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The theory of the elastic scattering of electrons on protons at very high energies is discussed in detail.
A formula is given for the cross section. This formula contains certain parameters which depend on the
action of the virtual photon and meson fields. In particular, curves have been calculated on the assumption
of scalar and pseudoscalar meson theory. While these perturbation theory calculations are not very trust-
worthy, and the results depend on the choice of coupling constants, it is felt that qualitative features can be
checked with experiment. It is concluded that at low relativistic energies (E<50 Mev) the experiment
provides a valuable check on quantum electrodynamics. At higher energies it should yield data on the

nature of the meson cloud of the proton.

I. INTRODUCTION

HE Stanford linear electron accelerator program

is expected to make available large currents of
relativistic electrons with various energies ranging from
6 to 1000 Mev. Among the experiments of considerable
interest which may then be performed is the elastic
scattering of electrons on protons. This may be done
on a hydrogen gas or liquid target. Despite the small-
ness of the cross section at high energies, the expected
large intensity of the beam should render the experi-
ments possible.

It is the purpose of this paper to show that, at
appropriate energies and angles, the experiment should
give considerable information both about the validity
of the “quantum electrodynamical radiative correc-
tions” to scattering, and about the structure of the
meson cloud associated with the proton.

Processes competing with electron-proton elastic
scattering can be grouped into two classes: (a) those
arising from electron-electron interactions; (b) other
electron-proton processes. The electron-electron inter-
actions have a much larger cross section at high energies
than the electron-proton interactions. Background from
the electron-electron interactions may be eliminated by
(1) angular coincidences between the scattered particles,
(2) energy selection of the scattered electron at a given
angle [or a combination of (1) and (2)], or (3) direct
observation of the recoil protons by photographic
plates.

The competing electron-proton processes are brems-
strahlung and meson production. They will have cross
sections comparable to the corrections to the elastic
scattering which are discussed below. Methods (1) and
(2), discussed above, would also eliminate background
from these processes. If the proton is observed directly

a determination of its energy by grain counting and a
correlation of energy and angle could be used to elimi-
nate these processes. At very high energies it may prove
experimentally impossible to separate the different
electron-proton processes, in which case the brems-
strahlung and meson production must be added to the
elastic scattering which is calculated in this paper.

II. ELASTIC SCATTERING OF AN ELECTRON
AND PROTON

The elastic scattering of an electron and a proton can
be represented schematically on a Feynman! diagram
as in Fig. 1.

Figure 1 shows a proton of 4-momentum p; and an
electron of 4-momentum p, exchanging a virtual quan-
tum of 4-momentum q=p;—p,=p.—p. and being scat-
tered to momenta p; and ps, respectively. Here M is the
proton rest-mass, ¢’ is the effective charge of the elec-
tron, ¢’ the effective charge of the proton, and «'e¢’/2M
its effective anomalous magnetic moment. The effective

Fic. 1. Diagram
for the elastic scat-
tering of a physical
proton and a physi-
cal electron. (The

letter “q” with the
bar through it in this

figure is the same as 'y o K[ A=A
the German letter, et 2M| 2 ]
q, used in the text.) P e

charges and magnetic moments are functions of ¢*>= ¢4
—qg—¢a—¢1®> as discussed below. The notation of a
German letter, g, means ¢svs—¢3ys—¢2v2— q1v1, where
the y’s are given in terms of the usual Dirac matrices
by (Yr 74)= (Bay B)

The cross section for this process is computed by
standard spur techniques to be

ctn?- csc?-
2 2

o (CEY o B LE2E/M) sint 0/ (B M2 tan'(0/2) sin(0/2) 4o sin' 0/
’ _( ) ‘ [1+ QE/M) sin?(9/2) '

(1)

'R. P. Feynman, Phys. Rev. 76, 749 and 769 (1949). The methods of calculation and the notation used in this paper are
just thcse of Feynman unless otherwise indicated. We also use natural units, A=c=1.
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Here E is the energy of the incident electron and 6 the
angle through which it is scattered, both as measured
in the system where the proton is initially at rest. The
rest-mass of the electron has been neglected compared
to its energy. We also introduce the useful parameter

—4E?sin%(0/2)
T 2B/ M) sin®(6/2)

For electron energies small compared to the proton
rest-mass Eq. (1) reduces just to the usual Mott-
Rutherford formula for scattering of an electron by a
fixed electrostatic potential. Since «’, the effective
anomalous proton magnetic moment, may be larger
than 1 (for q=0, '=xy=1.79) the magnetic moment

2)

F1c. 2. Diagram showing the effect of a virtual charged
pseudoscalar meson on electron-proton scattering.

will play an important role in the very high energy
region.

That the effective electron charge ¢ differs from its
“npatural’’ value e is due to the so-called radiative cor-
rection to scattering,? i.e., to the possibility that the
electron may emit and reabsorb a virtual quantum, or
emit a low energy real quantum, during the scattering
process. This modification has been treated extensively
by Schwinger.? His formula is valid under the assump-
tion that the proton acts as a fixed electrostatic poten-
tial. This is the case in the low energy region in which
this is the most important correction term. At higher
electron energies, the more exact expression could be
derived by a modification of the radiative correction to
Mgller scattering, which has been calculated at Cornell.*
Here we restrict ourselves to the remark that the
Schwinger correction is a slowly varying function of
angle and energy and corresponds to a decrease of the
order of magnitude of five percent in the effective elec-
tron charge for the region of interest.

2 Strictly speaking, we should also give the electron an anom-
alous magnetic moment, but this is quite small and decreases
rapidly at high energy.

3 J. Schwinger, Phys. Rev. 76, 813 (1949). In our notation

(¢" /e)2=e~% where & is given by Schwinger in his Eq. (2.105).
4R. P. Feynman (private communication).
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III. MESON FIELD CORRECTIONS TO
ELECTRON-PROTON SCATTERING

The modification of the proton charge and anomalous
magnetic moment is here assumed to be caused by the
action of a virtual meson field. At electron energies
small compared with the meson rest-mass these modi-
fications will be small. Thus, at low energies the scat-
tering will give us information concerning chiefly the
radiative corrections to scattering; at higher energies we
may expect to learn something of the nature of the
meson cloud which surrounds the proton.

The action of a scalar meson field in modifying the
effective proton charge and magnetic moment can be
understood qualitatively by assuming that during a
fraction R of the time the proton exists as a neutron and
a positive meson. Its charge and anomalous moment
then will be spread out like e=2/7? (the square of the
meson wave function) where u is the mass of the meson.
Thus a high energy electron is able to penetrate the
meson cloud and hence see a smaller effective charge and
magnetic moment. Under these assumptions Schiff® has
given the effective charge and magnetic moment to be

(¢'/e)=[(1—R)+R2u/(— ¢! tan(—g")"/2u], (3)

(k'e’/xoe)=2u/(—¢")* tan~'(—¢*)¥/ 2u,
where ¢? is given by Eq. (2).

We will here calculate in the covariant manner of
Feynman the effective charge and magnetic moment
of the proton as given by four theories: Neutral and
charged scalar mesons with scalar-coupling, neutral
and charged pseudoscalar mesons with pseudoscalar
coupling. The results for symmetrical theories may be
obtained simply by adding the results for charged and
neutral theories. Other meson theories lead to divergent
results.

To illustrate the method, we will discuss briefly the
case of charged pseudoscalar theory. The effect of the
virtual mesons on the scattering is shown in Fig. 2.

Figure 2(a) shows the usual electromagnetic inter-
action between two Dirac-type particles of charge e
and ¢”’. Figure 2(b) shows the proton emitting a positive
meson which absorbs the virtual photon and is then
reabsorbed by the neutron. Figure 2(c) shows the
meson being emitted and reabsorbed before the scat-
tering takes place. Figure 2(d) shows the virtual emis-
sion and reabsorption taking place after the scattering.
Here g is the meso-nuclear coupling constant; 7vs
=1{v1y2ysYs; the factor 2 is inserted for simplicity in
later discussing symmetrical theory; and the 2k,+q.
at the meson-quantum vertex reflects the fact that a
Klein-Gordon particle interacts with the electromag-
netic field through the terms 9(A4 )/ 8x,414 ,0¢/8x,
where ¢ is the meson wave function, and 4, the electro-
magnetic potential.

We endeavor to show that adding the diagrams 2(a)
to 2(d) produces a situation like that in Fig. 1, and to

5 L. I. Schiff, Stanford Microwave Laboratory Report Wo. 102,
p. 8 (1949).
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deduce the values of ¢ and «’. For the case of q, the
photon momentum, equal to zero, diagrams (b), (c), and
(d) are found to add to zero as might be expected, since
there is then no scattering process. (There are non-
essential mass renormalization terms but they do not
concern us.) Moreover, the value of q does not affect
the proton-meson parts of diagrams (c) and (d).
Therefore we can obtain the final proton-meson portion
of the amplitude by adding the proton-meson parts of
diagrams (a) and (b) and subtracting off the value of
diagram (b) for q=0.

The proton-meson amplitude matrix from diagram
(a) is simply ev,, that from diagram (b) can be written:*

2 2k vs(i— £+ M)ys(2kut+g,)
wi J Lotk = MR- T (k) ]

Here p is the meson rest-mass; the integration is to be
performed over all virtual mesons; and we are interested
in the element between initial and final proton states
of this matrix.

After the integral over the virtual mesons is per-
formed, and the amplitudes from diagrams (a) and (b)
added, with the q=0 value of diagram (b) subtracted,
we obtain as final amplitude:

g‘l 1 1 1 u
e’"{l’;fo ix ‘“’[5‘“(”;)
u[ 35— (5—(a/2))y*+2y] ] }
L=y Huy*+ay)[(1—-y)*+ay]

avu—7.078° y(1=y
d dy
+2M[ 2 ] f xf )((1—\') +uy2—+—ay)

(4)

; D

[o] ! 2 3 4
E sin 9/2

V | -ﬁ-—-sm2 %

Fic. 3. Ratio of effective anomalous proton magnetic moment to
its zero-energy value for charged meson theories.

® See Feynman, reference 1, for a full discussion of the method
notation, and calculation Lechmques In particular, the Appendix,
p. 785, gives a full discussion of the evaluation of the radiative
correction to scattering integral which is very analogous to our case.
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Fic. 4. Ratio of effective anomalous proton magnetic moment
to its zero-energy value for neutral meson theories.

Here x and y are integration parameters, a= u*/M?;
u=¢q*(x*—x)/M? The first term here represents the
effective charge of the proton, the second its anomalous
magnetic moment. For #=0 this term gives just the
value for the anomalous moment previously derived by
Case.’

For the case ##0 the integrals are very complicated.
The integral on y can be performed analytically. The
remaining integral on x then depends on the parameters
¢*/u? and ¢*/M2 If ¢* is of comparable order of magni-
tude to p? but much smaller than M2 a region of con-
siderable interest, the integral may be expanded to first
order in the parameter ¢>/M? and then performed ana-
lytically. For larger values of ¢? it must be carried out
numerically. The other meson theories require the same
type of calculation.

Figures 3, 4, 5, and 6 give the results of these inte-
grations.

Figures 3 and 4 are graphs of ’¢’/kee, the ratio of the
effective anomalous magnetic moment to the zero-
energy anomalous moment. On Fig. 3 we have also
plotted the “classical”” formula (3). We have assumed
in all calculations that u, the meson mass, is 276 electron
masses, consistent with experimental values for the
m-meson. These ratios are independent of the coupling
constant, which will determine only the magnitude of
the zero-energy moment. It should be noted, however,
that the scalar charged and pseudoscalar neutral
theories predict the wrong sign for the proton moment.

Figures 5 and 6 are graphs of the effective proton
charge. For reasons discussed below, we have plotted
€¢’/e=e7®, rather than ¢/e=1—4 as obtained directly
from (4). As can be seen from (4), é is directly propor-
tional to g% We have plotted e for those values of g
necessary to predict the correct value for the magnitude
of the zero-energy proton moment. These values are
given in Table I.

To illustrate the use of the graphs, and to show how
they may be adapted to symmetrical theory, let us

7K. Case, Phys. Rev. 76, 6 (1949).
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Fic. 5. Effective proton charge for charged meson theories with
coupling constants chosen to fit the magnitude of the observed
proton anomalous magnetic moment.

calculate the effective charge and magnetic moment for
a 500-Mev electron scattered through 90° on the basis
of symmetrical pseudoscalar theory with coupling
constant 57.2. The abscissa

0 2FE 0\*
(E sin—)/u(l-{-——— Sinﬂ—) =(—¢»)"/ 2u
2 M 2

in this case is equal to 2.03. Since the neutral and charged
theories give opposite signs for the magnetic moment:
(Ke)y=(K'e)e— (K'e") .
Using Table I and Figs. 3 and 4,
(K'e’/koe) s=0.81(57.2/16.1)—0.94(57.2/22.4) = 0.48.
To obtain the effective charge:

8= b.48,=0.22(57.2/16.1)40.15(57.2/22.4) = 1.16,
(¢'/e)e=exp(—8,)=0.31.

To obtain the final cross section these values for e
and «’, and Schwinger’s® value for ¢’/ are substituted
in (1).

It will be noted that symmetrical theory predicts a
rapid dropping off of magnetic moment and charge due
to the large coupling constant.

ROSENBLUTH

IV. CONCLUSIONS

It will be noted at once that the values of g* listed in
Table I are so large as to throw grave doubts on the use
of second-order perturbation theory. This is especially
true for the pseudoscalar case where we expect second-
order terms to be small compared to higher order terms.
In this connection it may be noted that the values of g
listed in Table I do not give the correct neutron moment.
Some justification for the perturbation theory pro-
cedure may be found in the fact that experimental
results on photo-meson production do seem to agree
with the qualitative predictions of second-order pseudo-
scalar perturbation theory.® (There has been no effort
to measure the absolute cross section so that no experi-
mental value of g? is obtained.) It is because of doubt
of the adequacy of the second-order theory that we have
plotted ¢’'/e=exp(—4), thus considering at least some
of the higher order terms.

It will be noted that even though the meson clouds
are more tightly bound than a naive picture would
predict (see Fig. 3), there is nonetheless a very sizeable
decrease in proton charge and magnetic moment to be
expected at high energies. This is especially true if we
assume the large values of coupling constant necessary
to predict the proper proton moment. Even if only the
qualitative features of these curves are dependable the
experimental results should at least indicate (1) if the
proton magnetic moment is really due to the m-meson
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Fic. 6. Effective proton charge for neutral meson theories with
coupling constants chosen to fit the magnitude of the observed
proton anomalous magnetic moment.

TaBLE I. Coupling constants necessary for correct magnitude of
proton magnetic moment.

Pseudo-
Scalar Pseudo- Pseudo- scalar
Scalar Scalar symmet- scalar scalar symmet-
Theory charged neutral rical charged neutral rical
I'd 2.76* 9.67 3.86* 16.1 22.4* 57.2

* Indicates wrong sign for magnetic moment.

8 J. Steinberger, experiments performed at Berkeley and not
yet published.
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field, (2) whether a loose-bound scalar type theory or
a tight-bound pseudoscalar-type theory is preferable,
and (3) how much faith can be placed in the “‘quantum
electrodynamical radiative corrections” to scattering
and in the far more dubious second-order meson cor-
rections to scattering.
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This experiment verifies the prediction of Oldenberg that the spectroscopically measured rotational tem-
perature of a diatomic gas will be lower than the translational temperature when (1) the pressure is low,
(2) the gas is excited by electron impact, and (3) the excited electronic state from which the measured bands
are radiated has an equilibrium nuclear separation greater than the internuclear distance in the ground
state. For gas temperatures from 400 to 670°K rotational temperatures from the second negative bands of
0O, were found in qualitative agreement with the predicted relation Trot = Ttrans B'/B’’. Upper atmosphere
temperatures derived from band profiles in night sky spectra are consistently lower than temperatures esti-
mated from other data. The possible occurrence of anomalous rotation of the night sky molecules casts some
doubt on the meaningfulness of the night sky temperature measurements. A partial rotational analysis in
the course of this experiment suggests revisions of the B, and a-values for the O, molecule in the 2IT,- and

2[1,-states.

I. INTRODUCTION

KNOWLEDGE of the molecular density and

temperature at high altitudes is fundamental to
an understanding of the processes occurring in the
earth’s upper atmosphere. For the region above 80 km
the atmospheric temperature is deduced from indirect
evidence from various sources. Unfortunately most of
the data is only qualitative and, to make matters worse,
much of it is contradictory. Evidence for a steadily
increasing temperature above 80 km (a gradient of
perhaps 4°/km) is found in the relative widths of the
ionosphere layers, the apparent scarcity of helium at
high altitudes, and the slow decrease in density at very
great heights (as is indicated by high altitude auroral
rays).! On the other hand, the more direct spectro-
scopic measurements on bands in the spectra of the
aurora and the night sky luminescence are interpreted
by some authors as conclusive evidence for a constant
temperature of about 250°K above 90 km, a result
which seems quite incompatible with the other tem-
perature estimates.

These spectroscopic temperature measurements are
based on the relationship between the equilibrium
temperature of a radiating diatomic gas and the rela-
tive intensities of the lines in the rotational fine struc-

* This work is described in detail in the author’s Ph.D. thesis,
Harvard University (1949).

** Now a member of the Society of Fellows, Harvard University.

LS. K. Mitra, The Upper Atmosphere (the Royal Society of
Bengal, Calcutta, 1947); G. P. Kuiper, The Atmosphere of the
Earth and Planets (University of Chicago Press, Chicago, 1947).
See especially chapters by P. Swings and L. Spitzer, Jr.

ture of an emission spectrum. The relative intensities
of the rotational lines depend on two quantities: the
relative transition probabilities of the lines, and the
population of the initial rotational levels. If the tem-
perature dependence of the populations of the initial
rotational states is known, one can calculate the transi-
tion probabilities from quantum theory and can then
calculate the gas temperature from the experimental
relative intensities of the lines in a band.

In the measurements on upper atmospheric spectra it
was assumed that the excited molecules in the aurora
and night sky are in a Boltzmann distribution with
respect to rotational energy, at an equilibrium tem-
perature 7. The significance of the spectroscopic tem-
perature measurements depends on the validity of this
assumption. Laboratory investigations of bands ex-
cited by electron impact in a glow discharge have
afforded many examples of cases in which the excited
radiating molecules are indeed in a Boltzmann rota-
tional energy distribution, for the spectroscopically
determined temperatures were quite close to the directly
measured gas temperatures.

In 1934 Oldenberg? pointed out that although the
molecules in a low pressure glow discharge are initially
in thermal equilibrium, the assumption of thermal
equilibrium in the excited rotational states is justified
only for molecules whose nuclear separation is the same
in the excited and ground states. Although this is
usually the case, there are certain molecules in which
the excited state has a much larger nuclear separation

2 0. Oldenberg, Phys. Rev. 46, 210 (1934).



