In conclusion, we want to express our thanks to R. Landshoff, E. Teller, S. Ulam, and J. Wheeler for valuable discussions.

¹ Mariorie H. Harrison, Astrophys. J. 100, 343 (1944).
 ² G. Gamow, Astrophys. J. 87, 206 (1938); C. Critchfield and G. Gamow, Astrophys. J. 89, 244 (1939).
 ³ R. Henrich and S. Chandrasekhar, Astrophys. J. 94, 525 (1941); M. Schonberg and S. Chandrasekhar, Astrophys. J. 96, 161 (1942).
 ⁴ G. Gamow, Phys. Rev. 67, 120 (1945); G. Gamow and G. Keller, Rev. Mod. Phys. 17, 125 (1945); A. Reiz, Kgl. Danske Vid. Sels. Math.-fys. Medd. 25, (1948); Arkiv f. Astr. 1, (1949); Chushrio Hayashi, private communication. Compare also: Mariorie H. Harrison, Astrophys. J. 103, 193 (1946); 105, 322 (1947).
 ⁴ See, for example. S. Rosseland, *The Pulsation Theory of Variable Stars* (Oxford University Press, London, 1949), in particular, Figs. 5, 6 and 8.

Pressure Broadening of Spectral Lines

T. HOLSTEIN Westinghouse Research Laboratories, East Pittsburgh, Pennsylvania May 1, 1950

HIS note presents a brief summary of some theoretical work on the development of the statistical theory of pressure broadening in terms of the basic "Fourier integral" approach. A more complete report will appear at a later date.

We use here the simplest version of the Fourier integral theory, which assumes the non-degeneracy of both initial and final energy levels. Under this condition, essentially the only effect of interaction between a radiating atom and its neighbors is the modulation of the unperturbed line frequency, ω_0 , with a "frequency perturbation" $\omega_p(t)$ equal to $1/\hbar$ times the instantaneous relative shift of the two energy levels. We introduce the "phase perturbation" $\varphi(t) = \int t \omega_p(t) dt$ and set the zero of our frequency scale at ω_0 . The Fourier integral formulation for the spectral intensity, $I(\omega)$, then reads¹

$$I(\omega) = \langle |A(\omega)|^2 \rangle_{Av}, \tag{1}$$

$$A(\omega) = (2\pi T)^{-\frac{1}{2}} \int_{-T/2}^{+T/2} \exp\left\{i\left[\varphi(t) - \omega t\right]\right\} dt.$$
⁽²⁾

In these relations, the symbol $\langle \rangle_{Av}$ denotes an average over all types of collision, T is an arbitrarily large time interval, and the factor $(2\pi T)^{-\frac{1}{2}}$ takes care of the normalization of $I(\omega)$.

The derivation² of the statistical intensity distribution from (1) and (2) proceeds as follows. We take ω large enough so that, on the time scale in which $\omega_p(t)$ and its derivatives undergo appreciable relative variations, $e^{i\omega t}$ is a rapidly oscillating function. In this case the whole integrand of (2) oscillates rapidly except at points t_i such that $d\varphi/dt_i \equiv \omega_p(t_i) = \omega$. Hence, only the neighborhoods of these "coincidence" points contribute significantly to the integral. Developing $\varphi(t)$ in a Taylor series about each t_i and dropping terms of order higher than $(t-t_i)^2$, we have

$$A(\omega) \cong (2\pi T)^{-\frac{1}{2}} \Sigma_i \exp\{i [\varphi(t_i) - \omega t_i]\}$$

$$\times \int_{-\infty}^{+\infty} \exp[(i/2)(d\omega_p/dt_i)(t-t_i)^2] dt = \sum_i \exp\{\varphi(t_i) - \omega t_i \pm i\pi/4]\} (T |d\omega_p/dt_i|)^{-\frac{1}{2}}, \quad (3)$$

the plus (minus) sign in the exponent prevailing when $d\omega_p/dt_i$ is positive (negative). Inserting (3) into (1) and ignoring phase correlations between different coincidence points, we obtain

$$I(\omega) = (1/T) \langle \Sigma_i | d\omega_p / dt_i |^{-1} \rangle_{\text{Av}}$$
(4)

which represents the statistical distribution in its most general form. Namely, the right-hand side of (4) is equal to the occurrence distribution of $\omega_p(t)$, i.e., that fraction of the time interval T for which $\omega_p(t)$ is contained in a unit frequency range at ω .

In our detailed calculations, aimed at determining the accuracy and domain of applicability of the above derivation of the statistical distribution, we have treated the case in which the interaction of a radiating atom with its neighbors consists of a succession of binary collisions (low density of perturbing atoms). Each of these encounters is assumed to provide a frequency modulation of the form

$$\omega_p(t) = C/r^n = C/[R_{\alpha}^2 + v^2(t - t_{\alpha})^2]^{n/2},$$
(5)

where C and n are interaction constants and v the relative velocity of colliding atoms. The averaging operation of (1) consists in summing over all values of the impact parameter, R_{α} , and time of closest approach, t_{α} , for each collision.

On introducing (5) into (2) and evaluating the integrals by the method of steepest descents,3 we obtain

$$A(\omega) = \sum_{\alpha} \exp\{i[\varphi(t_{\alpha}) - \omega t_{\alpha}]\}A_{\alpha}(\omega)$$
(6)

where $A_{\alpha}(\omega)$, the contribution of the α th collision, is given by an asymptotic series of the form

$$A_{\alpha}(\omega) \cong 2(T | d\omega_p/dt_i |)^{-\frac{1}{2}} \cos[\varphi(t_i) - \varphi(t_{\alpha}) - \omega(t_i - t_{\alpha}) - \pi/4]$$

+ terms in $d^2\omega_p/dt_i^2, \quad d^3\omega_p/dt_i^3 \cdots$ (7)

In this expression, $t_i = t_{\alpha} + [(C/\omega)^{2/n} - R_{\alpha}^2]^{\frac{1}{2}}$. It is found that, for large ω -more precisely,⁴ $\omega^{1-1/n}C^{1/n}/v \gg 1$ -Eq. (7) constitutes a satisfactory approximation for all $R_{\alpha} < (C/\omega)^{1/n}$ exclusive of the immediate neighborhood of the point $R_{\alpha} = (C/\omega)^{1/n}$ (at which $t_i = t_{\alpha}$). In this region we use an alternate approach. Expanding (5) binominally in powers of $v^2(t-t_{\alpha})^2/R_{\alpha}^2$, we find it possible to express $A_{\alpha}(\omega)$ as a series of terms involving Airy's integral⁵

$$\int_{-\infty}^{+\infty} \exp[i(t^3 \pm xt)] dt.$$

As $(C/\omega)^{1/n} - R_{\alpha}$ increases positively, the series in question passes over smoothly into that given by (7); as $(C/\omega)^{1/n} - R_{\alpha}$ increases negatively (no point of coincidence in the collision), $A_{\alpha}(\omega)$ drops rapidly to zero.

We now insert (6) into (1) and average over the t_{α} and R_{α} . The main effect of the average over t_{α} is to eliminate any coherence between the contributions of different collisions. In averaging over the R_{α} , we simply group the collisions according to the values of their impact parameters and integrate. We thus obtain

$$I(\omega) = \int_{0}^{\infty} |A_{\alpha}(\omega)|^{2} \cdot T \cdot 2\pi N v R_{\alpha} dR_{\alpha}, \qquad (8)$$

where N is equal to the density of perturbing atoms.

Detailed calculations following the procedure outlined above yield for $I(\omega)$ the expression

$$I(\omega) = \frac{4\pi N C^{3/n}}{n\omega^{1+3/n}} \{1 - (n/36)(1+1/2n)(1-1/n^2) \times [\omega^{1-1/n} C^{1/n}/v]^{-2}\}, \quad (9)$$

which constitutes the first two terms of an asymptotic series in increasing negative powers of $\omega^{1-1/n}C^{1/n}/v$.

The factor in front of the curly bracket of (9) is the well-known statistical distribution of Kuhn and Margenau⁶ for the case of binary collisions. From (9) it is obvious that this distribution is valid when $\omega \gg v^{n/(n-1)}/C^{1/(n-1)}$ (i.e., in the wing of the line). Now, Spitzer⁷ has shown that the impact theory of pressure broadening is valid when $\omega \ll v^{n/(n-1)}/C^{1/(n-1)}$ (i.e., in the vicinity of the unperturbed line). Finally, in the case of binary collisions, the ratio of the statistical to the impact distribution⁸ turns out to be $\sim (\omega^{1-1/n}C^{1/n}/v)^{(n-3)/(n-1)}$ which is equal to unity for $\omega = v^{n/(n-1)}C^{1/(n-1)}$. These results exhibit the transition between the two theories as well as the domains of applicability of each.

¹ See, for example, H. M. Foley, Phys. Rev. **69**, 616 (1946), p. 619, second column, first equation (where P(t) is equal to our $\omega_p(t)$). This as well as the present formulation requires the additional specification that ω_0 is large compared to ω_i such a restriction excludes certain cases of microwave broadening in which one is interested in values of ω comparable to ω_i . ³ The method was previously employed in a quantum-mechanical treatment of pressure broadening by A. Jablonski, Phys. Rev. **68**, 78 (1945). ³ G. N. Watson, *Theory of Bessel Functions* (Cambridge University Press, New York, 1945), second edition, pp. 235, 236. ⁴ It is instructive to write $\omega^{-1/n}Cl^{n}/\nu$ in the form ω_{Te} , where $\tau_e = (C/\omega)^{1/n}/\nu$ may be considered as the "time of collision." ⁵ Reference 3, pp. 188–190. ⁶ H. Kuhn, Phil. Mag. 18, 987 (1934); H. Margenau, Phys. Rev. **48**, 755 (1935). ⁷ L. Spitzer, Jr., Phys. Rev. **58**, 348 (1940). ⁶ Reference 1, Eqs. (16), (17) and intervening text. For the case of binory areas of the present second seco

755 (1935). 7 L. Spitzer, Jr., Phys. Rev. **58**, 348 (1940). 8 Reference 1. Eqs. (16), (17) and intervening text. For the case of binary collisions the denominator of (16) reduces to ω^3 ; the quantity γ in (17) is our *C* multiplied by an unimportant numerical factor.