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It remains to show why dislocations should have portions lying
in particular glide planes and pass out of these glide planes at
particular points. This is to be expected if dislocation lines have
lower energy in particular crystallographic planes. A theory of the
reduction in energy can be given for the particular cases of the
close packed planes in h.c.p. and f.c.c. metals in terms of dissocia-
tion into "extended dislocations. "4 These metals are the ones for
which slip on particular planes is most characteristic.

It is necessary for the mechanism we have described that the
end points B and C should be anchored at least in some degree.
This anchoring may be provided in various ways in dislocation
networks, the simplest example being that in which BC is one.

side of a rectangular dislocation loop ABCD, the Burgers vector
being normal to the plane of the loop. The stress which causes the
motion of BC in Fig. 3 produces an opposite motion of AD, with
no net force on AB and CD. In many cases (e.g., probably the
hexagonal metals) the lower mobility of dislocations in planes of
less than closest packing may sufBce to anchor the points B and C.

~ F. C. Frank, Report of a Conference on the Strength of Solids {Physical
Society, London, 1948), p. 46.

~ G. Liebfried, Zeits. f. Physik 127, 344 (1950).
~ F. C. Frank, Discussions of the Faraday Society 5, 67 (1949).
4 R. D. Heidenreich and W. Shockley, Report of a Conference on the

Strength of Solids (Physical Society, London, 1946), p. 71.
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Prismatic Dislocations and Prismatic
Punching in Crystals

FREDERICK SEITZ
University of Illinois, Urbane, Illinois

June 27, 1950

MAKUI. A and Klein' have made indentation studies of the

~

~

plastic properties of the thallous halides with use of a small
conical punch and have found that the strain may be transmitted
in a highly concentrated manner through distances large compared
to the dimensions of the hole made by the punch. The system
behaves as if the punch pushed cylinders or prisms of the material
as rigid units in the direction of the axis of the prism, the length
of the prism being relatively large compared with the sectional
dimensions. The prisms appear to be polygonal in cross section,
the planar surfaces being slip planes (110) and the direction of the
axis being slip directions (100).A single prism having square cross
section is pushed if the indenter is pressed in the (100) direction,
but two and three are pushed, respectively, if the load is applied
in the (110) and (111)directions. In the latter two cases the axes
of the prisms lie in different, symmetrically equivalent, (100)
directions. Ke shall term this prismatic punching.

In order to explain these rather dramatic results it is only
necessary to discover a mechanism whereby dislocation rings of
the type shown in Fig. 1 may be generated in such a way that
their contours coincides with the cross section of the prismatical
punchings and the Burgers vector is along the axis of the prism.
If a dislocation ring of this type moves parallel to the axis of the
prism, the inside of the prism will be displaced relative to the
outside along the boundary by one unit of slip. Moreover, disloca-
tions of this type are constrained to move on the surface of the
cylinder or prism since their projection normal to the axis of the
prism must remain unchanged if the temperature is sufEciently
low that difFusion cannot occur. For this reason we shall call them
Prismatic dislocations.

It is not difIjtcult to see how the required prismatic dislocations
may be generated. The slip planes bounding the surface of the
prism, which is displaced by the indenter, intersect the surface of
the specimen in the region of maximal shearing stress at the
periphery of the area of contact between the indenter and crystal.
Thus each such bounding plane becomes the seat of spirals or
rings of dislocation which can be generated in a slip plane in the
manner suggested by Frank and Read in the accompanying letter.
The Burgers vector associated with the rings will be in the direc-
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FIG. 1. Possible forms of dislocation rings.

tion of the axis of the prism. Two rings (or spirals) which are
generated on diferent planes that intersect on a line parallel to
the axis of the prism can meet at the boundary line and interact
to form segments of prismatic dislocations. Complete prismatic
dislocations can be formed by combining rings from each of the
bounding surfaces. An example s ishown schematically in Fig. 1.
The rectangular prism ABCDEFGH is pushed on the area ABFE,
which is part of the surface of the specimen, coinciding with the
area of contact of the indenter. This prism is bounded by four
slip planes: ABCD, ADEH, EFGH- and BCGF. The dislocation
rings 1, 2, 3, and 4 shown in Fig. 1a are generated on each of these
four planes. As a result of the applied shearing stress, they expand
within the four planes and may extend beyond the bounding
surface of the prism, as shown in Fig. 1b. The rings on different
intersecting faces, such as 1 and 2 on ABCD and ADHE, respec-
tively, may meet at points such as a and b in Fig. ib. The cohesion
of the lines is weak at junction points such as a and b and may
break under the applied stress to form two prismatic dislocations
a and p in Fig. 1c and dislocation rings such as s, t, I, and e in the
same diagram. The last-named rings are bent so as to lie in two
slip planes which meet at the edges of the prism. The prismatic
dislocations a and p have opposite signs in the sense that n is the
equivalent of an extra layer of atoms equal in thickness to the
Burgers vector lying in a cross section of the prism, whereas p is
the equivalent of a deficiency of one plane of atoms. The first
dislocation may wander down the prism to the opposite face,
where it will produce a jutting by one Burgers distance over the
area (CDHG) representing the intersection of the prism with this
surface. (In practice this surface could be much farther from
ABEF, on a relative scale, than is shown. ) On the other hand the
prismatic dislocation p will emerge at the surface ABEF where the
force is applied and produce a depression of one Burgers distance.
Bent dislocations of the type s, t, u, and e may produce localized
plastic Qow in the vicinity of the indenter. It may be noted that
these dislocations would not be generated if the rings shown in
Fig, 1a did not expand beyond the boundary of the prism, as
illustrated in Fig. 1b, but met tangentially at the boundary lines.
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Their presence does not appear to complicate the picture, how-
ever, for they will not interfere in any serious way with the genera-
t.ion of additional prismatic dislocations on the surface of the
prism. It should be added that a single dislocation ring on one
face of the prism may, on reaching the edge of this face, start
moving along a second face which meets the first at the edge.
For the ring will have the character of a Burgers or screw disloca-
tion at the point of contact with the edge; a screw dislocation may
move in any slip plane, In this way a single ring, generated on one
face of the prism, may become wrapped around the prism and on
meeting itself after complete circumnavigation, form two pris-
matic dislocations of opposite sign. Similarly a dislocation spiral
in one face of the prism, or a pair of oppositely wound spirals which
are joined, can produce an unlimited number of prismatic disloca-
tions by wrapping around the surface of the prism.

Once a sequence of prismatic dislocations of the a-type have
been started down the cylinder, they may transmit stresses to
one another because of their mutual repulsion. Thus the force
impressed on the prismatic dislocation nearest the surface ABDF
will be transmitted along the entire line to that nearest the oppo-
site end of the prism. The prismatic dislocations a and P shown in
Fig. 1c are composed of straight-line segments on each of the four
bounding planes. Actually, the segments may be curved. The
sequence of events portrayed here evidently could occur on the
surfaces of two or more prisms whose axes lie along diferent slip
directions, but which have a common intercept at the area where
the indenter is applied.

The writer is indebted to Professor A. H. Cottrell for a stimu-
lating discussion of this topic.

I A, Smakula and M. 4V. Klein, J. Opt. Soc. Am. 39, 445 (1949).
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TAIILE I. Atoms per million with even and odd protons.
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FIG. 1. Abundance of the elements in the meteorites: (A) as compared
with that of silicon. The rare gases have been added by a comparison with
the composition of the sun and stars. The upper right-hand corner presents
values on expanded scales. Values for the ends of nuclear shells are repre-
sented by vertical lines. The most striking relative increase in abundance
related to a magic number is that for P =50, which represents tin.

Special and Magic Numbers as Factors in
Nuclear Stability and Abundance*
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N the years 1915 to 1923, the following concept was intro-
- - duced into nuclear science in about 20 papers. ' The stability
and abundances of nuclear species are determined largely by the
relations of special numbers. This concept was received by Ruther-
ford, and later by Goldschmidt, with much approval, but did not
meet with so much favor from certain theorists.

It was stated that of all special numbers, 2 is preeminent. The
later data of astronomers, 2 and of Goldschmidt, ' Brown4 and others

indicates that the importance of the number 2 is greater than was
supposed initially. In 1920 both Rutherford and the writer indi-
cated that the nucleus consists of protons and neutrons, and
Harkins indicated the composition of all nuclei as (pn}pnr, first
expressed by the formula (pep) p(pe)I in which it was stated "pe
represents a neutron. "P is the atomic and I the isotopic number.

The number 2 is represented by the helium nucleus with its two
neutrons and two protons. This species is estimated by astron-
omers' to be 70 times more abundant in the universe than the sum
of all others. This excludes hydrogen from consideration since in
this sense a proton is a simple nucleus.

Also every multiple of two is a special number. Thus each element
which has in its nuclei an even number P, of protons is in general
very much more abundant than either of the adjacent elements
with an odd number of protons. Figure 1 shows this but the rela-
tion is exhibited much better in Table I. The ratio of P, , to P,dq

varies from ca. 3000 to 1.1, the latter for the ratio of Pd+ Cd to Ag.
(Note: Table I does not go so high as Ag due to lack of space. )

It is apparent that the abundance exhibits waves, in which in
general high abundance for even elements are associated with
relatively high abundances for odd elements, and peaks occur at
oxygen and iron.

Figure 2 shows that in general the abundance of species with
any certain even number of neutrons (X,) is very much greater
than that for the adjacent odd number, E,~1. Also the peaks
and troughs in abundance lie in relative positions very similar for
those for protons, with peaks at 2, 8, 20, 30 and presumably 82
neutrons.

For values of P or of X above 2 the effect on the abundance rela-
tions is much more striking in general for even numbers than for
magic numbers. The latter are accompanied by a somewhat
greater abundance than the adjacent even numbers.

The value 50 P (tin} exhibits strikingly the increase in abun-
dance related to the end of the 50 P shell. The values 9 P and 21 P
show a great lowering in abundance which occurs just after the
respective shell (8 P or 20 P) ends. This same type of decrease in
abundance occurs just after the closing of the 8, 20, 28 and 50,
and 82 X shells, at 9, 21, 29, 51 and 83 X.




