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where cV is determined from

4(3n /~)&

aQ(3n„/~) & —{v/2H)
' (7)

4(p 842)2(3n gQ /7p) &) (3n~gQ /~) ~ —{v/2~ )

The inequality {10'j is always satisfied if

v&1.7.

(10)

Equation (11) appears to be generally valid so that our model
yields the result that a proton in a metal will have no bound state.

An analysis identical to that given above shows that a hydrogen-
like atom with charge greater than unity will become singly
ionized but not doubly ionized.

t J. Aharoni and F. Simon, Zeits. f. physik Chemic B4, 175 (1929). B.
Svensson, Ann. d. Physik 18, 229 (1933).

2 N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys
(Oxford University Press, London, 1936), p. 200.

3 N. F. Mott, Proc. Camb. Phil. Soc. 32, 281 (1936).' R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. 53, 991 (1938).
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F, instead of using the correct wave function the best wave
- - function of a certain form is used, the question arises as to
whether or not the virial theorem is satisfied. The purpose of this
note is to point out that the virial theorem is valid when the wave
function is obtained by a variation of the expectation value of the
Hamiltonian with respect to a change in scale and also under a
slight but important generalization of this variation. Thus,
suppose that

f (+&)=f (Xlp yl& l j +2) y2y ~2 j ' ' ~ay ynq &n) (1)

is an arbitrary wave function for n particles. If, using the wave
function

~(~)4''(~X') =~()I)p'(»l ~yl ) ~i; ) ~., ~y. , ~~.) (2)

the expectation value ot the Hamiltonian is formed, then X is
determined from

P'*HP'd3-x=0.
BX

3 is a normalization factor.
I.et

(3)

where P satisfies (3).
Then we know that

8 ¹y*(Xx;),HP(Xx;)d3 & =0,
ax X-i

aQ is the Bohr radius.
For v=p this expression agrees with that obtained by Mott'

who considered the screened Coulomb field in a metal ignoring
exchange terms.

The potential is given by

V= —e exp{-r/rQ}/r (8)

and the charge distribution is

n(r) —n( ~ ) = (1/4mrQ2) exp( —r/rQ)/r. (9)

Sachs and Mayer' found that for a potential of the form {8) to
have no bound state we must have

rQ &0.842uQ.

This criterion for our case leads to

or

since P(x;) is normalized.
If

P2 —$3n

H= —~& ——+ t'(r )
2m, j Bxt

Equation (5) now reads

—)P
1+ fig*(k )V(j;IX)d'(j,)d'"5 =0,

BP

Therefore

Superconductivity of Vanadium
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T is well known that the superconductive properties of most
- - samples of transition metals of the fourth and fifth groups of
the periodic table are characterized by inordinately large values
of the magnetic field required for the destruction of supercon-
ductivity. These values do not correspond to systems exhibiting a
reversible "Meissner effect" and hence are of no value for thermo-
dynamic calculations of the differences in specific heat of the
normal and superconductive phases and of the heats of transition.
Illustrations of this situation are to be found in the recent work on
niobium' and uranium. 2 On the other hand, some samples of
niobium and tantalum have been found to exhibit at least partial
reversibility, 3 and the thermodynamic calculations have led to
most interesting consequences.

2T—2; x;

which is the virial theorem.
The above class of trial functions for which the virial theorem

holds can be extended to include functions of the form q(x;),
f{xi) where q(x;} is a homogeneous function of the x; and only the
scale of the argument of f need be varied. This includes cases like
r' exp{—neer).

Now P may be a very poor trial function. Consequently the
virial theorem cannot be used as a test of the "goodness" of the
function chosen. On the other hand, since the above demonstra-
tion includes a great many cases which one meets in practice,
it can be concluded that the virial theorem is applicable in most
of the approximations commonly used,

The existence of a virial theorem depends only on the existence
of an energy variation principle. Thus the above argument is
applicable in the case of the statistical models, e.g., Thomas-
Fermi, Thomas-Fermi-Dirac, the equations of which can be de-
rived from a variation principle' in which the charge density is
varied. Any trial charge density which has been fitted by a varia-
tion in scale will again satisfy a virial theorem.

The author would like to thank Professor C. Zener for very
helpful discussions of this subject. This work arose through a
conversation with Professor J. C. Slater.

) P. Gombas, Die Statistische Theoric des Atoms (Springer-Verlag, Berlin,
1949).
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FiI-, 1. Magnetic induction of superconductive vanadium.
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Fia, 2. Threshold fields for superconductive vanadium.

It appeared to us that for the clarification of the nature of the
properties of the hard superconductors the study of the super-
conductivity of vanadium would be most fruitful. In the first
place, the temperature range in which this metal exhibits super-
conductivity is very convenient from an experimental viewpoint.
Secondly, vanadium has a relatively low melting point, a factor
which facilitates metallurgical treatment of the metal.

The superconductivity of vanadium, as determined by resistance
measurements, was first reported by Meissner and Westerho8. '
The recent data of Webber et al. ' gave an initial slope of 4100
oersteds per degree for a particular sample of vanadium.

Through the kindness of Dr. B. %'. Gonser of the Battelle
Memorial Institute a sample of pure vanadium was made available
to us. The magnetic properties of the superconductive material
were determined by a method which, in principle, was the same
as that used by Keeley and Mendelssohn. e A coil of No. 40 copper
wire was wrapped around the specimen which was a cylinder
0.070 in. in diameter and 1 in. long. The residual resistivity
relative to the ice-point resistivity of a strip rolled from this cyl-
inder was 0.051.

Isotherma1 measurements were made at each of eight tempera-
tures. These consisted in the determination of a quantity propor-

tional to the integral of the voltage induced in the coil when the
field was reduced from a given value to zero. The data are indi-
cated in Fig. 1. For each temperature, the fiuxmeter de8ection
is a linear function of the field until a critical value is reached.
These critical values have been assumed to represent the threshold
fields at the various temperatures, and have been plotted in Fig. 2.
The initial slope of this curve is 400 oersteds per degree; in general
the curve is quite similar to that for tantalum on the basis of which
Daunt and Mendelssohn have made thermodynamic calculations.
From Fig. 1 it is seen that the "Meissner effect" is most pro-
nounced near the critical temperature and that the reversibility
becomes much poorer at lower temperatures.

Work is in progress on the factors responsible for the irreversi-
bility associated with the transition and hence the data herein
reported are given provisionally.

A detailed account of the experimental methods used and of
the effect of metallurgical factors upon the electrical and magnetic
properties of superconductive vanadium will be reported in the
near future.

i Cook, Zemansky, and Boorse, Phys. Rev. V9, 212 (1950).
~ B. B. Goodman and D. Shoenberg, Nature 165, 441 (1950).' J, G. Daunt and K. Mendelssohn, Proc. Roy. Soc. (A) 1M, 127-36

(1937).
4 W. Meissner and H. Westerho8, Zeits. f. Physik 8'I, 206 (1934).
5 Webber, Reynolds, and McGuire, Phys. Rev. V5, 293 (1949).
II T. C. Keeley and K. Mendelssohn, Proc. Roy. Soc. (A) 154, 378 (1936).

Cosmic Rays as the Source of General
Galactic Radio Emission
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HE galactic radio emission is not a thermal free-free radia-
tion of interstellar gas, as was first believed. The electronic

temperature would have to be of the order of 100,000' in con-
tradiction to all spectroscopic evidence which gives values around
10,000'. Stars could be considered as sources only under very arti-
ficial assumptions. The observed intensities, which must come from
the outermost layers of stellar atmospheres, could not be blackbody
radiation' and might be understood only in terms of coherent plas-
ma oscillations of extended regions. The formation and mainte-
nance of these oscillations is hardly possible in stellar atmospheres. '

It will now be shown that the general cosmic radiation of our
star system is a high frequency source of sufhcient power. In
interstellar space, at least inside the interstellar clouds which
occupy about 5 percent of space, the mean density of kinetic
energy ought to be of the same order as the magnetic-field energy;
therefore, fields of around 10 s gauss are to be expected. An
energetic electron with energy lV)&mat. ", which is circulating in
this field, is radiating electromagnetic energy into a very narrow
cone whose angular aperture is moc /W in the direction of motion.
Therefore, an observer at rest receives very short pulses corre-
sponding to a frequency which is very much higher than the
classical Larmor frequency, vo. The mean spectral intensity dis-
tribution of this radiation will then be'

~(v) = (~/~Z) (v/v, )&

for vo&(v& v„where E. is the radius of the electron's circular orbit
and v&=)vo($'/mot, ~)'. If e, is the number of electrons per cm'
with energy 8', the emissivity of high frequency radiation will be

5 6v= tz&(v)Av= (e H/m~)e, (v/vo)&bv ergs/cm'/sec.

This increases steadily with frequency until v=v, and then
decreases rapidly. The observed distribution'' within the fre-
quency range of 10 to 3000 Mc seems rather to be ~ v ".%e
therefore expect to be already in a region with v&v, , Also the


