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Di8nsion CoefBcient of C in a-Iron*
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Institute for the Study of Metals, University of Chicago, Chicago, Illinois

(Received March 7, 1950)

An equation of the form D=D&e ~~~~~ is developed for interstitial diffusion in cubic lattices. This de-
velopment uses a classical statistical mechanical treatment. Measurements of D for C in at-iron were made
from —35' to 200'C. Combined with earlier data they extend the knowledge of D in this system from
D= 10 ~ to D= 10 ' cm'/sec. The values of Do and AII obtained by fitting the above equation to the ex-
perimental points give Do= 0.02 cm'/sec. and 0 H = 20, 100 cal. /mole.

I. INTRODUCTION

�

~NUMEROUS attempts have been made in the
past to find an equation which describes ade-

quately the process of difFusion in solids. These inves-
tigations have in general resulted in equations express-
ing the difFusion coeKcient, D, in terms of such param-
eters as lattice geometry, temperature, and energy. '
Experimental measurements which would test these
theories have not been highly successful. There are two
reasons for this: (1) some of the theories have resulted
in relations containing parameters not easily measur-
able, and (2) the value of D has not been measured ac-
curately enough, nor over a sufFicient range, to permit
adequate testing of the difFerent expressions. The
present investigation was a further attempt to solve
this problem in a carefully selected alloy system using
experimental techniques only recently developed. The
investigation had two formal purposes: (1) to find an
expression for D for difFusion of interstitial solute atoms
in terms of measurable quantities, and (2) to test this
expression by making measurements covering as wide as
range in D as possible.

In Section II an expression for D will be developed;
in Section III the experimental techniques used in the
various temperature ranges will be discussed; and in
Section IV the results of the experimental work will be
presented.

II. ANALYSIS

DifFusion of the solute atoms in an interstitial solid
solution is more easily analyzed than is difFusion in sub-
stitutional alloys. For an interstitial atom the difFusion
mechanism is simply the jumping of the difFusing atom
from one interstitial site to another. For a substitu-
tional atom the mechanism has not yet been established
by experiment. The following discussion is a classical,
statistical mechanical, derivation of an equation for D
which applies to the interstitial difFusion of dilute solid
solutions. It is a simple problem in random walk to
show that for interstitial diftusion in a cubic lattice the

~ This work was supported by the ONR.
i For a recent summary of this work see B. Chalmers, Progress

in Meta/ Physics (Interscience Publishers, Inc. , New York, 1949),
Chapter 7,

difFusion coeScient D is given by the expression'

D= n(a'/r),

where n is a constant depending on crystal geometry,
u is the lattice parameter, and r is the mean-time-of-
stay of an atom at a given lattice site. The coefricient cx

is easily computed; it is found to be 1/12 for f.c.c. and
1/24 for b.c.c. lattices. The lattice parameter is, of
course, well known for most common materials. To
determine D it is only necessary to measure ~ directly
or to evaluate it from other known measurements. It
is the purpose of the remainder of this section to find
an expression for v.

There have been developed a number of expressions
for ~.' One group of these expressions has depended on a
generaI. investigation of the statistical theory of reac-
tion rates by Eyring. Though this rate theory is im-

mediately applicable to the problem of difFusion, it is
the opinion of the present author that it has not been
applied in its most useful form. In the discussion which
follows there will be presented a short derivation of 7.

which parallels the Eyring investigation to a certain
point but which finally leads to a similar expression
which is capable of much more direct physical interpre-
tation. Though Eyring's development followed a quan-
tum-mechanical treatment, it is sufFicient to consider
this interstitial difFusion problem from the point of view
of classical statistics.

It is clear that in passing from one lattice site to
another, the solute atom must have sufIicient energy
to pass over a potential barrier; the rate of jumping is
then determined by the fraction of the time that an
atom has this requisite energy. This is strictly true, of
course, only if the interstitial site to which the atom
would like to move is unoccupied; it is assumed that
this is the case for the dilute solid solution considered
here. In the discussion to follow, I will use the following
nomenclature. x is the coordinate along a line connect-
ing the interstitial sites. The coordinate of one inter-
stitial site is xo=0 and that of an adjacent site is x= xi.

' See for example C. Wert and C. Zener, Phys. Rev. 76, 1169
(1949).

'H. Eyring, J. Chem. Phys. 3, 107 (1935). Glasstone, Laidler,
and Eyring, The Theory of Rute Processes (McGraw-Hill Book
Company, Inc. , New York, 1941).
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x' is the position of the top of the potential barrier over
which the particle must pass to go from xp to x&. I.et
.V be the number of particles in the site about xp and n

the linear density of particles at x'. If 8 is the average
velocity of all particles at x' crossing the barrier from
the site at xp to x&, then the rate at which particles pass
the position x' is given by n8/X. This flux of particles
is proportional to the reciprocal of the mean-time-of-

stay, v-, of the particles in the potential hole about xp.
It is assumed that the transmission coefBcient of the
barrier is unity. This assumption will be shown in
Section IV to be consistent with the analysis of the
experimental data. Thus

l, t exp[ —y(x', y, s, q;)/kT]dyds g dq;

—=n
T oo

I exp[ —p(x„, y, s, q;)/kT]dyds g dq;
J „

t" P,—exp[ P2/2—Mk T)dP,. M

kx'
(4)

stant for a small region about xp ——0. With this approxi-
mation Eq. (3) becomes

1/~= n'n8/X, (2)
—exp P'/2M k—T~~„M

where n' is the number of equivalent paths of diffusion
from a given lattice site.

One must now evaluate the right member of this
equation. To do this properly, one must first consider
the number of coordinates of motion involved. To be
sure, the "path of reaction" lies along x, but the diffus-

ing atom may also oscillate in the y and z directions.
In addition it is evident that some motion of the solvent
atoms themselves may be involved. It is not clear how
many of these atoms may be involved nor in detail
how the atoms may move, but their motion may be
formally introduced into the expression for 1/r The.
analysis of the data in Section IV will indicate that this
is consistent with the experimental facts. In the light
of these considerations Eq. (2) becomes

l
. ~ exp[ —@(x', y, s, q;)/kT]dyds g dq;

Jt exp[ —p(x, y, s, q;)/kT)dxdyds g dq,

oe P

J
—exp[ —P, /2231 k T]dP,
M

1/r= n'v exp[ AG/RT). — (7)

The second factor can be evaluated to yield
(1/2s. )(E/3E)&; this is just the frequency, v, of small
oscillations about xp. The first fraction represents the
ratio of two partition functions, the numerator that for
the system with the particle moving in the yz plane at
x', the denominator that for the system with the
particle moving in the yz plane at xp. Thus

1/r =n'vP'/Pp.

For comparison one would write a corresponding equa-
tion from the work of Eyring and others

1/r= n'kTP'/hP0*

Here kT/h represents the quantum-mechanical "fre-
quency factor" and P' the same function as in Eq. (5).
Pp* on the other hand is different from Pp since Pp* still
contains integration over the coordinate x; such integra-
tion has been carried out explicitly in Eq. (5). We will
see at once that it is on precisely this point that the
present work deviates from that of Eyring.

In terms of thermodynamical functions Eq. (5) can
be written

r" P',—exp[ P,'/23f k T]dp—
M

(3) Here AG is the work done when a mole of solute atoms
is moved isothermally from xp to x' at constant pres-
sure. Since

aG=aH —TSS,
In this expression the first fraction represents the ratio
n/M, the second, 8. The function P(x', y, s, q;) is the
potential energy of the system (diffusing atom plus
adjacent solute atoms) when the difFusing atom is at the
position x'. The function p(x, y, z, q;) is the general
potential energy of the system. The momentum of the

diffusing atom is p„ its mass, M. The q.; represent the
coordinates of the unknown number of solute atoms
which participate in the jumping. Since @ is unknown

away from xp, this expression cannot be evaluated in
general. However, if the height of the barrier is large
compared with kT, not much error is introduced by
replacing in the denominator of Eq. (3) the function g
by [$(xo, y, s, )q+ xzxR'], where X is the force con- 1/r =n'(kT/h) exp[ —hF*/RT], (10)

Eq. (7) finally becomes

1/r = n'v exp[~/R) exp[—hH/RT).

Equation (1) can now be written

D= aa'n'v exp[&%5/R] exp[ —DH/RT). (9)

AS and AH are termed the entropy and entalpy of
activation; since there is at present no way to calcu-
late these quantities, they must be determined by
experiment. Such a determination is made in Sec-
tion IV.

Eyring's analog to Eq. (7) is'
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III. METHOD OF EXPERIMENT

The experimental values of D to be reported in
Section IV are for the diffusion of C in O.-iron. Those
values of D determined in this laboratory were made by
direct use of Eq. (1). Since a and u are well known for
the b.c.c. a-iron, the only further measurement needed
was the value of 7 as a function of temperature. This
was found by measuring, at selected temperatures, the
relaxation time, 7„, which wiB be shown to be related
simply to 7. The relaxation time can be described in
the following way: At equilibrium under no stress the
atoms of carbon arrange themselves in equal numbers
among the three types of lattice positions, the x, y, z

sites. This can be expressed by writing X,'=~V„'=.V,'
=X/3. Let this equilibrium be disturbed by the trans-
fer of an equal number of atoms from the y and z

positions to the x position. (A carbon atom which
migrates to, say, an x position has an equal chance of
coming from a y or a z position; it cannot come directly
from another x position. ) The state of affairs is then
expressed by the relations

tV =Ã, '+An',
.V„=X.=-',X——,'~n'.

The rate at which equilibrium is approached is given

by the well-known exponential decay law

d(hn)/dt = Arl/r„, —(12)

where hn is the net number of atoms which must yet

4 It has been shown by Wert and Zener {reference 2) that by
appropriate treatment of Kq. (6) one can arrive also at Eq. {7}.

where hF* is again termed the "free energy of activa-
tion. " From this expression it follows that

1/r =n'(ItT/h) exp[AS*/R] exp[ —AH*/RT], (11)

where AS* and AII* are corresponding entropy and heat
of activation. Since Eqs. (8) and (10) have been derived

using the same general method and with the same ini-

tial assumptions, they ought to be equivalent and
formally they are. Any apparent difference must be one
of interpretation; this difference may be expressed in
this way. We have seen in Eq. (7) that AG represents
the work necessary to move isothermally from xo to x'

one mole of solute atoms which are oscillating in the yz
plan" both the initial and final states represents the
same number of degrees of freedom for the solute atom.
&n Eq. (10), AF* represents the work necessary to move
isothermally from xo to x' a mole of atoms which have
one more degree of freedom at xo than they do at x'—
namely, the coordinate x. This is a direct result of the
fact that in Eq. (6) Po~ contains one more degree of
freedom than P. It seems to the present writer that
66 as defined above thus has a much more reasonable
physical interpretation than does AF* Hence, .Eq. (7)
is preferred at least in this simple case to Eq. (10).'

migrate for the equilibrium to be established, and 7„ is
the relaxation time.

The relationship between 7 and 7„ for a b.c.c. lattice
is given by the equation

=37= 27r. (13)

Since S,+X„+iV,=X, Eq. (14) can be written as

d,V,/dt = (,V./—.)+ (tV V,)/—2..
which is equivalent to

d(N ', .7)/dt =—-3(1V. —', .V)/2r——

In terms of quantities used in the preceding paragraph,
this equation becomes

ddt/dt = —3hn/2r.

Equa. tion (13) follows at once from a comparison of

lf///fPf/A
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FIG. i. Schematic diagram of apparatus used to measure
elastic aftere6ect.

That this is true can be seen from the following argu-
ment. The probability for an atom which is at a given
lattice site at time t=0 of remaining in that site is
given by

P(t)=e "'.
If iV„.tV„, and X, be the number of atoms in positions
x, y, and z then change in the number of atoms in,
say, the x position in a time At short compared to 7 is

dX )7, cV„.V,
At = ——At+—At+—At.

dt 7 27 27
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Eqs. (12) and (15). It follows from Eqs. (1) and (13)
that D can be computed once r„ is known.

The relaxation times at diBerent temperatures were
measured by different experimental methods; use of a
given method depended upon the magnitude of v„at a
given temperature. At temperatures in the neighbor-
hood of O'C and less, the elastic aftereffect was used.
At somewhat higher temperatures ~„was measured by
the internal friction method; at temperatures of about
40'C a torsional pendulum was used at approximately
1 c.p.s. ; at 90' and 125'C a magnetic drive method was
used at 100 and 1000 c.p.s., respectively. At still higher
temperatures, a precipitation method was used. A
brief description of these various methods follows.

t00 ~

eo 40—

0.0l
tott time tminI

FIG. 2. Elastic aftereffect of C in n-iron at —10'C.
e-5/ 98

e= eo exp( —I/r, ) (16)

C. gener, E'lasticity and Anelasticity of Metals (University of
Chicago Press, 1948).

The elastic aftereffect has previously been employed
to measure relaxation phenomena. ' In the present case
the experiment was performed in the following way:

The specimen (a wire of iron 0.03 in. in diameter and
1 foot long containing about 0.02 wt. percent C in solid
solution) was mounted vertically inside a double-
walled round chamber shown schematically in Fig. 1.
Cold alcohol was circulated in the region between the
concentric walls to cool the inside of the chamber. A
light beam was focused on a scale three meters away
by a mirror. Kith this arrangement the angular defIec-
tion of the mirror from an equilibrium position could be
determined. The wire is held rigidly at the top by its
supporting member. In making a measurement of r„
the bottom support was 6rst twisted through about 10'
around its vertical axis and held there for some time.
Then the bottom support was released. The angular
deflection did not immediately become zero; approxi-
mately five percent of the previous strain (about 0.5')
still remained. This recoverable anelastic strain grad-
ually reduced to zero; the measurement consisted in
measuring this strain as a function of time.

A measurement at —10'C is shown in Fig. 2. Here
the experimental points are fitted with the exponential
form

I I I I I III I I 1 I I I II j I I I I III I I I I I III
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FIG. 3. Precipitation at temperatures T1 and T2
following nucleation at T1.

6 T. S. KB, J. Metals (to be published).

where I, is the time after release of the bottom support-
ing member. It is seen that the experimental points do
not fit the exponential exactly; the reason for this is
not known. However, an average can be determined to
an accuracy of at least 15 percent, which is adequate
for our purposes.

The internal friction measurements with the tor-
sional pendulum' and with the magnetic drive ap-
paratus'' are adequately described. The observation
consists in a measurement of the temperature at which
the maximum occurs in the internal friction for a given
frequency, co. Then 7-„ is determined from the relation
r„=1/cg. For the torsional pendulum, the specimens
were wires 0.03 in. in diameter and 1 foot long. For the
magnetic-drive method the specimens were two light
bars of iron. One of these was about 1 foot long and
about 0.1 in. in diameter; this gave resonance in fIexural
oscillations at about 100 c.p.s. The other was about
6 in. long and about 0.15 in. in diameter; it was resonant
at about 1000 c.p.s.

It was at first thought to be reasonable to carry the
internal friction type of measurements to higher tem-
peratures by going to higher frequencies. This was pre-
vented by the occurrence of rapid precipitation into
Fe3C of the supersaturated solid solution of C; such a
process made good data difFicult to obtain. However, by
making use of the phenomenon of precipitation itself,
two additional points at higher temperatures were ob-
tained. The method is explained in this way. Let a
highly supersaturated solution of carbon in n-Fe be
prepared. Precipitate this carbon at some temperature
T~ and measure the amount of precipitate as a function
of time. Find the time f» at which say half of the carbon
has precipitated. Redissolve the precipitate at high
temperature, quench, and reprecipitate say 10 percent
of the carbon at T~. Let the time required for this be to ~

Complete the precipitation at some higher temperature
T2. Let the time required for 50 percent of the trans-
formation be t~. These times are shown schematically
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in Fig. 3. It can be shown readily from earlier results
from this laboratory' that under the conditions of the
experiment the di6'usion coeKcients Dj and D2 at Ti
and T~ are related by the equation

D2 Dl(ll 30)/(32 30)

If DI is known, D2 can be computed.

10

IO
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100 200 400600 800
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IV. EXPERIMENTAL RESULTS

The results of all the measurements are shown in
Fig. 4 in which logD is plotted as a function of 1/T.
Four measurements were made by the elastic after-
effect technique, five with the torsional pendulum, two

by the higher frequency internal friction method, and
two more using the precipitation method. These last
two points were made in two stages. One step was from
125' (where D had previously been measured) to 150'C;
the next step going from 150' to 200'C. It seemed un-
wise to go any further than this since the measurements
are not independent and errors are cumulative. These
last two points are for this reason probably the least
reliable.

The very high temperature data are from work re-
ported by Stanley, ' and were made by chemical analysis
following bulk diffusion of C from a high (0.02 wt.
percent) to a low carbon alloy. The remaining three
points are computed from some carefully done work of
Richter who in 1938 reported an aftereftect in carbonyl
iron. ' Though he did not know the cause of the e6ect
which he observed, it appears from the agreement
of his results with the present data that he, too, was
measuring the relaxation eGect of C in his material.

The solid line in Fig. 4 was drawn according to the
equation

D e
—hH/RT

where Do, according to Eq. (9), is

D= na'Vn'e~8~R.

The parameters Do and AH in Eq. (17) were adjusted
to give the best fit to the data (excluding that of
Richter); these values are Do =0.02 cm'/sec. and
AH= 20, 100 cal./mole. In Fig. 4 it is seen that the fit
of Eq. (17) to the data is good. Using Eq. (18) it is
possible to compute 65; such a computation gives
ES=5 cal./mole C. This value of AS is in good agree-
ment with earlier work of Wert and Zener' concerning
the theoretical range of M. According to them 55 may
have the range zero to 5 cal./mole 'C. Since the value of

~ C. Wert, J.App. Phys. 20, 943 (1949).C. Zener, J. App. Phys.
20, 950 (1949).

8 J. K. Stanley, J. Metals 1, 752 (1949).' G. Richter, Ann. d. Physik 32, 683 (1938}.
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FIG. 4. Diffusion coeKcient of C in a-iron as a function of 1//T.
The experimental data are identihed in the following way:
Elastic aftereffect —Q; internal friction —; precipitation meas-
urements —Q; elastic aftereffect (Richter}—&; bulk diffusion
measurements (Stanley) —X.The straight line is drawn according
to the relation D=D0 exp( —AH/RT).

AS computed above, namely about 5 cal./mole 'C, is
near the top of the predicted range, a large part of the
energy of activation must go into lattice strain energy.
In passing it might be mell to note that this calculation
indicates that the transmission coefFicient mentioned
earlier is of the order unity. If it were considerably less
than 1, the factor e~s's in Eq. (18) would have to be
larger so that Do could keep its experimentally de-
termined value. A very large increase in M would be
difFicult to explain; hence, the conclusion must be that
for the present case, the transmission coefFicient is of
order 1.

Because of the thermodynamic properties of DG,
65, and hH, it can be shown that

d (lnD)/d(1/T) =hH/E.

This means that at any temperature the slope of the
curve in Fig. 4 gives the value of AH at that tempera-
ture. This is true regardless of how AII and M might
vary with temperature. That the experimental points in
Fig. 4 can be fitted with a straight line means that over
this temperature range hII is constant. This fact is
perhaps the most surprising result of the analysis of the
experimental work.

The author would like to express his gratitude to
Mr. Robert Heikes and Mr. RonaM Sladek for as-
sistance in making the measurements, and to Dr.
Zener for numerous suggestions and discussions.


