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require the o-bond wave function of multiple bonded
N to be (1/V2)¢,+ (1/V2)y, rather than!® 3¢, + (V3/2)¥y,

and would favor structures of the type
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TaBLE IV. Nuclear constants of N™.
Coupling in NF3 Quadrupole
Nucleus Spin eQ(32V /az2) moment
Nu 1 —7.0740.10 Mc/sec. 0.01X 1072 cm?

for ammonia rather than that written N=H; by Townes
and Dailey.
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A new method is developed which, within the limits of the spherical cell approximation first presented by
Wigner and Seitz, will permit the evaluation of the cohesive energy, lattice constant, and compressibility
of a monovalent metallic solid without the explicit computation of a central field for the atom. Analytic
formulas for approximate solid state wave functions are produced in the region outside the atomic core by
utilizing Imai’s form of the W.K.B. method with the phase constant determined explicitly in terms of the
known quantum defect of the free atom. These wave functions are applied to the determination of the
minimum ground state energy in the alkali metals and of the sphere radius at which this occurs as functions
of the quantum defects of the free atoms. These functions, when applied to Frohlich’s semi-empirical formula,
yield a rapid and accurate method for the computation of the ground-state energy as a function of sphere

radius.

I. Introduction: A previous paper' has developed
the “function matching method” which permits com-
putation of solid state wave functions to be undertaken
without a knowledge of the potential function of the
atomic core. Before the discovery of that technique an
attempt had been made to achieve the same result
with wave functions of the W.K.B. type. This proved
to be feasible only in theory, for the region in which the
wave functions are of physical interest lies near the
outer turning point of the wave equation where the
W.K.B. approximation tends to break down. Even
Langer’s® W.K.B. formalism yielded significant errors
in this region, so the attempt was abandoned in favor of
the function matching technique.

Recently Imai® has suggested a revision of the W.K.B.
method which materially improves the approximation
near the turning point. His formalism is applied in the
present paper to the computation of wave functions for
the solid state and, in a sample specialization, yields
numerical results almost identical with those computed
by more exact methods. Because the computations
involved are less arduous and because this revised
W.K.B. technique proves less critically sensitive to
small changes in the experimental data, it is presented
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here as an improvement on our earlier method. No
attempt has been made, however, to duplicate the
computations made in the earlier paper (A), for there
is every evidence that the two formalisms will yield
almost identical results.

The objectives and the physical presuppositions of
this paper are identical with those discussed in (A).
Readers acquainted with (A) will note that the general
solution of the radial wave equation, there produced
as an arbitrary linear combination of Whittaker’s two
solutions of the confluent hypergeometric equation, is
here replaced by Imai’s W.K.B. solution with an
undetermined phase constant. The condition that the
wave function be zero at the origin is then seen to de-
termine explicitly the phase constant used in the
W.K.B. expansion about the inner turning point, so
that the phase constant to be used about the outer
turning point can be determined as a function of the
quantum defect of the atom by an obvious modification
of the usual phase-integral quantum condition. This
procedure serves to determine the wave functions for
the solid without the computation of the logarithmic
derivative function required by the earlier, function
matching procedure.

II. The Imai Procedure for the Solid State:
Imai has shown that a differential equation,

@*U/(dx*)+k*P(x)U=0, (1)
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possesses, in the vicinity of its sth turning point #;, an
approximate general solution of the form

U= g5 P~ cos(3m+n:) Jys(3xE3)
FcosGr—n)J-15GrED], (2)

in which an arbitrary amplitude factor has been
omitted, #; is an arbitrary constant, and

o= [ @l =@ @

Here it has been supposed that in the vicinity of the
turning point, x;, P(x) can be expressed in the form

P()=Y am(x—x)™, 4)

m=]
so that the constants x and X\ are then defined in terms
of the first four coefficients, an, of (4) by

k2= k2— (4/75) (14023—35010203+ 25(112(1«4)(11‘4,
A=(12/35)(3a:*— Sa:1as)(2a,2)*3.

The family of functions (2) are shown by Imai to be
exact solutions of that differential equation which is
gained by dropping all but the first four terms of the
expansion of P(x) in (1). They are therefore excellent
approximate solutions at and near the turning point.

The particular utility of the form (2) is, however,
a consequence of its asymptotic behavior, for if % is
large enough so that k*~«? in (5), the functions (2),
at large distances from the turning point, reduce to

U~P-%tcos(kz—3in+n) for P>0, (6a)
U~P[2 sinne'*s!+cosne~'*21] for P<0, (6b)

and, since large % corresponds to large absolute values
of the energy in the wave equation, these formulas are

©)
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seen to be precisely the normal W.K.B. expansions.
It follows that the functions (2) are good approximate
solutions at distances between but not too near the
turning points. Since (6a) and (6b) join smoothly to
(2) at opposite sides of the turning point x;, they are
seen to contain the usual connection formulas.

This is the formalism to be applied to the wave
equation (A-1) of concern in the theory of solids. By
means of the substitutions

(7

this normal radial wave equation can be written in the
more manageable form

auv 1 I(1+1)
] -1-v0-—Jvo-0, @
e 4 P

b=—e, 7=(=0,

which will be termed ‘“the standard equation” in this
development. Now Langer has pointed out that the
standard equation (8) is not suitable for application of
the W.K.B. method, because with any physical poten-
tial function, V(6), its inner turning point, 6;, will be
too near the origin (6=0) to permit application of the
asymptotic form (6b) anywhere in the region 0<6<4,.
This deficiency he remedies by introducing the further
substitutions

&)

0=e*, UO(x)=etou(x),

and so transforming (8) to the more suitable form

du 1
—+—[— =V ()~ (+H =0,  (10)
da? 4

which will be called the “transformed” wave equation.

Approximate solutions of (10) in the form (2) or (6)
cannot normally be produced without an explicit
knowledge of the potential function V(e%), and this
information is not generally available except in the
region well outside the atomic core (say for all x> X)
where the potential function is known to be hydrogenic,
i.e., where V(e®) = —2¢~*. The quantity X, which marks
the effective boundary of the hydrogenic region, may be
expected to lie between the two turning points of (8)
or (10), for physically (see the discussion in (A)) the
valence electron wave function takes its maximum
values in the hydrogenic region, and mathematically
these maxima are first attained in the region between
the turning points, where the wave functions exhibit
sinusoidal behavior.

It follows that for all x> X the W.K.B. wave func-
tions are completely defined, except for the phase
constant 7, by an expansion of the form (2) or (6)
about the outer turning point, x,, of the wave equation
(10). In this expansion k2P(x) is given by

FP(x) =y [ — "+ 2e"— (I+3)™y*], 11)

where the subscript # denotes the hydrogenic form of
P(x), and the outer turning point, x,, to be substituted
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for x; in (3), is given by
xo=In{1+[1-(+3)** ]} (12)

These formulas permit explicit analytic definitions of z,
£ N\, and «, so that the production of explicit approxi-
mate wave functions in the hydrogenic region is limited
only by our ability to determine the phase constant 7,.

Now for any value of the energy parameter v the phase
constant 7, is completely determined by the condition
that the wave function e!*u(x) be zero at the origin.
This is equivalent to the condition that the phase con-
stant 71, used in the expansion (6) about the inner
turning point, be zero. For as ¥—— o the potential
function V(e*) must behave as —2Ze2, so it follows
from (3) and (10) that the term e'*s! in (6b) must carry
the wave function to infinity at the origin unless
n= sinn 1= 0.

Between the two turning points the wave function
can be expressed as an expansion about either turning
point, and since 7, is now known, the value of 7, is
completely determined by the condition that the two
expansions yield identical results in the region where
Eq. (6a) is valid. This leads, in the usual fashion, to an
explicit definition of 7, by the formula

my=(m+3)m—k fn [P(x) JHdx, (13)

where m is any integer or zero, and P(x) is ¥~ times the
square bracket in (10).

Equation (13) cannot, of course, be integrated ex-
plicitly unless V(e®) is known, for it is only near the
outer turning point, xs, that P(x) reduces to the hydro-
genic form P,(x) defined by (11). But a slight modifica-
tion of a device utilized by Bohr! in deriving the Ryd-
berg law makes it possible, from (13), to give values of
72 in terms of the measured values of the quantum
defect. For define § by the equation

ro=k f [P Pdx—k f PPy, (14)

where x,’ is the inner turning point of the hydrogenic
form of (10), and the other quantities are those pre-
viously defined. Then, as discussed by Kemble,* the
quantity é must be virtually independent of the energy
parameter vy. For examine the integrands in (14): the
quantity k[ P(x)]Ji{dx may be rewritten

RLP(x) fidx=[e— V()4 (+3)7rTdr,  (15)

and k[ Pn(x) J!dx has the same form with V(r)= —2/r.
Now at the upper limit of integration P(x)= Pj(x), for
%2 is in the hydrogenic region; throughout most of the
region in which P(x) Pi(x), | V|>>| €], so that changes
in e do not appreciably influence the integrand; and,

4 N. Bohr, Proc. London Phil. Soc. 35, 296 (1923). See also E. C.

Kemble, Fundamental Principles of Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1937), p. 478 ff.
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finally, the position of the lower limits, x; and x,’, are
almost independent of e. From all of which it follows
that the difference between the integrals can show little
dependence on the energy.

The second integration in (14) can now be carried
through explicitly, so that (13) and (14) combine to
yield
(16)

in which » (=m+141) is an arbitrary integer greater
than /. Equation (16) permits § to be identified physi-
cally, for the atomic wave functions U® are just those
functions (2) which go to zero both at the origin and at
infinity, and the functions which go to zero at infinity
are those for which 7,=0. But if 5,=0, (16) can be
rewritten as

fe=nw—oér—y lm,

e=—(n—25)7", a7

which is just Rydberg’s Law, so that é is the quantum
defect of the atom.

Conversely, if § is known from spectroscopic data,
72 can be computed from (16), and the wave functions
(2) and (6b) can be produced explicitly, for any value of
energy, everywhere in the hydrogenic region. These
wave functions may be used, precisely as in (A), to
compute the three solid state parameters normally
treated by the Wigner-Seitz method.

III. An Application to the Ground-State Energy
of Monovalent Metals: The accuracy of these W.K.B.
wave functions can be tested by a sample application to
the computation of the minimum ground state energy,
€om, Oof monovalent metals, and this application will
incidentally provide an extremely rapid and compara-
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F16. 2. Quantum defects for the s-wave functions of the alkali
metals as a function of energy. From the experimental values in
Bacher and Goudsmit.
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tively accurate means of computing the curve e(r,) for
any monovalent metal for which the quantum defect
is known.

For the ground state wave function U©@(8) of the
valence electron of a monovalent metallic solid is just
that solution of the standard equation (8) which satis-
fies the Wigner-Seitz boundary condition (A-2) at
6=0,. In terms of the function # and the variable x of
of the “transformed equation,” this boundary condition
may be rewritten as

u/(xs)"%“(xs) =0, (18)

and this condition, in conjunction with the explicit
wave functions given by (2) and (16), must, for a given
8, define the energy parameter vy as a function of the
sphere radius variable ;.

By defining two new functions

g (x) =2 SE P4y 3 (FkED)

Ry () =2 8534 T g 5 (3xE), (19)

the approximate solution (2) of the “transformed equa-
tion” (10) can, with the aid of (16), be written as

u(x)=cos(3— 86—y )mgy(x)

+cos(3+ o+ v )why(x), (20)
so that the boundary condition (18) becomes
1 Fo(x)+17 1
d=- tan—l[ (3)‘*—1—————]——, (21)
™ F'y(xx) - 1 Y
with the new function F,(x) defined by
oy (x) =30y (%)
Fylt)= ——— (22)

g+(x) —3g+(%)

With § determined experimentally (21) can be solved
for v as a function of ,, and this relationship, with (7)
and (9), yields the desired curve for €(r,).

Such a computation may be usefully and conveniently
illustrated at the outer turning point, 8, of the “‘standard
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Fic. 3. Ground-state energy as a function of sphere radius for
Na, K, and Rb: comparison of Fréhlich’s formula with the com-
plete computations of (A).
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equation” (8), for as Frohlich® has shown, at this point
the ground-state energy e must take its minimum
value, €mn. With /=0 and V(§)=—2/6 in Eq. (8),
Frohlich’s theorem states that the minimum sphere
ground-state energy, €, always occurs at a sphere
radius 7, to which it is related by the equation

Bom=2. (23)

In terms of the new variable x, of the transformed
equation, (23) states that the minimum ground-state
energy must occur at a point x,,, given by

€om=—2/Tsm OF

Xem=1n2,

(24)

a point which lies near but not at the outer turning
point xs(=In[14 (1—2142)¥)) of the “transformed equa-
tion.”

At distances near the outer turning point x,, the
functions f,(x), gy(x), and F,(x) are conveniently ex-
panded in terms of the variable x—x., and at the point
x=2sm(¥sm(7v)) these expansions yield F,(xsm) as a func-
tion of the energy parameter alone. This procedure has
been carried through, and a long and extremely arduous
manipulation yields the series

r'(%) e &F- 5,583
r3)

Feom(®sm) = (%)i

m

€o.
5 98,000
21,918,107
’*'—"_-"“——_"‘eam2 : ]y
6,585,600,000

(25)

in which e,, has been inserted for —42.

Equation (25) in conjunction with (21) determines
the minimum ground-state energy as a function of the
observed quantum defect; the radius 7,, at which this
minimum occurs can also be found as a function of 6
by use of (23). These functions, €,,(8) and 7.,(8), are
displayed graphically in Fig. 1. The values of § are there
restricted to the interval 0<6<1, since integral changes
in & do not affect the solution of (21). These curves are
conveniently utilized in conjunction with experi-
mentally derived curves of 8(e,), and such curves for
the five alkali metals are shown in Fig. 2.

From these curves values of em and 7., can be
computed, for if one starts with a trial value of €m, a
value of § can be found from Fig. 2, and this value can
be used to find a more accurate €,» from Fig. 1. Two
or three applications of the procedure suffice to de-
termine €., to three-figure accuracy. Final values of
€om and 7, gained by this procedure are compared with
the results of other computations in Table I. It will be
observed that the agreement is, throughout, well within
the limits of computational accuracy.

1V. Application to Frohlich’s Formula: Equation
(21) can be used to compute values of € for values of
X, %em, but this computation would be laborious and

5 H. Frohlich, Proc. Roy. Soc. A158, 97 (1937).
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seems unnecessary in view of the accuracy of the ap-
proximate procedure which follows.

Frohlich® has shown that, to a good approximation,
the ground-state energy, €, may be represented by

&= (a/r8)—(3/rs), (26)

a formula which takes asits minimum value, e,= —2/7,m,
with 7.,=(a):. Equation (26) may therefore be re-
written in terms of the results of Section II in the form
[ram(8)F 3
o= ——— .
7,8 75

(27)

This equation can be used with the values of 7, listed
in Table I, and curves of e(r,) derived from (27) are
compared with those derived by the complete computa-
tions of (A) in Fig. 3. It is immediately indicated that
the results of this abridged computation are sufficiently
accurate to render the lengthy computation superfluous.
Equation (27) can also be used in conjunction with the
usual approximate formula for the Fermi energy,
er=2.21/r2, in an approximate computation of binding
energy as a function of sphere radius. This computa-
tion should yield results substantially identical with
those of the “plane wave” (a=1) computation in (A),
so they have not been carried out here.

V. Comments: The W.K.B. wave functions de-
veloped in Section II permit a direct computation of
approximate wave functions for the solid state. The
application provided in Section III indicates that these
wave functions compare favorably with those produced
by exact solutions of the wave equation, so we conclude
that these functions could be employed for the “‘com-
plete computation” carried through in (A) by the func-
tion matching method.

6 H. Frohlich, reference 5. A better derivation is given by J.

Bardeen, J. Chem. Phys. 6, 372 (1938). Bardeen’s treatment does
not, however, develop the exact relationship (23).
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TaBLE 1. Theoretical values of €om and 7sm.
eom(Ry.) rem(a.u.)
Element

W.K.B. Other® W.K.B. Other®
Li 0.706 0.700 2.84 2.87
Na 0.667 0.668 3.00 2.97
K 0.530 0.530 3.78 3.75
Rb 0.508 0.506 3.92 3.87
Cs 0.468 4.28

a The values for Li are taken from F. Seitz, Phys. Rev. 47, 400 (1935).
The values for the other elements are taken from (A).

This method of producing wave functions shares with
the function matching method the advantage that no
explicit formula for V(r) is required. It surpasses the
function matching method by its less critical depend-
ence upon experimental data, for although no adequate
theoretical explanation of the fact has been found,
the extrapolations of Fig. 2 turn out to be “safer” than
those of ¢ (e) in (A). Also, except in those ranges of
the parameter /, and  for which the coefficients Wi ()
and W9 (r) of (A-12) have been previously computed,
the computations involved in the W.K.B. approach
are simpler than those required for function matching.
In any case, for the computation of the ground-state
energy, the accuracy of Frohlich’s formula taken in
conjunction with the curves of Fig. 1 and Fig. 2 seems
to obviate the necessity of any more complete computa-
tion procedure.

It should, however, be noted explicitly that the prac-
ticability of W.K.B. wave functions in this application
is completely dependent upon the revision of the method
provided by Imai, for the previous W.K.B. formalisms
are too inaccurate near the point 7,,. In particular, an
attempt to apply Langer’s formulas to the computations
carried out in Section III, above, produced values of
€om and 7,, which differed by ten to twenty percent
from those listed in Table I.



