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The commutator in (11) is then expressible in terms of
the anticommutator

g(x)f(x), P(x')]=&(x) Ig(x), P(x') I

S
p

S X 4

This enables one to determine the anticommutator
function.

I should like to thank Professor Schrodinger for
many valuable discussions in connection with this paper.

Xofe added in proof: —The squared Klein-Gordon equation was
proposed as a meson equation in the meantime by Bhabha
(Phys. Rev. 7?, 665 (1950}).For a discussion of the difBculties
of held theories with higher order equations see A. Pais and G. E.
Uhlenbeck, Phys. Rev. 79, 145 (1950).
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Generalizations of the Weiss Molecular Field Theory of Antiferromagnetism
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A KVeiss 6eld calculation has been carried out for antiferromagnetism in more complicated structures than
the usual calculation allows, and has been shown to give results more detailed and more consistent with
experimental evidence on the magnetic properties of such structures than does the simpler theory.

I. INTRODUCTION. THE TWO-SUBLATTICE THEORY

A SIMPLE theoretical treatment of antiferro-
magnetism, the phenomenon of antiparallel

ordering of spins in a lattice, has been given by Van
Vleck' and Neel. ' This theory is very similar to the
gneiss molecular field treatment of ferromagnetism. As

Van Vleck points out, it is to a certain extent equivalent
in rigor to this treatment; that is, to the first approxi-
mation of the Heisenberg theory of ferromagnetism.
However, it should be pointed out that the problems
encountered in a rigorous quantum theory of anti-
ferromagnetism are greater than those in the ferro-
magnetic case. For instance, the lowest energy state
which one would instinctively write down in this case
is not an eigenstate of the Hamiltonian, and indeed
even the energy at absolute zero is not correctly given

by a molecular held treatment of antiferromagnetism,
while the theory of ferromagnetism does not have this

difhculty. For further discussion of these problems, the
reader is referred to the work of Hulthen we shaH

assume here that the molecular held theory is at least
adequate in a semiquantitative way, as we shall indeed
find it to be.

Van Vleck's theory is quite successful qualitatively;
it explains why, above the "Curie temperature, " T.,
at which the spins lock in antiparallel, the suscep-
tibility should follow a modified Curie law

x= C/(T+8)

with C the usual "free-ion" Curie constant. Below T,
the susceptibility should be slightly held-dependent,
but should, for a powder sample, drop to a value two-

' J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941). Van Vleck
refers to previous papers by Bitter and Weel.' L. Noel, Ann, de Physique 3, 137 (1948).

3 I. Hulthhn, Arkiv. f. Mat. , Astr. o. Fys. 26A, No. 11 (1938}.

thirds of the T, value by T=O. The predictions as to
C and the susceptibility below the Curie point are
roughly correct, but still a third prediction, that
0= '1„ is very poorly satisfied in general. Neel modified
the Van Vleck theory by introducing next nearest
neighbor spin coupling, which as we shall show can ex-
plain some anomalous 8/T, ratios. However, the main
object of the present paper is to show that Neel's
procedure is too simple, and that, first, simply from
internal consistency Neel cannot explain 8/T, ratios
as large as some of those observed; second, that the
simple theory is not applicable to most lattice struc-
tures encountered in actual antiferromagnets; and
third, that the correct theory, taking into account lat-
tice structure, is more consistent with the experimental
results, particularly on 8/T, . The only difference in

principle between the theory here presented and the
earlier theories is in the matter of taking into account
geometrical lattice structures; the basic approach re-
mains that of the molecular field theory of %'eiss.

Van Vleck's theory applies to lattices in which the
magnetic ions can be divided into two sublattices, each
sublattice having the property that it contains no
nearest neighbors of its own members, but all of the
nearest neighbors of the members of the other sublat-
tice. Thus if we assume only nearest neighbor inter-
actions, and use an effective field treatment, the eBec-
tive field on one sublattice is given entirely by the
average magnetization of the other sublattice. A typical
example of a lattice which can be divided in this manner
is the body-centered cubic lattice, in which one can
assign the cube corners to one sublattice, the cube
centers to the other.

The basic formula of the gneiss fieM approach is

S=SB,(const. XH,u/k T),
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where 8, is the Bxillouin saturation function for a spin
value 5. For a simple exposition of the theory we shall
need only the expansion of 8, for small values of H:

M= const. XSB,(const. XH"'/kT)=yH""/T, (2)

where all the constants are summarized in the symbol y.
I.et us write down the expression for the efFective

field, under the assumption that the effect of exchange
is given by

v, ,=JS,'S;,
V,, being the interaction energy between spins i and j,J an exchange integral, and S; and S; the spins of the
ith and jth atoms, which are neighbors. The gneiss
field method replaces S; by (S,)p„, which is proportional
to M;; the interaction then acts as an effective field
due to the magnetization of the sublattice containing i.
Thus we have two effective fields, one acting on each
subjattice.

or

An interesting point which can be made here is that
T, is always proportional to the maximum exchange
energy one can obtain by assuming constant magnetiza-
tion on each of our chosen sublattices. This is true
since, in minimizing

M 8'"
=M H" (M)

(where H" now can be thought of as a linear operator
acting on the quantity M), we solve the eigenvalue
problem for the operator H'", which is essentially the
same as solving the secular Eq. (8). The eigenvector M
then gives the best energy arrangement, as well as
that holding at T,. This theorem enables us to check
our choice of sublattices in more complicated cases,
by trying to find arrangements which will give lov er
energies than the chosen set can afford.

Qg, pM, = (2Hp —XQ, pM, )y/T

and for the susceptibility

M... (2y/T) 2y .
x—

Hp 1+(Xy/T) T+8 ~.

(6)

The Curie point can be obtained easily by leaving
out Hp in Eq. (5). The resulting set of homogeneous
equations will have a non-zero solution for M at only
one temperature, given by setting the determinant
equal to zero.

H'"= Ho —Xjt/I, jgi.
The quantity X is proportional to the exchange integral
J. %e may write

M;= (Hp —XM, )y/T.

For the total magnetization we obtain

II. THE FACE-CENTERED CUBIC LATTICE

Many known antiferromagnetics crystallize in struc-
tures for which the preceding theory does not hold.
The most common of these is the face-centered cubic
lattice, which can be divided into no less than four
simple cubic sublattices which have the property that
the sublattice does not contain nearest neighbors.
Figure 1 shows a sublattice division in a face-centered
cubic structure; numbers 1, 2, 3, and 4 refer to the
various sublattices. It will be seen that each sublattice
contains four nearest neighbors in each of the other
three. Ke shall now give a complete treatment of this
arrangement.

Refer to the sublattices by the index n, ranging from
j. to 4. The interaction energy is

V =2ZJS (S )p,

where J is an exchange integral, and Z is the neighbor
number, 4 for the f.c.c. lattice. Thus the effective field is

H„"'=Ho —(2JZ/gP) Q (S„),„, (12)

Il v/T

l a2
4 F

.,2

)(.
' 8 =SB.(y )

y.= (SgP/kT)H "'
(14)

(15)

(g) and the magnetization is

M = -',.Vgp+S„

where lV is the number of atoms, g the gyromagnetic
ratio, and P the Bohr magneton. %e have the basic
equation of the Weiss theory, corresponding to (2):

/'
/'

If we limit ourselves at first to the region above the
Curie point, we have small efFective fields in general,
and we can expand the Brillouin function in (14):

FIG. 1. Division of f.c.c. lattice into four sublattices. S& (y)=l(S+1)y. (16)
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TABI.E I. Constants of antiferromagnetic compounds.

Compound
Crystal

structure
Paramagnetic lattice

structure

No. of
sublat-

tices 8 +C

e/X

(
xy 0 (S™pie

Neel
xy y theory)

«/X (Our theory)
Lower Higher

MnF,
FeF2
Mno
Fea
MnS
MnSe'
FeC12
CoClg
NiC12

Rutile
Rutile
NaCl
NaCl
NaC1
NaCl
CdC12
CdCl2
CdC12

Body-centered rectangular
Body-centered rectangular
f.c.c.
f.c.c.
f.c.c.
f.c.c.
Hexagonal layer structure
Hexagonal layer structure
Hexagonal layer structure

2 113'
2 117'
4 610'
4 570'
4 528'
4 ~435'
3 48'
3 38.1'
3 68.2'

72'
79

122'
198'
165'

-150'
23.5'
24.9'
49.6'

1.57
1.48
5.0
2.9
3.2

~3
2.0 )?
1.53)?
1.37)?

0.76
0.72~2
0.8

0.22
0.19

0.33
0.21
0.16

0.5—0.02
0.12

0.5
+1.07

0.91

' The Curie point of MnSe is hard to locate because of a large thermal hysteresis in this crystal, perhaps due to a phase transition (three known crystal
structures exist), However, the most reliable data {Shull, private communication) is that given here.

Thus

PS„=O. (23)

see, by setting T=T, in (20), that the only restriction

S„=-',5(5+1)(gp/kT)[HO —(2JZ/gp) p S„,]. (17)

Sum from 1 to 4 to get the magnetization:

Q S =-,'5(5+1)(gP/kT)[4Ho —(6JZ/gP) Q S„]

', S($+1)(-4gp/kT)HO
S„=

1+[2JZS(5+1)/kT]
and

3f -'$(5+1)gg'P'/k

Ho T+S(S+1)2JZ/k »

=const. )(1/(T+8)

8=2JZS(5+1)/k. (19)
S~ S2 S3 S4.
T T l lTo find the Curie point we use no external field in (17)

and 6nd the point at which a non-zero solution of the
following equation system is possible: The spontaneous magnetization can be determined

from (14) and (12). Since
(20)S„+i35(5+1)(2JZ/3kT) Q S„=O.

gS„=—S„,
The determinant is

[It can easily be shown directly that (23) does indeed
give the lowest energy for a system of n equally coupled
spins. ] However, (23) allows, for four spins, an infinite
number of possible arrangements of spins, and the
actual arrangement will no doubt be determined by
next nearest neighbor interactions, anisotropy energy,
etc. Since, as we shall see, x depends on the actual
arrangement, it is impossible to hnd a unique value of

g for T(T,.We can, however, take two simple possible
arrangements to show what forms for g are to be ex-

(18) pected.
The first arrangement we choose is that in which two

spins are parallel, two antiparallel:

X X X

X 1 X X

X X j. X

X X X 1

x=25(S+1)JZ/3kT.

(1—x)'(1+3x)=0
T.=25(5+1)JZ/3k=8/3. (21)

We can now find the susceptibility at the Curie point,
which is

5„'=58,[(25JZ/kT)S„'].

ON NAIVE PICTURE

/.o)-i

~-(&I
~CORRECTED FOR LOWER

POSSI8LE STATE

(24)

xr =Kg'P'/SJZ. (22)
0
0 0.2 0.4 0.6 0.8 '1,0 1.2

The behavior of an antiferromagnetic f.c.c. lattice
below the Curie point is rather complicated. We can FIG. 2. 8/T, for f.c.c. lattice with two interactions.
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On expansion of all quantities about their values with mutually perpendicular.
no external. field we have Si

Then

H„=H„O+&H„

S„= S„o+&S„

bH„=Hp (2JZ/—gP) Q bS .

(25)
S4

S3

We must calculate two cases:

Hp[/ So,

HoL ~o.

In case Ho is perpendicular to all four, we obviously get
the same result as in the previous case:

(I)
xi=Kg'P'/8JZ= xr .

C

In case Hp is parallel to the plane of the spins, we obtain
the following:

Case I. Expand the 8 function in the Taylor's series:

5„'+bS„=S[B,(SgPH„o/kT) +bH„(SgP/kT)B, 'j
bS =bH (5'gP/kT)B, '

&S,=SS„&S,= &S,
bSr ——Sp bH„/H„'

So [Ho —(2JZ/gP)(bSt+2bSo) j/(2JZ/gP) ISpI

or

= LHo (2JZ/—gP) 2 bS j(5'g&/kT)B '

add up these equations for m=1 to 4:

This leads to

Thus

2bSt+2bSo = (gP/2 JZ)Ho.

xi'=&g'0'/gJZ= xi= xr; (31)

4Ho(5'gP/kT)B '

1+(6JZS'/kT)B '

(S gP' 5/ Tk)B,
'

1+(6S'JZ/kT)B, '

(xi') r-o=0, since B,'(oo) =0.

Case II. Here we simply rotate the spins to be parallel
to the effective 6eld which they see. Thus

[Ho—(2JZ/gP) P bS )j
bS-= IS'IbH-/IH-'I = IS-'I

(2JZ/gP) 2 5-'

since all 6S„are presumably equal, this leads to

4bS„=gPHp/2JZ
xi= ~g'13'/g JZ (29)

so that p~ is constant, and equal to p~ at T=O. Since,

in averaging over the three directions for an isotropic
sample, we take x~ twice and x,", once, we get

( =2xtot) T=o p xr . (30)

For this particular case we get the same result as that
given by Van Vleck's simple theory.

A second case is that in which two pairs of spins are

X,t, ot. (32)

III. INTRODUCTION OF NEXT NEAREST
NEIGHBOR INTERACTION

Neep has explained the large e/T, ratios sometimes
observed by introduction of a next nearest neighbor
interaction e as well as a nearest neighbor interaction X

into the simple two-lattice theory. 8/T, then becomes
(1+o/lt)/(1 —o/X). The o/X ratios thus computed are
given in Table I. We will show later how our theory can
be similarly expanded; in most cases quite small o/lt
values will sufBce.

Some recent results obtained by Shull' at Oak Ridge

4H. Bizette, thesis (Massonand Company, Paris, 1946). See
eSP. P. 94.

~ Private communication.

Thus there are cases, for the face-centered cubic lattice,
for which Van Vleck's relation

=2
Xp 0 3Xp

is not necessarily true.
The comparison of our theory with experiment is

shown in Table I. The data on several salts, taken
primarily from Bizette's thesis, ' are presented, to-
gether with the crystal structure, the structure of the
lattice of paramagnetic ions, and the number of sub-
lattices assuming nearest neighbor interactions. Com-
pounds with the CdC12 structure are included; here on
the simple theory one would assume 3 sublattices and
8/T, = 2, but the data are not clear experimentally, and
in addition it is not permissible to apply the Weiss
field theory to essentially plane structures.
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with neutron diffraction seem at 6rst to contradict
the above theory. His measurements are made on MnO.
First, a favorable point: he 6nds, at room temperature
(&8), a pattern corresponding to short-range order,
which is physically very reasonable when one examines
the mechanism by which 0 can become larger than T,.
Namely, the susceptibility (depending on 8) as well

as the short-range order should, in 6rst approximation,
depend only on the number of neighbors and strength
of coupling, whereas T, is a lattice dependent quantity
which measures the lowest energy obtainable with a
given lattice. However, the present simple theory can-
not give results on short-range order.

The observations of Dr. Shull at low temperatures
((T.) do not confirm our ideas, however. He finds
that an unexpected structure is present in which each
of the four simple cubic sublattices is arranged anti-
ferromagnetically within itself (as shown by the + and
—signs on sublattice 1 in Fig. 1) while the sublattices are
either completely uncorrelated, or are correlated in
such a way that the spins in one set of (111)planes are
all parallel. The neutron diffraction results cannot
choose between these structures, nor is it possible to
distinguish between them on our theory, as we shall see.
%e see at once that such a structure does not satisfy
our theory, and the primary advantage which our theory
has of explaining high 8/T, ratios without large e/X
ratios has been lost.

I.et us see, nonetheless, what our theory does give in

case there is a next nearest neighbor interaction. In this
case it is necessary to subdivide the lattice still further,
dividing each of the 4 sublattices into a + and a —sub-
lattice, as is done in Fig. 1 for sublattice 1.%e shall use
the simplified notation of the 6rst part of this paper,
and work entirely with T& T,. Then we can write

M„+= (y/T) II„+" (33)

and it is easy to see that if we assign an interaction X to
each nearest neighbor contact and e to each next nearest
neighbor contact we obtain

H„+«'= H, —2X g (M„++M„+)—6~M„+. (34)

%e get for the various magnetizations

M„+= (p/T)[H, —2X P (M„++M„+)—6gM„+]. (35)

To obtain the magnetization we sum over the 8 sub-
lattices:

g M.+= (y/T)[8HO —12K+M.+—6&+M.+] (36)
n, A

or)
x= 8yHO/[T+6y(2X+ e)] (37)

x= const. /{T+8), 8=6y(2K+ e). (38)

To obtain T„.we must solve the secular equation of the

following equation system:

M„~+(2q)/T) P (M„++M„+)

( 67~i t' 6'r«'Y~) ( 6"r~ 12'y&)
II I+ — ill+ +

T T)L T TJ
%e have two choices for T, :

Then

T,.=4y) —6ye.
(40)

0/T„= 1+2(X/~),

8/T, 2 3(1+——e/2X)/[1 Be/2j —5
(41)

These two values of 8/T, are plotted as functions of
e/X in Fig. 2 as curve (1). Since we must, of course,
always pick the highest value of T„or the lowest value
of 0/T„as the correct one, the solution changes at the
point e/X=3. We can solve Eq. (36) for the arrange-
ment of M's at the Curie point, and obtain

T„:M ++M =0; no other restriction (42)

T„:M„+—M==o, -

4

P M„=O.
1

(43)

%e see that T,~ corresponds to Shull's arrangement,
which is perfect as far as next nearest neighbors go,
but poor for nearest neighbors, while T,2 accommodates
nearest neighbors but not next nearest neighbors. Thus
in the region on the left of Fig. 2, nearest neighbor
interaction predominates, while to the right next nearest
neighbors are most important.

The case of MnO is not quite so easily accommo-
dated as curve (1) indicates. It is possible to find lower
energy configurations than that given by (43). We can
see this by observing that if we set (for instance)
S&+S2=0 (so that S~+S4——0) the nearest neighbor
interaction between 100 planes as a whole vanishes.
Thus we may pick a (100) direction, if we like, and
change the direction of the spins on each plane at
random going along this direction. The next nearest
neighbor interaction will actually make it most favor-
able to change the sign of alternate planes in each sub-
lattice so that the best sublattice structure when nearest
neighbors are in control is not that of Pig. 1 but one in
which sublattices 1 and 2, 3 and 4 exchange identities
every other plane. The energy available now is propor-
tional to (4X—2e), rather than to (4X—6e) so that, by

+(6~./T)M„+=0. (39)

The secular equation factors as follows:
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our theorem on the relation between 1, and the avail-
able energy, we know that the real 1, for the nearest
neighbor region is

T„=X(4X—2e),

8/T. 3 =3(1+e/2X)/[1 —e/2X j.
This is plotted as the dashed curve (2) of Fig. 2.

It will be seen that 8/2', = 5 is still barely allowed by
our theory, but that the c/X ratio is definitely close to ~i

for MnO. The two possible e/X ratios for all compounds,
under our theory, are included in Table I.' It is a nice
confirmation of our theory that (a) Mno requires a
high next nearest neighbor interaction simply because
of its 8/T, value, while Shull's data confirm that next
nearest neighbors are furnishing the antiferromagnetic
alignment; (b) the theory of superexchange predicts
that the next nearest neighbor interaction should in-

crease along the series Mno —MnS —MnSe, as is ob-

'It was of interest to carry out the logical extension of the
simple Noel two-sublattice theory for high values of the next
nearest neighbor interaction: i.e., to divide each sublattice into
two sublattices. The result is very like Fig. 2 except that 8/T, &3
is not allowed in this case. For e&X/2, the sublattices become
antiferromagnetic, as in the f.c.c. structure. Thus simply on in-
ternal evidence alone the Neel theory cannot explain the 8/T,
ratio in MnO.

served. ' Shull has shown that MnSe has the "next
nearest neighbor" arrangement of Mno, and thus the
value e/X= 1 is to be preferred.

The reason for the large values of e/X occurring in the
theory must be sought for in a high superexchange7
combined with a large separation of the magnetic ions
in the antiferromagnetic crystals, leading to low direct
exchange integrals. An examination of Kramers'
theory indicates that if the superexchange is due to
transitions of P-electrons from the negative to the
positive ion (that is, to a partial covalent character of the
bonds) the directionality of the superexchange must
be that of a p-wave function; i.e., directly through the
negative ion to the next nearest neighbor rather than
the nearest neighbor. Also, since the other compounds
should be expected to be less ionic than Mno, it is
probable that their e/X values are the higher ones,—1, rather than the lower ones, as wouM. be more
satisfying from a naive picture.

I should like to express my thanks to Drs. C. Kittel,
G. H. %annier, and C. G. Shull for their helpful interest
in this work.

' P. W. Anderson, Phys. Rev. 79, 350 (1950).
8 H. A. Kramers, Physica 1, 182 (1934).
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Lu,-Pair Theories and the ~-Meson

GRKGOR WKNTzEL

Institute for nuclear Stud~es, University of Chicago, Chicago, Ill&rois

(Received May 1, 1950}

The p-pair theory suggests the interpretation of the ~-meson as a pair of p's bound together by a nucleon

pair field. Only a non-relativistic description, involving a cut-off in the momentum spaces, is attempted.
Various ~-meson types, such as are well known from the conventional Yukawa theories, can be constructed,
depending on the type of coupling adopted in the interaction Hamiltonian of the pair theory. It appears,
however, that only the pseudoscalar coupling, which leads to a pseudoscalar ~-meson, is consistent with the
experimental data; e.g., on the nuclear scattering of p, s, which indicate that the interaction of p, s with

nucleons, at least in such processes, is rather weak. Then, also, the creation of p-pairs in high energy nuclear
collisions is expected to be an infrequent event, compared to the ~-creation. Nonetheless, the p,-pair produc-
tion should furnish a crucial experimental test. Another process predicted is the dissociation of a fast m-meson,

passing through matter, into a pair. The existence of heavier mesons, involving more than two p, s, seems

likely.

I. INTRODUCTION

A S an alternative to Vukawa's theory, the pair
theory of nuclear interactions was much dis-

cussed some years ago. ' The great advantage of this
kind of theory is that it accounts for the saturation
character of the nuclear forces without ad hoc assump-
tions. ' The present paper is concerned with another

' For the literature up to 1944, see %. Pauli and N. Hu, Rev.
Mod. Phys. 17, 267 (1945).

~%igner, Critch6eld, and Teller, Phys. Rev. 56, 530 (1939);
0. Wentzel, Helv. Phys. Acta 15, 111 {1942);A. Houriet, Helv.
Phys. Acta 16, 529 (1943).

implication of the theory. According to p,-pair theories,
p-mesons may be bound together to form composite
particles and, in particular, x-mesons may be inter-

preted as p-pairs. Thus, a uni6ed picture of both meson

specimens seems possible. Heavier mesons may also
be foreseen.

It is true that the p-pair theory has been somewhat
discredited lately by the lack of experimental evidence

for a strong nuclear interaction of p,-mesons. Even if
only pairs of p, 's are supposed to interact with nucleons,
one expects at least a strong nuclear scattering of


