INGMAR BERGSTRÖM AND SIGVARD THULIN Nobel Institute of Physics, Stockholm, Sweden June 9, 1950

OF great interest for the nuclear shell theory is Kr⁸⁵, since the neutron number is 49; i.e., it represents the filled 50 shell minus one nucleon. Two different activities of this isotope with half-lives 4.5 hr. and 9.4 yr. have been reported¹ indicating an isomeric pair. Two γ -rays of energies 0.17 and 0.37 Mev and a β -continuum with the upper limit of 1.0 Mev have been assigned to the shorter activity by absorption measurements.¹ The upper limit¹ for the β -spectrum of the longer activity is 0.74 Mev (abs.). No β -spectrometer measurements have been reported previously.

By using the electromagnetic isotope separator² and the high transmission β -spectrometer³ of this Institute, we have studied the 4.5-hr. activity of Kr⁸⁵ produced in uranium fission. The experimental technique was the same as that recently described⁴ in an investigation of Kr83m.

The β -spectrometer results are presented in Fig. 1 and Table I. The γ -rays of energies 149 and 300 kev are probably the same as those reported by Hoagland and Sugarman¹ (0.17 and 0.37 Mev abs.). The Fermi plot is a straight line from the upper limit 817 down to about 35 kev, where the backscattering effect in the collector foils (0.15 mg Al/cm²) probably begins. Thus the β -spectrum is simple and $f \cdot t \sim 1 \cdot 10^5$ corresponding to an allowed unfavored transition.⁵

The K_1 and the Auger electrons but not the K_2 electrons are in coincidence with the β -spectrum ($e^{-\beta}$ -coincidence measurements in β -spectrometer). The half-lives for all the lines are the same as for the β -spectrum (~4.5 hr.). The possibility of an isomeric state with a short half-life in Rb⁸⁵ cannot be definitely excluded by internal conversion considerations. Because of the presence of the other γ -ray this question can hardly be decided by critical absorption measurements. As we also found a weak (25 c/min. close to a β -tube) very long activity in our separated Kr⁸⁵ sample and no isomer of Rb⁸⁵ has been reported, it is most probable that the 300-kev γ -ray is emitted in an isomeric transition in Kr⁸⁵. This conclusion is also supported by the decay scheme of Fig. 2 as will follow from the discussion below.

For the isomeric transition l=5 seems to be consistent with out measurements. From Bethe's formula we estimate the half-life $\tau_{\frac{1}{2}}$ for the γ_2 -transition. Thus $\tau_{\frac{1}{2}}=3.10^7$ sec. for l=5 and 35 sec. for l=4. τ_{1} for electric radiation can also be calculated using the

FIG. 1. β-spectrum of Kr⁸⁵ (4.4 hr.).

TABLE I. B-spectrometer results for Kr85.

	Ηρ	E(e ⁻) (kev)	$h\nu \text{ or } E_{\max}$ (kev)	e^-/β^-	$f \cdot t$
Lines					
A_1	350	10.7			
K_{\perp}	1311	134	149	0.09 ± 0.01	
K_{2}	203.3	285	300	0.051 ± 0.006	
β -spectrum					
β			817		$\sim 10^{-5}$
B ₂			666ª		$\sim 10^{9b}$

^a Obtained from the decay scheme of Fig. 2. ^b The half-life of Thode *et al.* was used (reference 1).

FIG. 2. Decay scheme of Kr⁸⁵, showing spin and parity discussed in text. Spin term according to M. G. Mayer (reference 7).

experimental intensity ratio e^{-}/β^{-} for the K_2 line, the total halflife 4.5 hr., N_K/N_L (Hebb and Nelson) and the conversion coefficient α_K of Rose *et al.* In this way we obtain $\tau_i = 2 \cdot 10^5$ sec. for l=5 and $7 \cdot 10^4$ sec. for l=4. The first *l*-value is in good agreement with the curves of Axel and Dancoff.⁶ From the data above the branching ratio λ_2/λ_1 is about 0.19.

The internal conversion coefficient 0.051 of the 149-kev γ -ray indicates a mixture of electric 2² pole and magnetic 2¹ pole radiation (spin change=1, no parity change). Using the tables of Rose *et al.* we obtain $\alpha_{K_2} = 0.17$ and $\beta_{K_1} = 0.037$.

From the known spin 5/2 of Rb⁸⁵ and the spin changes at the γ_1 -, γ_2 -, and β_1 -transitions we arrive at the spin and parity relations shown in Fig. 2. All spin alternatives with J > 11/2 have been excluded and spin alternative c can be ruled out since it is unlikely to find the spin 11/2 in the nucleon number region to which Kr⁸⁵ belongs.⁷ If the γ_2 -transition is associated with no parity change the spin difference would be 5 leading to impossible $\left(-\frac{1}{2}, \frac{19}{2}\right)$ and unprobable (11/2) spins of the ground state of Kr⁸⁵. Assuming instead parity change this would give the spins $\frac{1}{2}$ and 9/2 for the lowest levels of Kr^{85} . Spin alternative *a* is in excellent agreement with the nuclear shell model of Mayer and Jensen et al.7 When the L conversion coefficient calculations of Rose et al.⁷ When the L conversion coefficient calculations of Rose et al. are available this alternative can experimentally be established by measuring N_K/N_L with high resolving power.

Another consequence of our decay scheme will be that the $\beta_2\text{-transition}$ would occur with a spin change of 2 and with change in parity. Shull and Feenberg⁸ have given the formula (W_0^2-1) . $f \cdot t \sim 10^{10}$ for a β -transition of the type mentioned. From our decay scheme we get the upper limit for $\beta_2 = 666$ kev, which gives $(W_0^2-1)f \cdot t = 0.4 \cdot 10^{10}$ (using the half-life 9.4 yr. measured Thode1), in good agreement with the suggested spin and partity relations. The β_2 -spectrum would then have the forbidden shape and will soon be measured here with a much stronger sample.

- (1949).
 ⁸ H. Slätis and K. Siegbahn, Phys. Rev. **75**, 1955 (1949).
 ⁴ Bergström, Thulin, Andersson, Phys. Rev. **77**, 851 (1950).
 ⁵ E. Feenberg and K. C. Hammack, Phys. Rev. **75**, 1877 (1949).
 ⁶ P. Axel and S. M. Dancoff, Phys. Rev. **76**, 892 (1949).
 ⁷ M. G. Mayer, Phys. Rev. **78**, 16 (1950), Jensen, Suess, and Haxel, Naturwiss. **36**, 155 (1949).
 ⁸ F. B. Shull and E. Feenberg, Phys. Rev. **75**, 1768 (1949).

¹G. T. Seaborg and I. Perlman, Rev. Mod. Phys. **20**, 585 (1948). Mat-tauch-Flammersfeld, Isotopic Report, Tübingen (1949). ² Bergström, Thulin, Svartholm, and Siegbahn, Arkiv. f. fysik 1, 281 (1940). (1949)