INGMAR BERGSTROM AND SIGVARD THULIN Vobel Institute of Physics, Stockholm, Sweden June 9, 1950

 \mathbf{O} F great interest for the nuclear shell theory is \mathbf{Kr}^{ss} , since the neutron number is 49; i.e., it represents the 6lled 50 shell minus one nucleon. Two different activities of this isotope with half-lives 4.5 hr. and 9.4 yr. have been reported¹ indicating an isomeric pair. Two γ -rays of energies 0.17 and 0.37 Mev and a β -continuum with the upper limit of 1.0 Mev have been assigned to the shorter activity by absorption measurements.¹ The upper limit¹ for the β -spectrum of the longer activity is 0.74 Mev (abs.). No β -spectrometer measurements have been reported previously.

By using the electromagnetic isotope separator² and the high transmission β -spectrometer³ of this Institute, we have studied the 4.5-hr. activity of $Kr⁸⁵$ produced in uranium fission. The experimental technique was the same as that recently described⁴ in an investigation of Kr™.

The β -spectrometer results are presented in Fig. 1 and Table I. The γ -rays of energies 149 and 300 kev are probably the same as those reported by Hoagland and Sugarman' (0.17 and 0.37 Mev abs.). The Fermi plot is a straight line from the upper limit 817 down to about 35 kev, where the backscattering effect in the collector foils (0.15 mg Al/cm²) probably begins. Thus the β -spectrum is simple and $f \cdot t \sim 1 \cdot 10^5$ corresponding to an allowed unfavored transition.⁵

The K_1 and the Auger electrons but not the K_2 electrons are in coincidence with the β -spectrum ($e^-\beta^-$ -coincidence measurements in β -spectrometer). The half-lives for all the lines are the same as for the β -spectrum (\sim 4.5 hr.). The possibility of an isomeric state with a short half-life in Rb⁸⁵ cannot be definitely excluded by internal conversion considerations. Because of the presence of the other γ -ray this question can hardly be decided by critical absorption measurements. As we also found a weak (25 c/min.) close to a β -tube) very long activity in our separated Kr⁸⁵ sample and no isomer of Rb⁸⁵ has been reported, it is most probable that the 300-kev γ -ray is emitted in an isomeric transition in Kr⁸⁵. This conclusion is also supported by the decay scheme of Fig. 2 as will follow from the discussion below.

For the isomeric transition $l=5$ seems to be consistent with out measurements. From Bethe's formula we estimate the half-life $\tau_{\frac{1}{2}}$ for the γ_2 -transition. Thus $\tau_{\frac{1}{2}}=3.10^7$ sec. for $l=5$ and 35 sec. for $l=4$. τ_1 for electric radiation can also be calculated using the

FIG. 1. β -spectrum of Kr⁸⁵ (4.4 hr.).

	$H \rho$	$E(e^-)$ (key)	$h\nu$ or E_{max} (key)	e^-/β^-	$f\cdot t$
Lines					
A_1	350	10.7			
\overline{K}	1311	134	149	$0.09 + 0.01$	
K_2	2033	285	300	$0.051 + 0.006$	
β -spectrum					
			817		
$\frac{\beta_1}{\beta_2}$			666ª		$\sim 10^{3}$ $\sim 10^{9}$

^a Obtained from the decay scheme of Fig. 2.
^h The half-life of Thode *et al*. was used (reference 1).

Parity Spin
a b Energy
KeV a b
½ % $\frac{44h}{100}$ + $\frac{44h}{100}$ Kr $\frac{85m}{100}$ $\%$ $\%$ 2p $\frac{1}{2}$ $(84%$ $(16%$ $\frac{11}{2}$ 666 1/2 پووا /49 72 $\frac{3}{2}$ $2p_{36}$ ⅔ Ŧ $\delta_{\rm r}$ $Rb^{\beta 5}$ o $\overline{+}$ 56 5⁄2 $5/2$ 1 f 5 ʻo

FIG. 2. Decay scheme of Kr⁸⁵, showing spin and parity discussed in text.
Spin term according to M. G. Mayer (reference 7).

experimental intensity ratio e^{-}/β^{-} for the K_2 line, the total halflife 4.5 hr., N_K/N_L (Hebb and Nelson) and the conversion coefficient α_K of Rose *et al*. In this way we obtain $\tau_1 = 2 \cdot 10^5$ sec. for $l=5$ and $7 \cdot 10^4$ sec. for $l=4$. The first *l*-value is in good agreement with the curves of Axel and Dancoff.⁶ From the data above the branching ratio λ_2/λ_1 is about 0.19.

The internal conversion coefficient 0.051 of the 149-kev γ -ray indicates a mixture of electric $2²$ pole and magnetic $2¹$ pole radiation (spin change=1, no parity change). Using the tables of Rose *et al.* we obtain $\alpha_{K2} = 0.17$ and $\beta_{K1} = 0.037$.

From the known spin $5/2$ of Rb^{85} and the spin changes at the γ_1 -, γ_2 -, and β_1 -transitions we arrive at the spin and parity relations shown in Fig. 2. All spin alternatives with $J > 11/2$ have been excluded and spin alternative c can be ruled out since it is unlikely to find the spin 11/2 in the nucleon number region to which Kr^{85} belongs.⁷ If the γ_2 -transition is associated with no parity change the spin difference would be 5 leading to impossible $\left(-\frac{1}{2}, 19/2\right)$ and unprobable (11/2) spins of the ground state of Kr^{85} . Assuming instead parity change this would give the spins $\frac{1}{2}$ and 9/2 for the lowest levels of Kr^{85} . Spin alternative *a* is in excellent agreement with the nuclear shell model of Mayer and Jensen *et al.*⁷ When the L conversion coefficient calculations of Rose et al.⁷ When the L conversion coefficient calculations of Rose et al. are available this alternative can experimentally be established by measuring N_K/N_L with high resolving power.

Another consequence of our decay scheme will be that the β_2 -transition would occur with a spin change of 2 and with change in parity. Shull and Feenberg⁸ have given the formula (W_0^2-1) . $f \cdot t \sim 10^{10}$ for a β -transition of the type mentioned. From our decay scheme we get the upper limit for $\beta_2=666$ kev, which gives $(W_0^2-1)f \cdot t=0.4 \cdot 10^{10}$ (using the half-life 9.4 yr. measured Thode'), in good agreement with the suggested spin and partity relations. The β_2 -spectrum would then have the forbidden shape and will soon be measured here with a much stronger sample.

' G. T. Seaborg and I. Perlman, Rev. Mod. Phys. 20, 585 (1948). Mat-tauch-Flammersfeld, Isotopic Report, Tiibingen (1949). [~] Bergstrom, Thulin, Svartholm, and Siegbahn, Arkiv. f. fysik 1, 281

(1949).
 $*$ H. Slätis and K. Siegbahn, Phys. Rev. 75, 1955 (1949).
 $*$ H. Slätis and K. Siegbahn, Phys. Rev. 77, 851 (1950).
 $*$ Ergström, Thulin. Andersson, Phys. Rev. 77, 851 (1950).
 $*$ E. Feenberg and K. C. Hammack,