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require the o-bond wave function of multiple bonded
N to be (1/V2') P,+ (1/VZ) f, rather than" —,'P.+ (v3/2) P„,
and would favor structures of the type Nucleus Spin

N14

Coupling in NF3.g(a~V/asm)

—7,07&0.10 Mcjsec.

Quadrupole
moment

0.01)&10 '4 cm'

TABLE IV. Nuclear constants of N".

N

H H
for ammonia rather than that written X=—H~ by Townes
and Bailey.
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A new method is developed which, within the limits of the spherical cell approximation first presented by
%signer and Seitz, will permit the evaluation of the cohesive energy, lattice constant, and compressibility
of a monovalent metallic solid without the explicit computation of a central field for the atom. Analytic
formulas for approximate solid state wave functions are produced in the region outside the atomic core by
utilizing Imai s form of the W.K.B. method with the phase constant determined explicitly in terms of the
known quantum defect of the free atom. These wave functions are applied to the determination of the
minimum ground state energy in the alkali metals and of the sphere radius at v hich this occurs as functions
of the quantum defects of the free atoms. These functions, when applied to Frohlich s semi-empirical formula,
yield a rapid and accurate method for the computation of the ground-state energy as a function of sphere
1 adlus.

I. Introduction. " A previous paper' has developed
the "function matching method" which permits com-
putation of solid state wave functions to be undertaken
without a knowledge of the potential function of the
atomic core. Before the discovery of that technique an
attempt had been made to achieve the same result
with wave functions of the W.K.B. type. This proved
to be feasible only in theory, for the region in which the
wave functions are of physical interest lies near the
outer turning point of the wave equation where the
W.K.B. approximation tends to break down. Even
I anger's' W.K.B. formalism yielded signi6cant errors
in this region, so the attempt was abandoned in favor of
the function matching technique.

Recently lmai' has suggested a revision of the W.K.B.
method which materially improves the approximation
near the turning point. His formalism is applied in the
present paper to the computation of wave functions for
the solid state and, in a sample specialization, yields
numerical results almost identical with those computed
by more exact methods. Because the computations
involved are less arduous and because this revised
W.K.B. technique proves less critically sensitive to
small changes in the experimental data, it is presented

here as an improvement on our earlier method. No
attempt has been made, however, to duplicate the
computations made in the earlier paper (A), for there
is every evidence that the two formalisms will yield
almost identical results.

The objectives and the physical presuppositions of
this paper are identical with those discussed in (A).
Readers acquainted with (A) will note that the general
solution of the radial wave equation, there produced
as an arbitrary linear combination of Whittaker's two
solutions of the conBuent hypergeometric equation, is
here replaced by Imai's W.K.B. solution with an
undetermined phase constant. The condition that the
wave function be zero at the origin is then seen to de-
termine explicitly the phase constant used in the
W.K.B. expansion about the inner turning point, so
that the phase constant to be used about the outer
turning point can be determined as a function of the
quantum defect of the atom by an obvious modi6cation
of the usual phase-integral quantum condition. This
procedure serves to determine the wave functions for
the solid without the computation of the logarithmic
derivative function required by the earlier, function
matching procedure.

*Junior Fellow, Society of Fellows.
' T. S. Kuhn and J, H. Van Vleck, Phys. Rev. , 79, 382 (19SO}.

This paper will be referred to as {A).
2 R. E. Langer, Phys. Rev. SI, 669 (1937).' I. Imai, Phys. Rev, 74, 113 (1948}.

II. The Imai Procedure for the Solid State:
Imai has shown that a diGerential equation,

d'U/(dx')+ O'P(x) U =0,
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seen to be precisely the normal W.K.B. expansions.
It follows that the functions (2) are good approximate
solutions at distances between but not too near the
turning points. Since (6a) and (6b) join smoothly to
(2) at opposite sides of the turning point x,, they are
seen to contain the usual connection formulas.

This is the formalism to be applied to the wave
equation (A-1) of concern in the theory of solids. By
means of the substitutions

8= —er, y= (—e)&,

this normal radial wave equation can be written in the
more manageable form

d'U'" 1 /(f+ 1)
+——1 —V(8) — U&'& =0,

dg2 py2 g2
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FIG. 1. Curves of ~, and r, as functions of b.

z= )I [P(x)]&dx, g= (3z) &+X» '.

possesses, in the vicinity of its ith turning point x;, an
approximate general solution of the form

V= z'"P~P i[cos(-', m.+g,)Jg(~(-,'»&&)

leos(zz' —
rl )J y)3(3»$ )7, (2)

in which an arbitrary amplitude factor has been
omitted, p; is an arbitrary constant, and

which will be termed "the standard equation" in this
development. Now Langer has pointed out that the
standard equation (8) is not suitable for application of
the W.K.B. method, because with any physical poten-
tial function, V(8), its inner turning point, 8~, will be
too near the origin (8=0) to permit application of the
asymptotic form (6b) anywhere in the region 0&8&8~.
This deficiency ke remedies by introducing the further
substitutions

8= e*, U&'&(x) = e&~u(x),

and so transforming (g) to the more suitable form

dg 1—+—[—e"—e~ V(e ) —(l+-')'y']u =0, (10)
dx'

Here it has been supposed that in the vicinity of the
turning point, x~, P(x) can be expressed in the form

P(x)= P a„(x—x;)",
m=1

so that the constants f~. and X are then defined in terms
of the first four coefficients, a„, of (4) by

»'= k' —(4/'15)(14a23 —35a,a2a3+25aPa4)ag ',
X= (12/35) (3a22—5a,a,)(2aP)

—'~'

The family of functions (2) are shown by Imai to be
exact solutions of that diBerential equation which is
gained by dropping all but the first four terms of the
expansion of P(x) in (1). They are therefore excellent
approximate solutions at and near the turning point.

The particular utility of the form (2) is, however,
a consequence of its asymptotic behavior, for if k is
large enough so tha, t k'~»' in (5), the functions (2),
at large distances from the turning point, reduce to

U P & cos(kz ——,'z+g;) for P)0, (6a)

U P-&[2 sing;e~'*~+cosrl e
—~'*~] for P&0, (6b)

and, since large k corresponds to large absolute values
of the energy in the wave equation, these formulas are

which will be called the "transformed" wave equation.
Approximate solutions of (10) in the form (2) or (6)

cannot normally be produced without an explicit
knowledge of the potential function V(e*), and this
information is not generally available except in the
region well outside the atomic core (say for all x&X)
where the potential function is known to be hydrogenic,
i.e., where V(e*)= —2e . The quantity X, which marks
the eGective boundary of the hydrogenic region, may be
expected to lie between the two turning points of (8)
or (10), for physically (see the discussion in (A)) the
valence electron wave function takes its maximum
values in the hydrogenic region, and mathematically
these maxima are first attained in the region between
the turning points, where the wave functions exhibit
sinusoidal behavior.

It follows that for all x&x the W.K.B. wave func-
tions are completely defined, except for the phase
constant g2, by an expansion of the form (2) or (6)
about the outer turning point, x2, of the wave equation
(10). In this expansion k'P(x) is given by

k'Pn(x) = v '[ ~ +2e (1+z)-'v'] (ll)—

where the subscript h denotes the hydrogenic form of
P(x), and the outer turning point, x2, to be substituted
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tively accurate means of computing the curve e, (r,) for
any monovalent metal for which the quantum defect
ls known.

For the ground state wave function U&"(e) of the
valence electron of a monovalent metallic solid is just
that solution of the standard equation (8) which satis-
6es the Wigner-Seitz boundary condition (A-2) at
8=8,. In terms of the function I and the variable x of
of the "transformed equation, " this boundary condition
may be rewritten as

u'(x, )——,'u(x, )=0, (18)

and this condition, in conjunction with the explicit
wave functions given by (2) and (16), must, for a given
8, define the energy parameter y as a function of the
sphere radius variable x,.

Hy defining two new functions

g~(x) =s'"&'F. '~~i~(3K&')
h (x)=z'"(&Fg ~J g(3(-'~)&)

the approximate solution (2) of the "transformed equa-
tion" (10) can, with the aid of (16), be written as

u(x) = cos(-,' —h —y ')xg„(x)
+cos(-', +8+y ')~ h( )x, -(20)

so that the boundary condition (18) becomes

1 F„(x,)+1 1
tan —' —(3)-&

7r F,(x,) —1
(21)

with the new function F,(x) dehned by

h', (x) —-', h, (x)

g'. (x) —kg~(x)
(22)

With 5 determined experimentally (21) can be solved
for y as a function of x„and this relationship, with (7)
and (9), yields the desired curve for e.(r„).

Such a computation may be usefully and conveniently
illustrated at the outer turning point, 02, of the "standard
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Fro. 3. Ground-state energy as a function of sphere radius for
Ãa, K, and Rb: comparison of Frohlich's formula with the com-
plete computations of (A).

x, =ln2, (24)

a point which lies near but not at the outer turning
point x.(= in[1+ (1—4y') &1) of the "transformed equa-
tion. "

At distances near the outer turning point x2, the
functions f„(x), g„(x), and F~(x) are conveniently ex-
panded in terms of the variable x—x2, and at the point
x=x, (x, (y)) these expansions yield F~(x, ) as a func-
tion of the energy parameter alone. This procedure has
been carried through, and a long and extremely arduous
manipulation yields the series

r(;) -4 s,s83
F" (x. )=(2)1 (-& )

I'(-', ) 5 98,000

21,918,107
+ &om +

6,585,600,000

(25)

in which e. has been inserted for —y'.
Equation (25) in conjunction with (21) determines

the minimum ground-state energy as a function of the
observed quantum defect; the radius r, at which this
minimum occurs can also be found as a function of 6

by use of (23). These functions, e. (5) and r, (8), are
displayed graphically in Fig. 1.The values of 8 are there
restricted to the interval 0&8&1, since integral changes
in 8 do not affect the solution of (21). These curves are
conveniently utilized in conjunction with experi-
mentally derived curves of 5(e,), and such curves for
the five alkali metals are shown in Fig. 2.

From these curves values of e,„and r, can be
computed, for if one starts with a trial value of ~, , a
value of 5 can be found from Fig. 2, and this value can
be used to find a more accurate e, from Fig. 1. Two
or three applications of the procedure suKce to de-
termine e, to three-figure accuracy. Final values of

and r, gained by this procedure are compared with
the results of other computations in Table I. It will be
observed that the agreement is, throughout, well within
the limits of computational accuracy.

Dt'. Application to Fxohlich s Foxmu1a: Equation
(21) can be used to compute values of eo for values of
x,/x, , but this computation would be laborious and

' H, Frohlich, Proc. Roy. Soc. A158, 97 (1937).

equation" (8), for as Frohlich» has shown, at this point
the ground-state energy e, must take its minimum
value, ~.„. With /=0 and V(8)= —2/8 in Eq. (8),
Frohlich's theorem states that the minimum sphere
ground-state energy, ~, , always occurs at a sphere
radius r, to which it is related by the equation

e„=—2/r, or 8,„,= 2. (23)

In terms of the new variable x, of the transformed
equation, (23) states that the minimum ground-state
energy must occur at a point x, given by
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seems unnecessary in view of the accuracy of the ap-
proximate procedure which follows.

Frohlich has shown that, to a good approximation,
the ground-state energy, ~0, may be represented by

c,= (o/r 3) —(3/r, ), (26)

a formula which takes as its minimum value, e.= 2/r-
with r,„=(a)~. Equation (26) may therefore be re-

written in terms of the results of Section II in the form

Element

Li
Na
K
Rb
Cs

(Ry. ) 7 ~(a.u. )

W.K.B.

0.706
0.667
0.530
0.508
0.468

Other'

0.700
0.668
0.53o
0.506

%.K.B. Other'

2.84 2.87
3.00 2.97
3.78 3.75
3.92 3.87
4.28

TABLE I. Theoretical values of e, and r.

(27)
a The values for Li are taken from F. Seitz, Phys. Rev. 4V, 400 (1935).

The values for the other elements are taken from (A).

This equation can be used with the values of r, listed
in Table I, and curves of c,(r,) derived from (27) are
compared with those derived by the complete computa-
tions of (A) in Fig. 3. It is immediately indicated that
the results of this abridged computation are suSciently
accurate to render the lengthy computation superQuous.
Equation (27) can also be used in conjunction with the
usual approximate formula for the Fermi energy,
er =2.21/r. ', in an approximate computation of binding

energy as a function of sphere radius. This computa-
tion should yield results substantially identical with
those of the "plane wave" (a= 1) computation in (A),
so they have not been carried out here.

V. Comments: The W.K.B. wave functions de-
veloped in Section II permit a direct computation of
approximate wave functions for the solid state. The
application provided in Section III indicates that these
wave functions compare favorably with those produced
by exact solutions of the wave equation, so we conclude
that these functions could be employed for the "corn-
plete computation" carried through in (A) by the func-
tion matching method.

H. Frohlich, reference 5. A better derivation is given by J.
Bardeen, J. Chem. Phys. 6, 372 (1938).Hardeen's treatment does
not, however, develop the exact relationship (23).

This method of producing wave functions shares with
the function matching method the advantage that no
explicit formula for V(r) is required. It surpasses the
function matching method by its less critical depend-
ence upon experimental data, for although no adequate
theoretical explanation of the fact has been found,
the extrapolations of Fig. 2 turn out to be "safer" than
those of pa"&(to) in (A). Also, except in those ranges of
the parameter I, and r for which the coefficients W~'"(r)
a,nd Wq&'&(r) of (A-12) have been Previously computed,
the computations involved in the W.K.B. approach
are simpler than those required for function matching.
In any case, for the computation of the ground-state
energy, the accuracy of Frohlich's formula taken in
conjunction with the curves of Fig. 1 and Fig. 2 seems
to obviate the necessity of any more complete computa-
tion procedure.

It should, however, be noted explicitly that the prac-
ticability of W.K.B. wave functions in this application
is completely dependent upon the revision of the method
provided by Imai, for the previous W.K.B. formalisms
are too inaccurate near the point r, . In particular, an
attempt to apply I anger's formulas to the computations
carried out in Section III, above, produced values of

and r, which diGered by ten to twenty percent
from those listed in Table I.


