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'HIS note presents a brief summary of some theoretical work
on the development of the statistical theory of pressure

broadening in terms of the basic "Fourier integral" approach. A
more complete report will appear at a later date.

We use here the simplest version of the Fourier integral theory,
which assumes the non-degeneracy of both initial and final energy
levels. Under this condition, essentially the only e6ect of inter-
action between a radiating atom and its neighbors is the modula-
tion of the unperturbed line frequency, cop, with a "frequency
perturbation" co~(t) equal to 1/h times the instantaneous relative
shift of the two energy levels. We introduce the "phase perturba-
tion" q(h) J' 'or&(h)dh and set the zero of our frequency scale at cop.

The Fourier integral formulation for the spectral intensity, I(o2),
then reads'

1(~)= (I A (~) I'}A„ {1)
+T/2

A(co) = (2+T) & exp Ii/p{h) —(ghjIdh. (2)

In these relations, the symbol ( }A& denotes an average over all
types of collision„T is an arbitrarily large time interval, and the
factor (2~T) & takes care of the normalization of I{~).

The derivation' of the statistical intensity distribution from (1)
and (2} proceeds as follows. We take co large enough so that, on
the time scale in which co„(h) and its derivatives undergo appreci-
able relative variations, e'"' is a rapidly oscillating function. In
this case the whole integrand of (2) oscillates rapidly except at
points t; such that dp/dh;=—o2„(h,) =~. Hence, only the neighbor-
hoods of these "coincidence" points contribute significantly to the
integral. Developing p{h) in a Taylor series about each h; and
dropping terms of order higher than (h —h;)~, we have

A (co)~(22rT) &5; exp IiI p(t;) —~h;jI

Xf expL(i/2)(dvv /dt;)(t —t;)'jdt

=Z;expIp(t, ) ~t Mix/4)I(TIdkrv/—dt;I) &, (3)

the plus (minus) sign in the exponent prevailing when doe„/dh; is
positive (negative). Inserting (3) into (1) and ignoring phase
correlations between different coincidence points, we obtain

&(~) =(&/T)(& Id~v/dt'I ')A. (4)

which represents the statistical distribution in its most general
form. Namely, the right-hand side of {4) is equal to the occurrence
dishribution of co2,(t), i.e., that fraction of the time interval T for
which au„(t) is contained in a unit frequency range at co.

In our detailed calculations, aimed at determining the accuracy
and domain ot applicability of the above derivation of the sta-
tistical distribution, we have treated the case in which the inter-
action of a radiating atom with its neighbors consists of a succes-
sion of binary collisions (low density of perturbing atoms). Each

of these encounters is assumed to provide a frequency modulation
of the form

vvv(t) = C/r" = C/[R '+v'(t t —)'j"t', (5)
where C and I are interaction constants and e the relative velocity
of colliding atoms. The averaging operation of (1) consists in
summing over all values of the impact parameter, R, and time of
closest approach, h, for each collision.

On introducing (5) into (2) and evaluating the integrals by the
method of steepest descents, ' we obtain

A(co)=Z expIiI q(t )—o)h„jIA {co) (6)
where A {co), the contribution of the ath collision, is given by an
asymptotic series of the form

A (&v) ~2 (T I d~v/dt;
I } & cosI e (t;)—v (t )—~(t;—t )—x/4 j

+terms in d o2„/dt's, d'cu„/dh . . (7)

In this expression, t;=t +I (C/ap)~« —R sj&. It is found that, for
large co—more precisely, ' c0' '«C'«/e))1 —Eq. (7) constitutes a
satisfactory approximation for all R &(C/co)'«exclusive of the
immediate neighborhood of the point R =(C/c0)'«(at which
h;=h ). In this region we use an alternate approach. Expanding
(5) binominally in powers of e {t—t~)2/R~~, we find it possible to
express A~(co) as a series of terms involving Airy's integral'

f expLi(t'Wxt)Qt.

As (C/co)'« —R increases positively, the series in question
passes over smoothly into that given by (7); as (C/co)'« —R in-
creases negatively (no point of coincidence in the collision}, A(~)
drops rapidly to zero.

We now insert (6) into (1) and average over the h and R . The
main effect of the average over h is to eliminate any coherence
between the contributions of dÃerent collisions, In averaging
over the R, we simply group the collisions according to the values
of their impact parameters and integrate. We thus obtain

I(cu) f1A=(a)) I'T 2vNvR dR, (8)

where 2V is equal to the density of perturbing atoms.
Detailed calculations following the procedure outlined above

yield for I(co) the expression

4~XC3«I(cd) + t I 1 (n/36) (1+ 1/2n) {1 1/n')

)(L~l—lt ttCl/n/& j 2
I (9)

which constitutes the first two terms of an asymptotic series in
increasing negative powers of co' '«C'«/1).

The factor in front of the curly bracket of (9) is the well-known
statistical distribution of Kuhn and Margenau' for the case of
binary collisions. From (9) it is obvious that this distribution is
valid when co))v"t&" 'i/C't&" '& (i.e., in the wing of the line).
Now, Spitzer7 has shown that the impact theory of pressure
broadening is valid when co(&e"t " '~/C't&" '} (i.e., in the vicinity
of the unperturbed line). Finally, in the case of binary collisions,
the ratio of the statistical to the impact distribution' turns out
to be (co ~"C «/g) {" i t&" ) which js equal to unity for
cu=e"t&" ')C')'&" '&. These results exhibit the transition between
the two theories as well as the domains of applicability of each.

i See, for example, H. M. Foley, Phys. Rev. 69, 616 {1&46),p. 619, second
column, first equation (where P(t) is equal to our catt(t)). This as well as the
present formulation requires the additional specification that coo is large
compared to co,'such a restriction excludes certain cases of microwave
broadening in which one is interested in values of ~ comparable to coo.
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collisions the denominator of (16) reduces to coo, the quantity y in (17) is
our C multiplied by an unimportant numerical factor.


