2J+3)

The zeroth order eigenfunctions for case (a) are
characterized by the quantum numbers (J, Ii, Ii, mz,
m„m, ) and will be denoted 4(J, Ii, I2, mz, mi, m2).
The two eigenfunctions for case (b) have the quantum
numbers (J, Ii, Ii,

~
mq~ =1, mi, m2) and will be linear

cornbjnatjons of the two states @(J, Ii, I2, 1, mi, m2)
and (J I,, I,, —1, m, +2, m2). The correct linear
combination can be chosen by the standard method of
perturbation theory applied to two degenerate states.

The approximations involved in these results are (1)
computation of the field energy to order a', (2) neglect
of ofI'-diagonal elements of the quadrupole operator
which connect states with different field energy, (3)
neglect of off-diagonal elements of all the other internal
interactions which connect states with different field

energies or different quadrupole energies.

III. SELECTION RULES

In the electric resonance experiments transitions are
induced by an applied radiofrequency field between
different stationary states of the molecules in a static
electric field. We shall only be concerned with transi-
tions which do not involve changes in the rotational
energy, O'J(j+1)/2A.

Selection rules will be given by considering the
matrix elements of the part of the Hamiltonian associ-
ated with the radiofrequency field between the initial
and final states: H'= —p. E'e '"'. In practice E' has its
largest components in directions perpendicular to that
of the static field E (s-direction), but there may also be
an appreciable component in the z-direction as well.

We notice first that there can be no non-vanishing
matrix elements between two states which are eigen-
states of J2 with the same eigenvalue. This can be

proved by expanding cos(p, K') with the aid of the
addition theorem of spherical harmonics into terms
involving either the factor cos8 or sin8 in which 8 is
the spherical coordinate angle between p and the s-axis.
Such an expansion is possible provided the state is an
eigenstate of J2. Since cos8 and sin8 have matrix
elements" only when 6J=&1, the theorem is proved.

The transitions induced in the experiments occur
because the static electric field perturbs a state which
in the absence of the field would have a single J value,
and thereby mixes in rotational states J+1 and J—1
in a first-order perturbation. There can be non-vanishing
matrix elements of —p E' between the perturbed part
of a state whose zeroth order eigenfunction is char-
acterized by a quantum number J and the zeroth order
part of a final state which is also characterized by the
value J. Another way of expressing this is to say that
we have dipole radiation which occurs because of the
dipole moment induced by the action of the static
electric field on the molecule. We now consider in
detail the selection rules which apply to the various
field conditions treated in Section II.

(A) Very Weak Field

The zeroth order eigenfunctions are @(J, Ii, Fi, I2,
F, M) and the —p E interaction adds a perturbed first
order state. But —p E= —IJ,,E and p, , is the s-compo-
nent of a vector of the type P treated by Condon and
Shortley. "This follows from the facts that F=F&+I2,
and p commutes with I2 and satisfies a certain commu-
tation relation with respect to F. Thus —p E has

"E. U. Condon and G. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935},p. 53.

'~ Reference 14, p. 67. The proof that p is a P vector is given.
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non-vanishing matrix elements only when hF =0, ~1,
AM=0, and Api =0, +1.The discussion of the previous
paragraph made clear that AJ= +1.

The components of the part of the Hamiltonian

are again those of a P vector. Hence non-vanishing
matrix elements of H' exist only when DF=O, +1,
DF~

=0, %1. Furthermore, for the term with p„dM =0
and for those with p, or p,„,hM= +1.

Thus from the results of the last two paragraphs we

conclude that H' can induce a transition from a state
with zeroth order eigenfunction p(J, I~, Fi, I2, F, M)
to another state with zeroth order eigenfunction P(J, Ii,
Fi', I2, F', M') provided AF =0, &1, &2 and hF& 0, ——
&1, &2. For a radiofrequency field parallel to the
static field AM=0 and for a radiofrequency field

perpendicular to the static field AM= ~1.

(B) Weak Field

The zeroth order eigenfunctions for the weak 6eld
case are:

@'(J, I~, Fi, mi„ I2, m2) for M=mp, +m2dp0 (case (a))

0(J,I„F„,) I„--;)+-$0(J,I,) F,) --, , I„+)]/ 2v

for M=O (case (b))

2iI2~+5)v~

Neither —p K nor —p Ke '"' have matrix elements
except for Am2 ——0. By an application of reasoning
similar to that used for the "very weak" field case it
follows that H' can induce a transition between two
zeroth order eigenfunctions with the same J value
provided dpi=0, &1, &2. For the z-component of E',
2M=0 and for case (a) states Amp, =0, Am~=0, in
addition. For the x or y components of E', hM= &1.,
and a transition in which the initial and final states
are case (a) states has, in addition, Amp, = &1,hm2=0.

(C) Strong Field

The zeroth order eigenfunctions are:

@'(J, mq, I&, m~, I2, m2) for )m~~+1 or ~m~~ =1

and

~
mz+m&~ = I, or Ii+1 case (a)

'an't '(J, 1, Ig, mg, Ig, m2) +a+'(J, —1, Ii, my+2, Im, m~)

Im~+mil &I,

51$ (Jl 11 Ily m1y I2) m2) +f24' (J) 11 Ill ml+2g I2) m2)
=t//gz case (b).

The interaction with the static electric field will
contribute a 6rst-order perturbed eigenfunction:

LP&'&(I', mg, I„mi, I2, m2)
~

—p E
~ y&0~ (I, mg, Ig, m„ I2, m, )j

@(&)— $'"(J', mz, Ii, mi, I2, m2) case (a).
J'=J~& ~J, mJ, It, mt, Is, ms 8 J', mJ, It, mt, Is, ott

There is a similar expression for the case (b) states
The added states for either unperturbed state are of the
form of Pr and Prr but with J&1 substituted for J.
This is seen to be true because —p E has non-vanishing
matrix elements only between wave functions with the
same values of the quantum numbers (m&, I&, m&, I2, m, )
and J'= J&1.Thus H' can induce transitions between
states with the same value of J provided hm2 ——0. For
the s-component of E', A(mg+mi)=0. In addition,
for case (a) states Amq=&1, hm& ——0 and thus the
initial and 6nal states are identical. For the x and y
components of E', h(rnq+m~) =&1, and, in addition,
for case (a) states Amq=&1, hm& ——0.

It should be remarked that the selection rules derived
in this section apply only in the approximation to which

the perturbation theory has been carried. A breakdown
of these selection rules will appear if a higher order of
perturbation theory is applied.

IV. LINE INTENSITIES

The problem of the line intensities in molecular beam
electric resonance experiments is made dificult by
certain features of the experimental arrangement.
These features will be discussed later in this section.

(A) Observability Criterion

We now consider the so-called observability criterion,
i.e., whether or not a transition which is allowed by the
selection rules will actually be observed. In order to be
observed a transition must be induced in the C-6eld
which will result in a diGerent deflection of the molecule
in the 8-field than wouM occur in the absence of the
transition. If there is an adiabatic correspondence be-
tween the state of a molecule in the C-field and its state
in the B-field, the transition in order that it shall be
observed must be induced between two states in the
8-field with diferent values of ~mq~, because the
deflection of the molecule in the B-field depends on

1m~I.
We now develop rules to establish the adiabatic

correspondence between states under C-6eld conditions
and under B-field conditions. Usually in practice the
static electric field intensity in the C-6eld region is
much smaller than that in the B-field region and
diferent sets of quantum numbers are required to
specify states in the two cases. We consider a three
vector system (I&, I2, J) in the absence of an electric
field. A stationary state is characterized by an eigen-
value of the total angular momentum F and of the
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component, M, of the total angular momentum in an
arbitrary direction. Consider now that an electric field
of any magnitude is applied in an adiabatic fashion.
The total angular momentum F need no longer be a
good quantum number but the component, M, in the
field direction is a constant of the motion. Two rules
suKce to establish the correspondence between a state
at zero 6eld and at an arbitrary 6eld: (1) The M value
is the same. (2) In the adiabatic transition from the
zero 6eld states to the arbitrary 6eld states two states
with like M values never coincide in energy.

An outline of proofs of these two rules will now be
given, That the component of the total angular momen-
tum in the direction of the applied field remains con-
stant under adiabatic change of the field value follows
immediately from the fact that this quantity is a good
quantum number independent of the field value.

That states with the same M value do not coincide
in energy at any 6eld value is a special case of the
following general theorem. " Consider a Hermitian
matrix (H, q) whose e' complex quantities depend on
certain real parameters X~, X2 . For a certain set of
values of the parameters we assume that the matrix is
general, i.e., no relationship exists between the II,~

which does not follow from the Hermitian character of
the matrix. In particular, then, for this set of values
of the parameters the eigenvalues of the matrix are
distinct. The theorem states that three X-values must
be changed in order to achieve coincidence of two
eigenvalues of (H, ~). If (H, ~) is a real Hermitian
matrix then it is sufhcient to change two )-parameters
in order to bring two eigenvalues into coincidence.

The matrix elements of the Hamiltonian (1) consti-
tute a real Hermitian matrix whose elements we regard
as functions of the 6eld parameter, E. The component,
M, of the total angular momentum in the direction of
the applied electric 6eld is a good quantum number;
i.e., there are no matrix elements of the Hamiltonian
connecting eigenstates with diferent M values. Hence,
by the proper choice of representation, the matrix for
the Hamiltonian can be split into submatrices which
refer to di6erent M values. If the eigenvalues of any
one of these submatrices are distinct at zero field, the
general theorem stated above assures that the eigen-
values will not coincide for any value of the electric
6eld. In the special eases of interest to us we show
that the eigenvalues referring to a given M value are
indeed distinct at zero field.

A number of examples of the application of the
observability criterion are to be found in the paper on'
K39F and' RbF. It should be emphasized that the
observability criterion that we have taken assumes that
there are no non-adiabatic transitions induced as the
molecule passes from the C-field to the 8-field. The
eGective frequencies that a molecule sees as it passes
from the C-6eld to the 8-field are believed to be of the

Ie J.Von Neumann and E.Wigner, Physik. Zeits. 30, 467 (1929).

order of several hundred kc/sec. Such frequencies are
small compared to the transition frequencies observed,
so non-adiabatic transitions of the type of the transi-
tions observed are not expected. It is possible, however,
that lower frequency non-adiabatic transitions do occur.
These involve essentially a reorientation of the molec-
ular system with respect to the field direction. " The
refocusing of a (1, ~1)~—(1, 0)s beam' proves that
non-adiabatic transitions occur somewhere in the region
between the 3- and 8-fields. It is probable that these
non-adiabatic transitions occur between the A- and
C-fields because, owing to the presence of the collimator
slit, the electric field conditions may be highly variable
in this inter-field region. Non-adiabatic transitions
between the A- and C-fields will inhuence the distribu-
tion of states present in the C-field and hence are
important in determining what transitions will be seen.

(8) Relative Line Intensities

The line intensity problem in these experiments is
complicated by the following features of the experi-
mental arrangement.

(1) The distribution of the molecules of interest
among the various states that they can have in the
C-field region is not known. By molecules of interest is
meant molecules which have passed through the A-field
in a certain state of space quantization which depends
on the refocusing conditions being employed. Only for
such molecules can a transition induced in the C-field
be observed. The distribution of these molecules among
the states that they can have in the C-field region is
not known because the exact character of the non-
adiabatic transitions that occur in the interfield region
between the A- and C-fields is not known. Relative
line intensities will depend on the exact distribution of
these molecules.

(2) The intensity of the radiofrequency field is ad-
justed to be high so that the maximum intensity of
transition is observed. Hence the transition probability
cannot be taken as simply proportional to the square
of the product of a matrix element by the radiofre-
quency field intensity. It depends rather in the simple
two state case upon a six'-function of these two quan-
tities. "Relative line intensities will then depend upon
the intensity of the radiofrequency field. But the exact
value of the field is not known and cannot be determined
easily.

V. HALF-FREQUENCY TRANSITIONS

Conditions are sometimes encountered experimentally
in which the amplitude of the radiofrequency field is
high compared with that of the static 6eld. In this case
we must consider the field free state as perturbed
primarily by the radiofrequency field, and the transi-
tion, also induced by the radiofrequency field, is from
the perturbed part of the initial state to the unperturbed

'7 E. Majorana, Nuovo Cimento 9, {1932).
'8H. C. Torrey, Phys. Rev. 59, 293 (1941).
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part of the 6nal state. It will be shown that in this
circumstance a transition between two states m and n
can be induced at a frequency of (E —E )/2tt. Such a
half-frequency transition can be regarded as a transition
in which two quanta supply the energy for the transition.

%e consider the time dependent perturbation of a
state ct&(J, Ii, Fi, Ip, F, M) by the radiofrequency field
K'e '"' in the absence of a static 6eld. M is the compo-
nent of I" in the direction of the s-axis, which is the
direction in which the static 6eld is normally applied.
We use formulas (240i) and (240p) of Pauli's IIaicdb&cch

article. "The initial states ()p) will be ct „&p)(I, Ii, Fi, Ip,
F, M). The energy does not depend on M, since no
static 6eld is to be present, but such a function is a
suitable zeroth order eigenfunction for the perturbation
calculation. The final states (m) will be @ &P)(I, Ii, Fi",
Ip, F",M") in which I is the same as for the initial state.

0'p)=[Alt&& K'It]e ' ' exp (Epp Ecp)—t—
is our perturbing matrix element

t

a„&»(t)= —-Pa„„&«& 0'„„(t)dt
0

in which the a's are state amplitudes and the super-
scripts refer to the order of perturbation.

This 6rst-order perturbation yields a zero result since
there are no matrix elements of 0' between states with
the same J. Second-order perturbation theory yields:

The t states are all intermediate states which dier
in rotational energy from the m and rt states (the latter
two states differ in quadrupole energy). Hence

E(o) E (0) E (o) g()
co&(- or

There can be no resonance for the second term at the
frequencies we employ so it can be neglected. However,
resonance can occur for the first expression which
becomes:

exp[ —i2p)t+i/It(E '"—E„&")t]—1

i/It(E)(" —E„'")[—2&pi+i/5(E (') —E„"')]
Our entire expression then becomes

(ml t K'It)(fit K'I ~)
&t "'(t)=—Zct. (p&'"Z—

gP c [(E ( ) E (o))/fj,]
exp[ —i2cpt+i/5(E "&—E„&'&)t]—1

X [—2&d+ (E„&'&—E (p)/It)]

Normally we have a well-de6ned initial state, so
there is no sum over n, and we get

1 (m
I

t&c. K'
I l) (l

I t)c
K'

I n)
ct (p) — g &p)(p)Q

fi' c [(Ec&"—E„&'&)/It]

exp[ —i2cpt+i/)t(E "'—E &")t]—1

[—2pp+ (E„&'&—E„&P&)/It]

Resonance occurs at: cd=(E„&P)—E (P')/25. The ex-
pression for a (" is of the same form as the correspond-
ing one for the normal transition with the principal
exception that 2' appears instead of co. For the normal
transition the matrix element (tltp K'In) would be
replaced by (tltc Kln) in which K is the static field
intensity.

The selection rules for these half-frequency transi-
tions are given by the following considerations. Non-
vs,nishing matrix elements (mltc K'll) and (lltp K'In)
exist when AJ=&i, AIi~=O, &1, and AF=O, ~i.
Furthermore, if K' is perpendicular to the s-axis
AM= &1 and if K' is parallel to the s-axis EM=0 (see
Section III). Thus over-all selection rules for transitions
from a state m to a state m with the same eigenvalue of
J' are AIiy=O, ~1, +2 AF=O ~i, ~2. If K' is
perpendicular to the s-axis AM=0, &2; if K' has a
component parallel to the s-axis as well AM=0, &1,
~2. It will be noted that these selection rules are the
same as for the normal case except for the selection
rule involving M. Hence in so far as the M selection
rule does not aBect the situation all transitions are
possible at the half-frequency which are possible at
the normal frequency.

A study of the sums

(mls K'lt)(tie K'l~)
and

[(E&(P) E &P))/|j]

~t T

a„&'&(t)= ——Qa. (p)
(p) Q 0'„c(r)dr II'c.(r')dr, '

I)2 n c alp Jp

i
= ——Z~.()'"Z[ml~ K'It][tlt K'1~]

jP n. l

X e '"'exp —E '"—EI,'" & d&
0

T

X e '""exp —(Ec&'& —E (P))r' dr'
J0

Evaluation of the bracketed expression yields:

Z

exp i2&dt+ (E & ' —E—„&P')t ——1
fi

z
exp icdt+ (E ) Ec'—")t— —

1
+ (E)(p) —E (p)) jcp+— (E (p) —E—c(p))

(mls'K It)(lit&c'KI)t)

[(Ec(P) E (P))/))t]
' %. Pauli, Handbuch der I"hysik (J. Springer, Berlin, 1933),

second edition, Vol. 24j&.

z z
icd+-(Ec&P) E.'—") —2&pi+ —(E '" E&'—&)—
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exp —i2coi+ —(E ' ~ —E„t")i —1
h

jV, (o) jV (o)-
—i2(d+ —(E '"—E ' i) iso+—i

z

exp i&A+ (E„—'O' E~—'0')i ——1

+—(E ( ) —E((o)
h

g&(o) g (o)-

'i%+ i-

There is now a sum over a number of states n because

in which E is the static 6eld intensity will give a
measure of the transition probabilities for the half-
frequency transitions (E=O) and for the normal transi-
tions (E+0, co = (E E)—/fi) respectively. It was found
for the case of interest to us (J=1 in the initial and
6nal states) that these sums are comparable provided
E' and E are of the same magnitude. Hence, if a normal
transition is observed when E' and E are equal, it is
expected that a half-frequency transition will be ob-
served with this same value of E' when K =0.

The theory of half-frequency transitions in the
presence of a static field is easily worked out. The
representation @(I, Ii, F~, I2, F, M) is applicable
provided the static field is suKciently weak. The expres-
sion a ") for the case of zero field is modified to read:

1
a„"'=——Qu„&0'P(mfa E'fl)(l fp E'fn){ I

fpn l

in which

our initial state is no longer a pure state p(J, Ii, Fi, I2,
F, M), but involves a mixture of such states due to the
perturbing eHect of the static electric 6eld. If the initial
state were @(I, Ii, Fi, I2, F, M) in the absence of a
static Geld, it will involve the states g(I', Ii, Fi', I2,
F', M) in which I'=I&1, Fi'=F&, Fi&1;F'=F, F&1.
Resonance occurs when au = (E "'—E„&0')/2' caused by
the 6rst factor within the brackets exactly as for the
case of zero static 6eld; at this resonance the second
factor in the brackets is negligibly small. There is, of
course, a first-order a ") in this case which leads to the
normal transitions between two states which at zero
field have the same J value.

If the static field is suKciently large so that the
interaction of the field with the dipole moment is larger
than the internal molecular interactions involving I2,
then a weak field representation should be used. The
resonance at the half-frequencies is predicted exactly
as above. The transition probability is reduced some-
what, however, because the amplitude of that part of
the initial state which is involved in the half-frequency
transition

f @(I, I~, Fi, I2, F, M)j is reduced by the
perturbation due to the static 6eld.

If the static 6eld is sufficiently large so that a strong
field condition applies Lp'E'/(Ii'/2A)))eq&Q&] and if the
radiofrequency field is perpendicular to the static field,
then the M selection rule becomes he&2=0, hm1=0,
hmJ =0, &2. Such a transition would not be observed
for a 1=1 state molecule because the deQection of a
molecule in the A and 8 fields depends only upon fmz f.

Professor I. I. Rabi first pointed out to us the
possibility of half-frequency transitions. Also we wish
to thank him for many stimulating discussions.
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Spectroscopic hyperfine structure studies with separated isotopes of barium have definitely confirmed a
nuclear spin -f for the odd isotopes Ba'~ and Ba13~. The lines of the even isotopes show no structure. The
isotope shift is linear among masses of the same parity, but there is a relatively great odd-even shift: Note
the order 138, 136, 134, 137, 135 in BaI, and 138, 136, 137, 134, 135 in BaII. The relative positions of the
components (centroids, for odd masses) of the resonance lines, in 10 '~0.7.10 ' cm ' are

BaI 6s' 'Sp —6s6p V'j.
BaII 6s 'S,—6p 'I' t

6s 'S)—6p 'I'

138 137 136 135
0 +5.2 +2.2 +7.4
0 +6.0 +4.8 +11.1
0 +6.4 +5.4 +12.6

134
+44
+9.6

+10.8

I. INTRODUCTION

INCE hyperfine structure in the barium spectrum
was reported by McLennan and Allen, ' several

investigators have tried to use the structure they found

Supported by Navy contract N7onr-285TO 4'1, NR 019 107.' J. C. McLennan and E. J. Allen, Phil. Nag. 8, 515 {1929).

in several lines to determine the nuclear spin of the odd
isotopes Ba"' and Ba"'. From the data of Ritschl and
Sawyer, ' Schuler and Jones' found the nuclear spin to

' R. Ritschl and R. A. Sawyer, Zeits. f. Physik 72, 36 (1931).
~ H. Kallman and H. Schuler, Ergeb. d. exakt. Naturwiss. 11,

134 (1932).


