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by the second rank tensor Racy, contracting on one index, and
antisymmetrizing on. the remaining indices:

l&L~ss~s~+~~Ppl j 4~(~pv~vp)l~~~~
I (I 0'ypZpa+0'apZpy j 5ya(0'pyZyp) ) RaRy

~pl(R. +))RX X]+(R X)LRXoj}.

%'e thus obtain at most 7 linearly independent axial vectors
formed from two spin vectors and a unit polar vector.

The process for finding the totality of linearly independent
axial vectors from two spin vectors and two unit polar vectors is
practically identical. One can now form more tensors from the
polar vectors, viz. :

Rar ra~ RaRpr Rarp, rarp, etc.

By multiplication and contraction with the tensors formed from
the spin vectors one then finds the 27 linearly independent axial
vectors given in the text.
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Diffusion is treated by showing that the action of a medium on a diffusing gas is that of a dissipative force.
When the theory is applied to an electrically neutral ionic gas in a gravitational held it is found that the
mixture of positive and negative ions diffuses as a single gas because of the electrical polarization charges
within the ionic cloud. In the presence of a magnetic field, the diffusion cannot be expressed in terms of the
ionic density until the electrodynamical equations governing the Row of electrical current have been ex-

plicitly solved. Solutions are obtained for special cases which show that a strong magnetic field completely
inhibits the diBusion due to concentration gradients in the transverse plane and has little effect on the
diffusion due to the gravitational force.

I. INTRODUCTION

HE role played by difFusion in the formation of. ~ ion banks in the upper ionosphere (F-region) is

not settled in our opinion because no one has given an
adequate treatment of the diffusion processes. Too little
attention has been paid to the electrical polarization de-

veloped by the difFusion current and to the reaction
of the resulting electric field on the difFusion, although
the existence of these eBects has been recognized. "

Transport phenomena are usually treated by the
kinetic molecular theory which yields a distribution
function for the difFerent kinds of molecules. No one
has yet explicitly formulated the difFusion equations
for a three component mixture (positive ions, negative
ions or electrons, neutral molecules), because of the
inherent mathematical complexity of the kinetic
molecular theory.

In the present paper this difFiculty is avoided by
introducing the concept of a dissipative force (Section
II). The definition of the diff'usion coefficient and the
ideal gas law lead directly to a force equation which

shows that the pressure gradient in a diffusing gas is

balanced by a force proportional to the difFusion ve-

locity. This force acts whenever a difFusion current
Rows. The difFusion current can then be obtained in any
field of force from the balance of all the forces acting
on the difFusing gas. In this way the kinetic molecular

theory enters into the determination of the mass
motion only through the difFusion coefFicient and the
ideal gas law.

' E. O. Hulburt, Phys. Rev. 34, 1167 (1929}.
~ T. G. Cowling, M.N.R.A.S. 93, 90 (1932).

A comparatively simple treatment of the migration
of equal numbers of positive and negative ions through
a neutral gas in a gravitational field is possible with the
concept of dissipative force (Section III). It is shown
that the mixture difFuses as a single gas whose difFusion

coeKcient, in case the negative ions are electrons, is
equal to twice the difFusion coefFicient of the positive
ions and whose scale height is given by the average
molecular weight of the ions. An electrical field exists
throughout the ionic cloud which is derived from
internal polarization charges. It is this electric field
which binds the motion of the positive and negative
ions together, thereby making it possible to describe the
mixture as a single gas.

The treatment is extended to include the efFect of a
magnetic field (Section IV). The diffusion now depends
on the force exerted by the magnetic field on any
electrical currents which may be present. An exact
solution is obtained for a constant difFusion coefIicient
and constant magnetic field which shows that a cir-
culation of electrical current in the plane perpendicular
to the magnetic field must take place in such a way
that the difFusion due to pressure gradients becomes
negligible for conditions in the ionosphere. The difFusion
current due to gravity is unchanged and is accompanied
by an electric field, derived from poIarization charges,
which is perpendicular to the magnetic and gravita-
tional fields. In case the difFusion coe%cient is not
constant, additional electrical currents Row in such a
way that the gravitational difFusion current of most of
the ionic cloud is characterized by the diffusion coef-
ficient at a certain median altitude. Thus the magnetic
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Geld has a comparatively small effect on diffusion in the
ionosphere even though the ratio of mean free path to
radius of gyration is very large.

p=nkT, (2)

where k is the Boltzmann constant and T the absolute
temperature. Expressing vn in terms of vp, Eq. (1)
becomes

—vp = (kT/D)nv. (3)

The pressure gradient is the force per unit volume which
the diffusing gas exerts upon itself because of its own
density variations. The right-hand member of Eq. (3)
can be interpreted as a dissipative force that is in
equilibrium with the pressure gradient. The adjective
"dissipative" implies that the force is in the opposite
direction to, and is proportional to, the diffusion
velocity. It may be considered a retarding force exerted
by the medium on the diffusing gas. Equation (3)
which has been derived for an ideal gas at a uniform
temperature is a generally valid expression for the
dissipative force and we shall take it as our starting
point.

As an example, consider a gas of molecular weight m
diffusing along the 2' axis under the inQuence of a
gravitational force, mg. After adding the gravitational
force per unit volume to the left side, Eq. (3) gives, for
the diffusion current,

nv = ( D/kT)(nmg+—dP/ds).

For a static density distribution, the divergence of nv

is zero so that m must be zero everywhere if it is zero
at any point. In that case

nmg —dp/d=s = kTnd[ln(nT)]/ds.

Integrating Eq. (5), we find

f\ Z

nT= npTO exp —(mg/k) T 'ds,
0

where no and T0 are the density and temperature at
2 =0. It may be noted that the static density distribu-
tion given by Eq. (6) includes effects of thermal dif-
fusion. In case the gas is at a uniform temperature
Eq. (6) reduces to the usual barometric height formula
in which mg/kT is the reciprocal of the scale height.
Since the distribution is independent of the diffusion
coeflicient, it is valid whatever may be the medium in
which the diffusion takes place.

II. THE DISSIPATIVE FORCE

Let D be the diffusion coefFicient of a gas whose
molecular density is rs. Then

nv = —DVe,

where v is the mean molecular velocity of the diffusing
molecules. Ke assume that the gas exerts its own partial
pressure p according to the ideal gas law

eEy+f,y —Vp = (kT/D, )yv„
—eEy+ f2y —v p = (kT/D2)yv2,

(7a)

(7b)

where the subscripts 1 and 2 refer to positive and
negative ions, respectively. Strictly speaking, the sub-
scripts 1 and 2 should also appear on y in Eqs. (7a) and
(7b), respectively. However, the condition of electrical
neutrality allows us to put y& =y2 ——y in both equations.
Similarly we may put p& =p2 =p where

provided temperature equilibrium has been established
so that both positive and negative ions in a given region
are at the same temperature as the medium.

The electrical current density, u, is directly related
to the diffusion currents,

u = ey(vy —v2).

The connection between E and the electrical current
follows from Eq. (7), and is

E— Di —D2 D2f~ —Dgfg
u+ vp+ (10)

e'y(D~+D~) ey(D&+D2) e(D&+D2)

kT

a relation which must hold at every instant of time.
We shall first examine the conditions under which the

electrical current can be zero. Since the sources of E
are charges, the necessary condition that must be
satisfied is that VXE be zero. The diffusion coef-
ficients are, in general, functions of position because
they depend on the molecular density of the atmosphere
at the point under consideration. However, if the
atmosphere has a uniform composition the ratio,
«=D&/D2, does not depend on position because both
coeKcients then vary with the molecular density in the
same way. Since the ratio of the kinetic theory cross
sections for the positive and negative ions is different
for different constituents of the atmosphere, a variation
in composition might well induce a variation in ~. We
shall assume that variations in x can be neglected so
that Di and D~ can be treated as constants in calculating

III. NEUTRAL IONIC GAS IN A GRAVITATIONAL FIELD

Let y& be the density of ions carrying a charge +e
and y2 be the density of ions carrying a charge —e,
where e is the absolute value of the electronic charge.
By a neutral ionic gas we mean that y&

—y2 can be
neglected in comparison with y&. We shall see that this
condition is accurately satisfied in the ionosphere. Let
fi and f2 be the gravitational force on a positive ion and
a negative ion, respectively, and let E be the electric
Geld within the ionic cloud. The sources of E are the
polarization charges which may be developed by the
diffusion currents.

The equilibrium condition for the force per unit
volume must now be applied to both positive and nega-
tive ions. Thus,
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TABLE I. Values of the diffusion coefEcient b.

300
400
500
700

1000
1500
2000

0.685X 10»
0.864
1.04
1.32
1.65
2.00
2.13

VXK from the last two terms in Eq. (10). As fi and fo

are conservative forces, V t& f~ ——V'X fg ——0 and therefore
the curl of the last term in Eq. (10) is zero. The curl
of the second term is zero only if

VyX VP =0.

When there are no thermal gradients in the atmosphere,
Eq. (11) is automatically satisfied in virtue of Eq. (8).
If there are thermal gradients, they cannot in general
be everywhere parallel to V'y and there will be regions
in which the curl of the second term of Eq. (10) is not
zero. In such regions there must be a circulation of the
electric current in such a way that VXE =0. A similar
remark applies to regions in which ~ is not constant.
To summarize, the electrical current can be zero every-
where only if the atmosphere has a uniform composition
and is everywhere at the same temperature.

I.et Eo be the electric field when u =0.We next inquire
what happens if at a certain instant, say t =0, E is not
equal to Eo. Then a current must Row in accordance
with Eq. (10)

u =e'y(D, +D,) (k T)-'(K —Ko). (12)

This current produces a change in the charge density p,

Bp/Bt= —V u=8(p po)/Bt, —(13)

which in turn induces a change in the electric field
according to

(14)

Hence

v [(a/at)(K —K,)
+4ore'y(Di+ D,) (k T)-'(K —Ko)] =o. (13)

If y(Di+Do) is treated as a constant, the curl of the
quantity in the brackets is also zero and the quantity
must be a constant. The constant is zero because E
ultimately must become equal to Kp.

(&/o3t)(K —Ko)+4ore y(Di+Do)(kT) '(K —Ko) =0 (16)

It follows that K —Ko decreases with time as exp( —t/r)
where

r = kT/[4oreoy(Di+Do) ) (17)

Since y has been treated as a constant in the integration
of Eq. (16), we have assumed that r is very short in
comparison with any time in which an appreciable
variation in the ionic density can occur. For a typical

If l is a distance in which the ion density changes by a
factor 2,

yi yo &kT—/4ore P=10'I '. (19)

In the ionosphere / is of the order of tens of kilometers
so yi —yo is of the order 10 ' ion/cm'. Hence yi —yo is
10 " times the smallest ion density of interest (1000
ions/cm') and the condition of electrical neutrality
is very mell satisfied.

A diGerential equation for y can be set up by equating
the loss of ions per unit volume by difFusion to the gain
of ions per unit volume from all other causes. The latter
are functions of y and position only so that a deter-
mining equation for y is obtained if the loss of ions by
diffusion, (V yvi), can also be expressed as functions of

y and position only. By adding Eqs. (7a) and (7b)

yvi+x 'yvo=(Di/kT)[(fi+fo)y-2Vp~.

Taking the divergence of Eq. (20) and using the condi-
tion of electrical neutrality to set V yv&= V yv2,

V yv, = —V [2oD,/kT(1+o)][VP —-', (f,+fo)y]. (21)

The assumption of a uniform atmospheric composition
has again been used in treating It. as a constant with
respect to the differentiation in Eq. (21). But from Eq.
(14) the loss of ions by diffusion for a single component
gas is

v yv= vD[vp fy](k—T. —(22)

Hence a neutral ionic gas difFuses as a single component
gas with

D=2~(1+io) 'Di, (23a)

f =-', (fi+fo). (23b)

In case the negative ions are electrons, ~—100 so that
D=2Di and f = fi/2. The fact that the diffusion coef-
ficient is greater and the scale height smaller than that
of the positive ions alone is easy to understand. The
more mobile and lighter electrons impart these qualities,
by means of the internal electric field, to the mixture.

numerical example take T=300'K, D2 ——10', which is
roughly the difFusion coefIicient of an electron at a
molecular density of 10", and y =1. Then v =10 ' sec.
Thus r is indeed very small in comparison with any
time intervals in which we are interested even for so
low an ion density as 1/cm'. It follows that under any
realizable conditions in the ionosphere, polarization
charges are developed almost instantaneously. To a
high degree of accuracy, u =0 and the electrical field is
given by the instantaneous value of Eo.

We can now see how mell the condition of electrical
neutrality is satisfied. From Eqs. (14), (10) and (8)

yi —yo ——p/e= (4ore) 'v'. K

1—x t'vp) kT——e'Vo lny. (18)
4ore(1+x) ( ey 3 4or
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The diffusion coefIicient can be written as

D=b/n,

where n is the molecular density of the atmosphere.
Values of b for the ionosphere at various temperatures
are given in Table I which is taken from a paper by
Ferraro. '

IV. NEUTRAL IONIC GAS IN A GRAVITATIONAL
AND A MAGNETIC FIELD

When a magnetic field, H, is also present, the ampere
force on the diffusion currents must be included in the
equilibrium of forces. Equation (7) becomes

ey(E+viXH/c)+fiy —v p = (kT/D, )v„(25a)
—ey(E+ v2X 8/c)+ fiy —VP = (k T/D«) vi. (25b)

The condition of electrical neutrality has been used in

exactly the same way as in Section III.
The connection between u and K is obtained by

solving' Eqs. (25a) and (25b) for v, and vi, respectively,
and constructing u according to Eq. (9).

u/e= (n/kT)t (Di—D,)(n ~p)+y(Difi —Diff') n

+ey(D, yD, )n E]

+(kT)-'
i

+ )~ p(1+}ip 1+X22)

( Difii
+yl (1+}iP 1+XP i

( Di
+eyl „+(1+}iP 1+}iP]

( D1~1 D2~2
+(kT)-' -( +

E 1+}iP 1+}iP)

of gyration in the magnetic field. The first bracket on
the right-hand side of Eq. (26) shows that the com-
ponents of u, vp, fi, f«, and E along the direction of
the magnetic field are connected by the same relation
that holds for these vectors in the absence of a mag-
netic field t compare Eq. (10)]. The rest of Eq. (26)
refers to components transverse to 8 which are now
di6erently related. The coefficients of the terms con-
taining E are the components of the conductivity
tensor which, in case X2))X1, reduce to formulas similar
to those given by Cowling' for a completely ionized gas.

Equation (25) can also be solved for E in terms of u.
We find

kT(1+44) 1—««f, —f,F- + vp+
e'y(Di+D&) ey(1+ «) e(1+«)

K 1 }i((u H)
+ uXH— n

ecy(1+ «) ecy(1+ «)

2X2
+ VpXn-

ey(1+«)
(f,+f,)Xn. (28)

e(1+«)

To simplify the subsequent discussion we will make
two assumptions, 1(&~ and 1(('A1X2, both of which are
valid in the ionosphere when the negative ions are
electrons. Equation (28) can then be written

E= —(ey) 'VP —(e«) 'fi+(ecy) 'uXH
+}iit (ecy) 'Hu&+2(ey) 'VPXn —e 'fiXn]. (29)

This relation, just as Eq. (10), must hold at every
instant of time. We shall further restrict the discussion
to motions at right angles to a constant magnetic field.

Even in the case )1 does not depend on position,
a case we shall consider first, it is at once apparent
that u cannot be zero in Eq. (29) because the curl of
2(ey) '&pXn cannot be zero. The curl of this term
must be compensated by a circulation of u. Let

(Di}ifi D2}igfg)
+yf +

E 1+XP 1+}iP)
uo = —(2c/H) Vp Xn,

u =u11up.

(30)

(31)

f' Di}ii Di'Ai )
+eyl — ~E Xn, (26)

E1+XP 1+}iP)

where I is a unit vector in the direction of H and

}ii=eHDi(ckT) ', }ii——«}ii, A& ——A —n(n A). (27)

If the kinetic theory value of D is used in Eq. (27),
X becomes the ratio of the mean free path to the radius

' V. C. A. Ferraro, J. Terr. Mag. 50, 215 (1945). Apparently
Ferraro has incorrectly taken the diffusion coefEcient of the of the
neutral ionic gas as ($) & that of the positive ions. Hence the values
shown in Table I are 2(q) & larger than the corresponding values
given by Ferraro. Hulburt used b=10'9 in his first paper, Phys.
Rev. Bl, 1018 (1928}.

4 If a vector A is determined by the equation A+n(AXS) =C
where 8 and C are given vectors, then

A= it+a'8'} 'Pa«{11 C}B+C+aBXCj

As the divergence of up is zero, up does not produce
polarization charges and can therefore Qow as a per-
manent current. Then Eq. (29) can be written as

E=(ey) 'VP —(e«) 'f,+(ecy) 'uiXH
+},I (ecy)-'Hu, —e-'f, Xn]. (32)

If u1=0, the curl of E is

VXE= —(ey') 'VyXVp —e 'V4X(fiXn). (33)

Now when 'A1 is constant, i.e., D1 is not a function of
position, V&(K is zero only if there are no thermal
gradients in the atmosphere. Hence, if D1 is constant
and there are no thermal gradients, a possible electric
field in the ionic cloud is given by Eq. (32) with ui ——0.
The electrical current at all points is then given by up

of Eq. (30). We shall refer to this solution as Case A.
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Suppose now that 'A~ is a function of position. A pos-
sible electric field can be obtained by making the bracket
in Eq. (32) vanish. Thus

y(1 —liiQ/lii)de= 0. (39)

the same vertical section of the lower part, that is,

u, =(cy/H)fiXn. (34)

E = (ey)-'v p —fi/e
The electric field is then given by

and p'XE is zero if there are no thermal gradients. The
divergence of uj is

V ui ——(c/H)Vy (fiXn) (36)

and is not in general zero. However, if the ionic cloud
is infinite in extent and the concentration gradient is
at right angles to fj&(n, the divergence of u~ is zero.
Therefore a possible electric field is given by Eq. (35),
accompanied by the current density of Eqs. (30), (31),
and (34) provided that the cloud is infinite in extent,
there are no thermal gradients and the concentration
gradient is perpendicular to f&)&n. We shall call this
solution Case B. It may be noted that the solution re-
mains valid if thermal gradients are present which are
parallel to the concentration gradient. Case 8 might be
approximated, for example, at the earth's magnetic
equator if ionization were produced uniformly around
the circumference of the earth and the concentration
gradients were all vertical.

Another possible solution can be found for an ionic
cloud whose lateral extension is large compared to its
vertical extension. Let Xio be the value of X~ at a median
position in the cloud which we shall determine later.
The surface ) i ——) io then divides the cloud into an upper
and lower part. Equation (32) can be written as

E=(ey) 'Vp —(ei~) 'fi —(XiQ/e)fiXn+(ecy) 'uiXH
+ (X H/ie y)cuei'(lii X,Q) f,—Xn (37).

Now suppose

ui = (cy/H)(1 —&iQ/&, )f,Xn. (38)

Since the diffusion coefFicient will generally be a func-
tion of altitude alone, the gradient of X& is perpendicular
to f&&(n. Hence the divergence of u& comes entirely
from the gradient of y. But if the cloud has a large
lateral extension, the gradient of y will also be vertical
in the central part of the cloud and therefore the
divergence of uj differs from zero only in the peripheral
parts of the cloud. A current given by Eq. (38) will thus
produce polarization charges on the periphery of the
cloud which can only modify the current How in the
neighborhood of the periphery. Thus the current Qow

given by Eq. (28), which is oppositely directed in the
upper and lower parts of the cloud because of the change
in sign of (1—XiQ/l~i), will be maintained in the central
portions of the cloud and will be modified at the peri-
phery in such a way as to close the current circulation.
The value X~o must be so chosen that the total current
Row through a vertical section of the upper part of the
cloud is equal and opposite to the total Qow through

E=(ey)-'vp —(liiQ/e)fixn —(cy/'H)(1 —liiQ/lil)fi (40)

Therefore, a possible electric field in the interior of an
ionic cloud of large lateral extension is given by Eq.
(40) accompanied by the currents of Eqs. (30), (31),
and (38) provided that there are no thermal gradients
in the atmosphere and a median value of the di6usion
coef5cient is determined by Eq. (39). We shall call this
solution Case C.

Suppose that an electric field and current have been
found which satisfy Eq. (29) and are such that VXE
and the divergence of u are zero. Let us find out what
happens if different values of E and u, say K' and u',
exist at the time t =0 Since .Eq. (29) must hold at every
instant

E'—E = (ecy) (u' —u) XH+ (ecy)-')~iH(u' —u). (41)

Then by the same steps that led to Eq. (16)

II 8—[(u' —u) XH+l~i(u' —u) j. (42)
4~ecy Bt

Equation (42) is very similar to the precession equations
for a spinning charge in a magnetic field and may be
solved by familiar methods to show that u' —u de-
creases with time as exp( —t/r) where

T =H(1+ii ')/(4n. eD.i) =H'D ((4irc'kTY). (43)

For a numerical example take H=1, Dj ——10" which
is the diffusion coefIicient for positive ions at a molecular
density of 10', T=500'K and y=10'. Then 7 =10 sec. ,
which is a time that is still short compared to the time
required for an appreciable change in the ionic density,
Hence E and u may be taken as the instantaneous
values of the electric field and current without appre-
ciable error. For molecular densities smaller than 10'
this may no longer be true.

The divergence of the diffusion current can be found
from Eq. (25) by the same steps that led from Eq. (7)
to Eq. (12).

V yv, = —V (2D,/kT)LVP yfi/2 —uXH/2cj. (44)

Now it is no longer possible to express the loss of ions
by diffusion as a function of y and position only because
of the term uXH in Eq. (44). The electrodynamical
problem must be solved first before the expression for
diffusion can be evaluated. Consequently, we can only
express the diffusion in a form which gives a deter-
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mining difFerential equation for Y in the three cases of
motions perpendicular to the magnetic field for which
we have obtained solutions of the electrodynamical
problem.

Case A

Inserting the current given by Eq. (30) into Eq. (44)
gives

v yv, =v (yD&f&/kT). (45)

The efFect of the magnetic field is to inhibit completely
the diffusion from pressure gradients. The difFusion from
the gravitational force is entirely unafFected.

Case 8
Inserting the current given by Eqs. (30), (31),and

(35) into Eq. (44) gives

v (yves) =0. (46)

The efFect of the magnetic field is to inhibit completely
all difFusion.

Case C

Inserting the current given by Eqs. (30), (31), and
(38) into Eq. (44) gives

v (yv&) =v (yD&of&/kT). (47)

The gravitational difFusion for the whole cloud is now
characterized by the difFusion coe%cient D~o where D~o

is the value of Dj at the median point determined by
Eq. (39).

Since calculation shows that gravitational and pres-
sure diffusion are roughly of the same order of magni-
tude, and since Case B cannot be realized in the
ionosphere, the presence of a magnetic field cannot
substantially alter the efFects of diffusion. The reduc-
tion by the factor' (1+X&)2)

' completely disappears
as far as the gravitational difFusion is concerned because
of the electric field originating in the polarization of the
ionic cloud which, in turn, is caused by the difFusion

current. These results agree with those of an earlier
discussion of the falling of ions under the combined
action of gravity and magnetic field. ' Numerical solu-
tions of the foregoing difFusion equations in special
cases and their comparison with ionospheric observa-
tions are reserved for a future paper.

' A calculation without making the approximations in the text
shows that the term involving ~p is not exactly zero but is
reduced by the factor (1+XIX&) '. Added ie proof: That the
diffusion coeKcient, D of Eq. (23a), is reduced by the factor
(1+XIX2) ' in a magnetic 6eld has also been found by Fundings-
land and Austin, Phys. Rev. 79, 232 (1950). We are indebted to
these authors for showing us their results.


