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than would reasonably be expected from statistical
Auctuations.

It was estimated from Fig. 1 that at 240 days after
irradiation the long-lived. activity contributed about
one-fourth of the total gamma-count. Even if the
chemical separations were only 50 percent efficient so
that this contribution was reduced from one-fourth to
one-eighth, it was calculated that the counting rate
ratios should change by about 20 percent in two
months. The absence of such variations in any of the
three samples was considered as proof that the long-
lived activity was not carried by any of the other
elements and must therefore be associated with a
cerium isotope.

The evidence for the presence of Ce"9 consists in:
(1) The existence of a half-life of greater than 120 days
in the photon component of the irradiated cerium, (2)
the greater contributions of soft radiation corresponding
to x-rays following K capture in this activity, and (3)
the impossibility of separating the activity chemically
from cerium, by removal of the most likely impurities.

III. ESTIMATE OP CROSS SECTION RATIO

An estimate of the ratio of cross sections of
(Ce"'/Ce"') should now be possible from the fact
mentioned above, that at 240 days after a 30-day
irradiation the counting activity of the long-lived
gammas was one-third of that for the short-lived
activity which Shepard estimated to occur in 70 percent
of the disintegrations of Ce"'. Then, estimating the
counting eKciency for Ce"' radiation to be twice as
great as that for Ce"' because of the larger fraction of
x-rays of about 30 kev energy, ' the ratio of the disin-
tegration rates 139/141 at this time would be 0.12.
Using the half-life values of 140 and 28 days this ratio
would have been 1.1X10 ' at the end of irradiation.
For a 30-day bombardment, and using the isotopic
abundances of 0.250 and 88.48 percent given by Ingham,
Hayden, and Bess, the ratio of the cross sections was
calculated to be: a(138)/0(140) =1.4.

'H. Maier-Liebnitz, Zeits. f. Naturforsch. I, 243 {1946).' Ingham, Hayden, and Hess, Phys. Rev. 72, 967 (1947).
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A systematic treatment is presented of the application of variational principles to the quantum theory of
scattering.

Starting from the time-dependent theory, a pair of variational principles is provided for the approximate
calculation of the unitary (collision) operator that describes the connection between the initial and 6nal
states of the system. An equivalent formulation of the theory is obtained by expressing the collision operator
in terms of an Hermitian {reaction) operator; variational principles for the reaction operator follow. The time-
independent theory, including variational principles for the operators now used to describe transitions,
emerges from the time-dependent theory by restricting the discusson to stationary states. Specialization to
the case of scattering by a central force field establishes the connection with the conventional phase shift
analysis and results in a variational principle for the phase shift.

As an illustration, the results of Fermi and Breit on the scattering of slow neutrons by bound protons are
deduced by variational methods.

I. INTRODUCTION

A LTHOUGH variational methods have long been
applied to eigenvalue problems in many 6elds of

physics, no systematic use had been made of variational
procedures in connection with scattering processes until
the period 1942—1946 when variational techniques,
among others, were extensively employed in the solution
of electromagnetic wave guide problems. ' Variational
formulations have also been devised for the treatment

' "Notes on Lectures by Julian Schwinger: Discontinuities in
%aveguides, " prepared by David S. Saxon, MIT Radiation
Laboratory Report, February 1945.

of neutron di8usion, ' acoustical and optical diGraction, '
and quantum-mechanical scattering problems. ' Indeed,

' J.Schwinger, unpublished; R. E.Marshak, Phys. Rev. 71, 688
(1947).

3H. Levine and J. Schwinger, Phys. Rev. 74, 958 {1948);75,
1423 (1949).

4 J. Schwinger, "Lectures on Nuclear Physics, " Harvard Uni-
versity, 1947; J. Schwinger, Phys. Rev. 72, 742 (1947); J. M.
Blatt, Phys. Rev. 74, 92 (1948); W. Kohn, Phys. Rev. 74, 1763
(1948); J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 {1949).
Variational principles for scattering problems have also been
independently developed by L. Hulthhn, see Mott and Massey,
The Theory of Atomic Collisions (Oxford University Press, London.
1949), 2nd ed. , p. 128, and I. Tamrn, J. Exp. Theor. Phys. USSR
18, 337 (1948); 19, 74 (1949).
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such methods are applicable in any branch of physics
where the fundamental equations can be derived from
an extremum principle.

It is the purpose of this paper to describe the quantum
mechanical time-dependent scattering theory and its
variational reformulation. As a simple illustration of
these methods, we consider the scattering of slow
neutrons by protons bound in a molecule. This was first
discussed by Fermi' in terms of an equivalent potential
used in conjunction with the Born approximation. A
more exa,ct integral equation treatment was given by
Breit, ' with quite small ensuing corrections' to Fermi's
theory. %e shall show that the results of Fermi and
Breit are easily derived from a variational treatment.
Although one could consider, without difhculty, the
scattering by any number of nuclei, the discussion will
be restricted to the spin-dependent scattering by a
single proton in an otherwise inert molecule of arbitrary
mass. An extension to two protons, and in particular to
the hydrogen molecule, is contained in an accompanying
paper by one of us. Also included is an estimate of the
error in the para-hydrogen scattering cross section
calculated by Fermi's method.

IL TIME-DEPENDENT SCATTERING THEORY

%e are concerned with the development in time of
a system consisting of two interacting parts, which are
such that the interaction energy approaches zero as the
two parts are separated spatially. Correspondingly, the
Hamiltonian is decomposed into the unperturbed
Hamiltonian Ho, describing the two independent parts,
and Hi, the energy of interaction. Since the problem is
to describe the eBect of Hi, it is convenient to remove
the time dependence associated with Ho from the
Schrodinger equation

ih[a%' (t)/at]= (Hp/H/)e (t).

This is accomplished by the unitary transformation

In particular,

0(~)=5@(—~), 5= U+(~) (1.5)

defines the collision operator, which generates the final
state of the system from an arbitrary initial state. The
operator U+(t) is to be obtained as the solution of the
differential equation

ih[a U+(t)/at] =H &(t) U+(t)

subject to the boundary condition

U+(—")=1

(1.6)

U+(t) =1—(i/h)~ H, (t') U+(t')dt'

= 1 (i/h) —q(t t')H, (t') U+(t')d—t'

(1.12)

It is also useful to introduce a unitary operator U (t),
which generates the state vector 4(t) from the 6nal
state 4'(pp ),

+(t) = U-(t)+(")= U (t)~+(-") —(1 g)

Since the two operators are related by

U+(t)=U (t)S

the operator U (t) is evidently the solution of the
equations

ih[aU (t)/at]=H, (t)U (t), U (~)=1. (1.10)

Furthermore,

U (—~)=5 '

which is the operator generating the initial state vector
from the final state vector.

The differential equation for U+(t) can be replaced
by the integral equation

which yields

0'(t) = exp( —iHpt/h)% (t) (1.2)
which incorporates the boundary condition (1.7). Here

ih[ae(t)/at]= H&(t)e(t),
H~(t) =exp(iHpt/h)H~ exp( iHpt/h)—

(1 3) q(t —t') =1;
=0~ (1.13)

The initially non-interacting parts of the system are
characterized by the state vector +(—~). On following
the course of the interaction and the eventual separation
of the two parts, we are led to the state vector 4'(+ pp),
representing the final state of the system. This de-
scription can be made independent of the particular
initial state by regarding the time development as the
unfolding of a unitary transformation:

Similarly, U (t) obeys the integral equation

U (t)=1+(i/h) j H, (t')U (t')dt'

= 1+(ih/)~~ dt'H, (t')U (t')~(t' —t).

(1.14)

+(t) = U+(t)+(—"), U++(t)U (t) =1 (14)
' E. Fermi, Ricerca Scient. VH—H, 13 (1936).' G. Breit, Phy . Rev. 7j., 2&5 (&947).
~ G. Breit and P. R. Zilsel, Phys. Rev. 71, 232 (1947};Breit,

Zilsel, and Darling, Phys. Rev. 72, 576 (1947).

By considering the limit as t~~ in (1.12) and t + po-—
in (1.14), we obtain
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~ 00

5 '-= 1+(i/h) H, (t) U (t)dt

which are, of course, connected by (1.9).
The differential and integral equations charac-

terizing U+(t) and U (t) will now be replaced by equiva-
lent variational principles from which the fundamental
equations are obtained as conditions expressing the
stationary property of a suitable expression. Further-
more, the stationary value of this quantity is just S, the
collision operator. Hence the variational formulation
of the problem also yields a practical means of ap-
proximate calculation, since errors in the construction
of 5 will be minimized by employing a stationary ex-
pression.

%e 6rst consider

(8'5'= U+(~ )— ~ U +(t)
~

+ H—,(t) —
~
U+(t)dt, (1.17)

&at

which is regarded as a function of the operator U+(t),
subject only to the restriction (1.7), and of the Her-
mitian conjugate of the arbitrary operator U (t). The
change induced in '5' by small, independent, variations
of U+ and U ls

~'5'= (1—U-("))+~U+(~)

Thus,

+—
i U +(t)II,(t) U+(t)dt

h~ „
(i l-'(."

+~ —
~

I E. +(t)H, (t)q(t-t')
ih) J„~„

XEh(t') U, (t')dtdt'. (1.21)

P6'5'=-
~I dtbU +(t)H, (t) U+(t) —1

+-, q(t —t')EI, (t') U+(t')dt'
b~

+—
~I dt U (t) —1—— dt'H, (t')

X U (t')~(t' —t) H (t)SU, (t), (1.22)

A variational basis for the integral equations (1.12)
and (1.14) is provided by the expression

00

'5'=1 ——
I LU +(t)H, (t)+II,(t) U, (t) jdt

(8 i
gU +(t)~ + H, (t) ~U+(t)dt

&Bt h

(8 t ) +
+ ii

i + II,(t) iU (—t) -hU+(t)dt (1.18).
(Bt h )

The requirement that '5' be stationary with respect to
arbitrary variations of U+ and U, apart from the
restriction (1.7), thus leads to the differential equations
(1.6), (1.10) and the boundary condition (1.10) for
U (t). lt is also evident from (1.17) that the stationary
value of '5' is the collision operator 5, according to
(1.5). A somewhat more symmetrical version of (1.17) is

S'= -', (U+(~ )+ U +(—~ ))

which is indeed zero if U+ and U satisfy their deaning
integral equations. It is also evident that the stationary
value of '5' is just the collision operator, in the form
(1.15).

This variational principle differs from (1.17), or
(1.19), in that no restrictions are imposed on U+ and
U, and that every integral contains the interaction
operator H&. The latter property implies that an ade-
quate approximation to U+ and U is required only
during the actual process of interaction. Furthermore,
the second type of variational principle will yield more
accurate results than the first if the same approximate
operators U+ and U are employed. This is indicated
by the results of inserting the simple but crude approxi-
mation

1 BU+(t) 1 8U +(t)
-U-+(t) — U+(t)
2 at 2 at

+ U+(t)H, (t) U+(t—) dt (1.19)

U+(t) = U (t) = 1

in (1.17) and (1.21). The former yields

5~1—(i/h) )
~ IIg(t) dt

(1.23)

(1.24)

subject to the restrictions

U+(—")= U-(~) =1. (1.20)

which is equivalent to the 6rst Born approximation,
while (1.21) gives

It is easily veri6ed that '5' is stationary with respect to
variations of U+ and U about the solutions of the
differential equations (1.6) and (1.10), subject to the
boundary conditions (1.20), and that the stationary
value of '5' is 5.

00 00 (a 00

J
5=1—(i/h) H, (t)dt+ (i/h)' I H, (t)

y q(t t')H, (t')dtdt' (—1.25)

the second Born approximation.
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These approximate expressions for 5 illustrate a dis-

advantage of the variational principles thus far dis-

cussed; the unitary property is not guaranteed for an
inexact 5. It follows from (1.24), for example, that

by

1
~'E'= —— i~ ~v+(t)! ia—H, (t) !v(t)

Bt

5+5=1+(1/lt')! H, (t)dt ! .
) (1.26)

8
+ ! iI —H, (t) !V(t) bv(t) Ct

Bt )

A version of the theory that meets this objection is
obtained on replacing the unitary operators V+(t) and
U (t) by

V(t) = ~+(t)2/(1+5) = ~-(t)2/(1+5 ') (1 2 )

t'U( )+V(— )~
!——(V'(")—&"(—"))~!

2

~ U'(~)+ V'( — )
+I —1 I~(v( )-v(—

2

Note that

V(—~)=2/(1+5);
V(~)=2/(1+5 ')=25/(1+5),

2(v(")+V(—~))=1

(1.28)

(1.29)

~ V'( )+V'(— ) &

i
—~(v'(")—V'( —"))

(V(~)+U(—~)
X! (1.36)

2 )

V(ao) = U+(—ce).

The property (1.29) leads us to write

(1 30) If, therefore, V(t) is restricted by the mixed boundary
condition (1.29), 'E' is stationary with respect to
variations about the solution of the differential equation

V(~) =1——,'iE; V(—~)=1+-,'iK (1.31)

while (1.30) supplies the information
! ijt H, (t)—!V(t)=0

at )
(1 3&)

(1.32)

the so-called reaction operator E is Hermitian. On
remarking that

5= V(")/V( —~)

and the stationary value of X' equals E, according to
(1.31) and (1.32).

The integral equation satisfied by V(t) can be con-
structed from that obeyed. by U+(t), or directly in the
following manner. On integrating the differential equa-
tion (1.3't) from —~ to t, and from ~ to t, we obtain

we obtain

5= (1 ', iE)/—(1—+-,'iK) (1.34)
i

V(t) = V(—~ )——
I H, (t') V(t')dt',

i't

vrhich represents the unitary 5 in terms of the Her-
mitian E. %e shall now construct a variational prin-
ciple for E in which the Hermitian property is assured.

Consider the operator X', de6ned by

i ~" ( 8V(t) Bv+(t)'K'= —
~ ! V+(t)- — V(t) !dt

2& „0 Bt Bt

V(t) = V(~)+— II H, (t') V(t')dt'
h~,

(1.38)

The addition of these equations yields, in consequence
of the boundary condition (1.29),

oo

V(t)=1——
il ~(t—t')H, (t')V(t')dt' (1.39)

oo

U+(t)H, (t) V(t)dt where
~(t—t') =1;

(1.40)

+-C(V(~)—V(—~))
2

which is evidently Hermitian for arbitrary V(t). The
effect of a small variation in V(t) and V+(t) is indicated

Conversely, the diBerential equation and boundary co@-
dition obeyed by V(t) can be deduced from the integral
equation. Note also that

QO

E= '(V( )—V(— ))=— l~ H (t)V(t)dt (1.41).
h
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A variational principal formulation of this integral
equation is provided by the expression

p
00

'E'=- (H, (i) V(h)+ V+(t)H, (t))dt
00

V+(t)II, (t) V(t) dh

1

Z ~00 00

V+(h)H, (t)b(t- t')II, (i')2a»„~ „
X V(t')diCh' (1.42)

which is obviously Hermitian for arbitrary V(t). Now

HPib ——Ebi b (1.49)

and simulating the cessation of interaction, arising from
the separation of the component parts of the system,
by an adiabatic decrease in the interaction strength as
t—&&~. The latter can be represented by the factor
exp( —b

i
t i/h) where b is arbitrarily small. Accordingly,

(1.48) becomes

It shouM be noted that ib cannot be an exact eigen-
function of IIQ, since a superposition of momentum
states (wave packet) is required to produce the spatial
localizability involved in the de6nite separation of the
two parts of the system. An equivalent description is
obtained, however, by introducing eigenfunctions of H p,

1
h E'= —hV—+(t)H, (t) V(t) —1

k~ „ where

Tb.= (i/—h) (C b, Hi+. &+i(Eb)) (1.50)

j
~(t—t')H, (t') V(t')dt' di @.&+&(E)= dt exp(i(E H,)t/—h)

00 g &O

V(,) 1+,i,(i h)H, («)

X V(h')dt' +H, (h)SV(t)dh (1.43)

Xexp( —ziti/h) U+(t)C' (1~ 51)~

Formula (1.16) for S '—1=T+ leads, in a similar way,
to

(T+)b.= (i/h)(C b, Hi@. —'(Eb)) (1.52)
which is indeed zero if V(t) satisfies the integral equation
(1.39). Furthermore, the stationary value of 'E' is just
(1.41), the correct reactor operator.

The abstract theory thus far developed can be made
more explicit by introducing eigenfunctions, i, for the
separated parts of the system, which will describe the
initial and 6nal states. Thus, since Si is the hnal state
that emergies from the initial state i„the probability
that the system will be found eventually in the par-
ticular state i b, is

Wb. = i(Cb, SC.) i
= iSb. i

. (1.44)

T+T= —(T+T+) (146)

and the probability that the system will be found in a
particular final state di8ering from the initial one is

It is slightly more convenient to deal with the operator

(1.45)

which generates the change iq the state vector produced
by the interaction process. The unitary property of 5
implies that

or equivalently,

T.b= —(i/h)(%' & i(Eb), HiC'b)

in which

+.& '(E) = f dh exp(i(E —Hb)t/h)

(1.53)

+o&+i(E)= ~ dt exp(i(E E.)h/h) exp—(—b
I hl /h)C.

—(i/h) ~' dr exp(i(E —Hb) r/h)
Q

Xexp( —br/h)Hi+ &+i(E) (1.55)

Xexp( c
i

hi�

/h) U (i)C,. (1.54)

Determining equations for 4', &+&(E) and @,&—&(E)

c&bn be obtained from (1.12) and (1.14), the integral
equations for U+(t) and U (t). Thus

bW&b; Wb, = i
Tb, l'.

Now, according to (1.15),

(14&)

+.&
—&(E)= I dt exp(i(E —E.)t/h) exp( —

&i ti/h)C.

= —(i/h)~t dt(C „exp(~Hy/h)H,

Xexp( —iHbh/h) U+(t) C ). (1.48)

+(i/h)~f dr exp( —i(E Hb)r/h)—
p

Xexp( —~r/h)H e,i&(&E), (1.56)



B. A. LIP P MANN AN 0 J. SCH%'I NGE R

wh~re r= It t—I. Now

Qe

dr exp(+i(E —Hp) r/tt) exp( —ar/tt)
a~, 2T 0(}

W&. b(—E. E&—) I T». l' ~l dt,
k

(1.66)

in which E,—E~ must be placed equal to zero, in view
of the second delta-function factor. The expression thus
obtained

E&ie H—o (E—Ho) '+ e' (E—Ho)'+ c'

~i~S(E' H,).—(1.57)
E IIp

The last expression is a symbolic statement of the fol-
lowing integral properties possessed by the real and
imaginary parts of (1.57) in the limit as &~0.

evidently describes the fact that transitions occur only
between states of equal energy for the separated system,
and with an intensity proportional to the total time of
effective interaction. In the idealized limit e—+0, the
latter is infinitely large. However, we infer from (1.66)
that the rate at which the transition probability in-
creases is

wb. = (2x/h)t&(E. —E&,) i T&,.i'. (1.67)

A somewhat more satisfactory derivation of this
result follows from the evaluation of

r
" f(x)

GX)

x
Lim f(x)dx= P

e-+0 j g2+ ~2

l9

w~. =—
I
(4'~, U+(t)~.) I'

Bf

(1.58)
(1.68)

Lim —
I f(x)dx= f(0),

x'+ e'
which expresses the increase, per unit time, of the

where I' denotes the principal part of the integral and probability that the system, known to be initially in

f(x) is an arbitrary function. Therefore the state c, will be found at time 3 in the state b. Now

+.~+&(E)= 2&rM(E —E.)C.

+ H&%'.&+&(E) (1.59)
E&ze—Bo

Z

w&,.———(H&(t) U+(t) C., C &,)

X (4'&„U+(t)C',)+complex conjugate
and, on writing

4', '+&(E) = 2&r&&tt&(E—E,)%',&+&

we obtain

@,&+)—y + B,@ (+)
Eg+16—IJO

(1.60)

(1 61)

r'
dt'(exp(i/(E, —H, )t/ft) U+(t)C., H,C,)

X (4&„H& exp(i(Eb —Ho) t'/l't)

X U+(t')C )+c.c. (1.69)

(1.62)T&„2xib(E=, E&,)—Tb.—

T&,.= (C &„H&+.&+&) = (4'&, &
—

&, H,C.) (1.63)

These equations provide a time-independent formula-
tion of the scattering problem, in which the small
positive or negative imaginary addition to the energy
serves to select, automatically, outgoing or incoming
scattered waves.

A matrix element of the operator T can now be
expressed as

dt exp(i(E —H, )t/&&t) exp( —e
I
t I/t't) U+(t) C.

imply that
= 2xht&(E —E.)%.&+& (1.70)

exp( iHat/h) U+(t—)C', =exp( iE,t/tt) + ~+—& (1.71)

in which we have employed (1.12), and assumed that
bNa. This can be simplified by noting that (1.51) and
(1.60),

are equivalent forms for an element of the association
matrix I, which is defined only for states of equal
energy. The resulting formula for the transition prob-
ability,

which is just the state vector, in the Schrodinger repre-
sentation, of our idealized stationary state. Hence

t

who= —
~

T&,o~
' exp(i(E, —E&)(t—t')/h)Ct'+c. c.

k2

W&, =4m'ftl(E, Eb)52' T&, —i' (1.64)

is to be interpreted by replacing one factor, t'&(E, E&,), —
by its defining time integral 2%.

=—
~

T&,.(
'a(E.—E&,).

k
(1.72)co

t'&(E, E&,)= I exp(i—/(E. —E&,)t/l't)
2~k ~

A simple expression for the total rate of transition
Xexp(—&~t~/&rt)&t; &~0 (165) from the initial state follows from the general property
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or
4)r' Pb h(E.—E,) ~

Tb.~'= 4&r—Im(T..) (1.74)

Qb wb. = —(2/i'b) Im(T..). (1.75)

The left side of this formula is not exactly the total rate
of transition out of the state c, since b = a is included in

the summation. However, a single state makes no con-
tribution to such a summation; a group of states is
required. A relation of the type (75) is characteristic
of a wave theory, in which the reduction in intensity of
a plane wave passing through a scattering medium is
accounted for by destructive interference between the
original wave and the secondary waves scattered in the
direction of propagation.

A variational formulation of Eq. (1.61) by means of
a stationary expression for T~, can be obtained from the
variational principle (1.21). A matrix element of this
operator equation reads

of the operator T contained in (1.46). On writing a
matrix element of this operator relation and substituting
(1.62), we obtain

4&r2 pb f)(E, Eb—)Tb *f)(Eb E,—)Tb,
= 2~i&(E.—E,)(T..—T..*). (1.73)

The factor ()(E —E,) can be canceled and (1.73) then
yields, for the special situation, c=a,

where E is the common energy of states c and b. %e
shall verify directly that (1.78) has the required proper-
ties. Thus

eT,.=
i

Se,&-&, H,
i

C.+ H,C.(+)
E+ib H—,

((-C.&+&
/ I+I ] 4»+ H,C, &-&

))
—4 &-&

i, H, i')%.&+&
i (1.79)

)

Kb =2+&)(Eo Eb) Kbo, — (1.81)

which is indeed zero for variations about the solutions
of (1.61). Furthermore, it is a consequence of the latter
equations that

1
(4 — H,+ +)—

~
@,II, H, %. +

E+ib H() — )
= (+b&

—', H)4.) = (4 b, H&+.&+)) (1.80)

so that the stationary value of 'T'b, is Tb„according to
(1.63) .

A similar theory can be developed for the matrix
elements of the operator E. It is easily shown that

dt[(exp(i(E. Ho)t/k) U —(i)4 b, H(4.)a~„ where

Kb, ——(4 b, H,C.&")= (C'b(&&, H &4.). (1.82)
+(4,, H, exp(i(Eb —H())t/h) U+(i)4.)]

+-,~ dt(exp( —iH, i/Ib) U (t)4»,
h~ „

XH( exp( iH()i/—k) U+(t) 4,)

The time-independent state vector 4' "' describes a
stationary state, according to the relation

exp( iHpt/Ib—)V(i)4,= exp( iE,t/It—)%,&'& (1.83)

and obeys the equation

di I di'(exp( iH, t/I&) U —(t)4»,
Eh)

1
C.&'&=4).+I'( )H,%'.&').

t E.—Ho)
(1.84)

XH, exp( —iH, (t—i')/5)
A variational basis for (1.82) and (1.84) is provided by

XH( exp( —iH()i'/Ib) U„(t')4.) (1.76)
K ba K ab (4 b ) H&4'c)

in which the adiabatic reduction of H& for large
~
t

~

has
not been indicated explicitly. %e now restrict ourselves
to the class of stationary states, according to the

assumption

exp( —iHbt/h) U+(t)4, =exp( —iE„&'/I&)C, (+). (1.77)

The result of performing the time integrations is ex-
pressed by

'T'b. = (4'b&—
&, H,C.)+(Cb, H,C,&+))

+(Cb, H, %,&')) —(4'b&'&, H, @,&'))

+( C' '" H(I'( (H)C' "'
( (185)

(E HI i

T=S 1=—iK/(1+-', iK)— (1.86)

The connection between the matrices T and I is
obtained from

on rewriting the latter as
(@b(—) H + (+))

T+-'i K'1= —iE. (1.87)

+
~

Cib( —) H, H,@,&+&
[ (1.78) Non-vanishing matrix elements of this operator relation

E+ib—Ho ~ are restricted to states of equal energy, according to
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(1.62) and (1.81), whence

Tg.+Br P, Ki,.h(E,-E)T,.= K... (1.88)

P. Ki,.b(E.—E)f.g ——Kgfiz (1.89)

Since K is an Hermitian matrix, the eigenvalues KA
are real, the eigenfunctions f,z are orthogonal, and may
be normalized according to

Q. f.~*&(E. E)f.—a=4' (1.90)

The matrix elements of K can be exhibited in terms of
the eigenfunctions and eigenvalues of K

R.=P~ fs~K~f.~* (1.91)

where E is the common energy states a and b. An eGec-
tive way to solve this equation is to construct the eigen-
functions of K, which are defined by the eigenvalue
equation

f.g CF——i"(k,); ~1 =—1, ns, (1.100)

and that the eigenvalues of K depend only upon the
order of the spherical harmonics, i.e., 8A

—=8~. The con-
stant C is 6xed by the normalization convention con-
tained in (1.90), which now reads,

~
C

~ ') t V,"*(k)V i."'(k)pd Q = fi i,.fi„„,(.1.101)

Here pdQ is the number of states, per unit energy range,
associated with motion within the solid angle dQ. This
occurs as a weight factor in a summation over states
with equal energy, replacing the summation over all
states as restricted by the factor 8(Eo—E). Explicitly,

propagation vectors that define the initial and final
states. It may be inferred that the f,z are spherical
harmonics, considered as a function of the angles that
define the direction of k„

Equation (1.88) for T will then be satisfied by

Ti,.=g~ fs~'Lf.~*, (1.92)

p'dp 1 k'
P=

Sm'A'dE Sm'k u
(1.102)

or
TA+ Zx'KA TA KA (1.93)

Kg= —(1/w) tanbg (1.95)

T~ ——Kg/(1+ in Kg). (1.94)

This is only to say that T is a function of K and there-
fore possesses the same eigenfunctions, while its eigen-
values are determined by those of K. These eigenvalues
can be conveniently expressed by introducing the real
angles BA, according to

if we consider a unit spatial volume. The second form
in (1.102) expresses p in terms of the wave number k
and e, the speed of the particle. With spherical har-
monics that are normalized on a unit sphere (1.101)
requires that

I
C

I

2= 1/p= 8mihii/k'. (1.103)

We may now compute from (1.97) the probability,
per unit time, that the particle is scattered from the
direction of k, into the solid angle d0 around the direc-
tion of kb,

Tg = —(1/~) sinkage~". (1.96) w=(2/mh) (g sln8ie@'tC~'Yi"(ky)vi *(k,) ~'pdn.

(1.104)The resulting expression for the transition probability
per nit time isu

We then obtain the well-known expression of the dif-
wbs (2/sh)

~ Q~ »n4e" "fs~fa~'~ '&(E'a Ea) (1.97) —ferential cross section for scattering through an angle i7',

on dividing m by v, which measures the Qux of incident
particles, and employing the spherical harmonics addi-
tion theorem,

pi, wi,.= (2/~h) Pg sin'bg
~ f.g ~

' (1.98)

according to (1.97) or (1.75). Finally, the sum of the
total transition probability per unit time over all
initial states of the same energy is expressed by (4)Yl (k ) L(21+1)/4'il )Pi(cos8), (1.106)

(1.99)Q wi,.b(E.—E)= (2/7rh)gg sin'b~.

and the total probability per unit time for transitions d~(y) —(1/k2)
~ p, (21+1) s;nk, e@iP,(cosy)

~

2df1 (1 105)
from a particular state is given by

These results are general. izations of familiar formulas
obtained in the conventional phase shift analysis of the
scattering of a particle by a central 6eld of force. In
the latter situation, the eigenfunctions of K are evident
from symmetry considerations, namely the invariance
of Kb under a simultaneous rotation of k and kb, the = (4ir/k')P i(21+1) sir. '-bi (1.107)

where the Legendre polynomial P&(cosi7) is a function
of 8, the angle between k and kb. The total scattering
cross section is obtained from (1.98),

~= (2/~he)P sin'a,
f
C['[ I'&"(k.) ~

'
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in consequence of

2-I l' "(k.) I'=(21+1)/4 . (1.108)

and
g.C.f.gb(E. E)= C—

y, ((&f,„g(E E}—@„((&

(1.110)

(1.111)

the variational principle (1.85) becomes

1——tan (1 A(1A8 ( P&&, Hlc'A)

+ (+B, H8'A'") (+8—(",H&+A'")

+( egg(" H)P( )H&eg(" (. (1.112)
( ( 1

l.E—H, &

Note that 44, or more exactly written C~, E, has the
following orthogonality-normalization property:

(C'~, z, 4 » (; ) =P.f.,~'f&(E. E)f~»f&(E. —E')—
= ~(E E')Z.f'*-&(E. E)f"-
= f&g»f&(E E')—

and that the inverses of (1.110), (1.111) are

(1.113)

C.=Q,, f.,*C ~, 4,('&=+„f~~*+~('& (1.114)

which are expansions of these state vectors in eigen-
vectors of K.

III. NEUTRON SCATTERING BY A BOUND PROTON

As an application of the variational methods dis-

cussed in the first section, we consider the scattering of
slow neutrons by a proton bound in an otherwise inert
molecule. If the momentum associated with the center
of gravity of the whole system is assumed to be zero,
the unperturbed Hamiltonian consists of two parts, one
describing the relative motion of the neutron and the
molecular center of gravity, the other being the Hamil-
tonian of the internal molecular motion,

Ho = (y.'/2p)+ H.,

(((=AM/(A+ 1)

(2.1)

(2.2)

Since the total cross section is independent of the
incidence direction, the same result follows immediately
from (1.99).

We consider finally, the variational formulation of
problems possessing the general character of the scat-
tering by a central force field; namely, those in which
the eigenfunctions of K are determined by symmetry
considerations, and the basic question is to obtain the
eigenvalues K~, or the phase angles b~. For this purpose,
we notice that the inverse of (1.91) is

Qo, o fo»*b(Eo —E) Kof.gb( E.—E)= Kg(&g». (1.109)

On introducing the state vectors

is the reduced mass for relative motion of the neutron
and molecu1. e, while A is the molecular mass in units
of M, the mass of the neutron. The perturbation is the
neutron-proton interaction energy,

H& V(——r„—r~) (2.3)

which also depends upon the spin operators of neutron
and proton, e„and e„.The simplifying feature in this
problem arises from the short range and large magnitude
of the nuclear potential contrasted with the long range,
weak molecular forces. The variational principle (1.78)
requires a knowledge of the wave function representing
the state vector only within the region of nuclear inter-
action, where the molecular force on the proton is
negligible. Thus, the basic problem is the scattering of
a neutron by a free proton, with essentially zero energy
of relative motion. We therefore first consider some
properties of the latter system.

The unperturbed Hamiltonian for a neutron and a
free proton, in the system in which the center of gravity
is at rest, is

BCo= p'/M, (2.4)

where y is the relative momentum of the particles. If we
temporarily omit the spin coordinates, the wave func-
tion q, representing the unperturbed state vector C„ is
simply a constant in the limit of zero energy. This con-
stant can be chosen as unity, corresponding to a unit
spatial volume. The wave function representing the
state vectors 4' (+& and 4, ( & will be denoted by f(r).
There is no distinction between outgoing and incoming
waves in the limit of zero energy. Since the scattering
is necessarily isotropic, T&, is simply a constant, denoted
by t. According to (1.63), t is given by

t= ((p, yy) =
) V(r)y(r)dr, (2.5)

sin8~ka; k~o (2.8)

thereby introducing the scattering amplitude c. The
constant f is fixed by the normalization condition (1.90),

fft"4~p=1- (2.9)
where, (1.102),

4&rp = k'/2m%o = kM/4or'A' (2.10)

The second form of (2.10) follows from )Q= ~~M(&, the
relation between the relative momentum and the
relative velocity. Finally,

t= —4or&r&'a/M. (2.11)

where P obeys the integral equation (1.61).

0+(1/~o) ~0= (p. (2.6)

The connection between t and the 5 phase shift is ob-
tained from (1.92) and (1.96),

t= —(f (
'ku/~, (2.7)

in which we have employed the zero energy limiting
form)
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If the neutron-proton interaction operator is spin-
dependent, t must be replaced by a matrix in the spin
quantum numbers. The eigenfunctions of this spin
matrix are those of the triplet and singlet states of
resultant spin angular momentum. The associated
eigenvalues of t are related to the triplet and singlet
scattering amplitudes,

A second approximation involves the last term of
(2.15), which is small in comparison with the other
terms, since molecular energies are negligible in com-
parison with the practically equal kinetic energies of
neutron and proton during the nuclear interaction
process. If we initially ignore the last term of (2.15) the
latter reads

t&, 0= —4n h'a&, p/M. (2 12) 'T'b. = (4b& ', VF.)+ (F&„V%'.&+')

As in (1.92), the matrix t can be constructed as a linear
combination of its eigenvalues, multiplied by coefFicients
which are the matrix elements of projection operators
for the corresponding eigenvalues. The projection
operators for the triplet and singlet states are well
known to be

F&
= 4 (3+&r &r»), Fo= 4 (1—&r„&r»). (2.13)

Hence, to include spin dependent interactions it is
sufficient to regard t in (2.11) as a spin operator, with

&&&F1+nOFO= ', (3o&+uo)-+ 4 (&&& ao)&r. &r,—. (2.14)

%e shall now perform an approximate but highly
accurate evaluation of Tg, which describes the scat-
tering of a neutron by a bound proton. For this purpose,
(1.78) is written

'T'&,.= (% &,
&-&, VC.)+ (C &„V%'.&+&)

, VC. ) —i
e,&-&, V—VC. +

i

t' 1

Xo )
1 1y

+( C, &-&, V( +—(Ve.&+& [, (2.15)
& F.+ic HD Xoi—

—(e&,&-&, Ve.&+&)—
i +&, & &, V—V@.&+& i. (2.18)

ae,
' )

The condition that 'T'&, be stationary is that O, (~&

satisfy the relation

%.&+&+(1(X,) V@.&+& =F.(r).
On comparison with (2.6), it is evident that

e.&+& = P(r„—r„)F.(r)

(2.19)

(2.20)

= t F&,*(r)F,(r)dr (2.21)

according to (2.5). This result,

4m.k'
T&,. — a~' expLi(k. kb) r—„j.

M
Xxb*(r)x.(r)«(2 22)

and the stationary value of 'T'~, an approximation to
the correct T~„ is given by

T&„~(F&„V%' &+') = (Fb, V/F, )

En treating the spin dependent interactions, it is con-
venient to suppress spin functions and thus regard T~,
as a spin operator. The 6rst approximation to be
introduced concerns the wave function representing the
state vector C„say C,(r, r). Here r is the neutron
coordinate relative to the molecular center of gravity,
while r symbolizes the set of internal molecular coor-
dinates, including r„, the proton position vector relative
to the molecular center of gravity. This wave function,
describing the independent motion of the neutron and
molecule, will have the form

C.(r„, r) exp=(ik r.) .x,(r) (2.16)

in which x,(r) is an internal molecular wave function.
Now C,(r„, r) in (2.15), only occurs multiplied by the
short range nuclear potential V(r„—r„).We shall there-
fore replace C',(r„, r) by

C,(r„, r) =F.(r). (2.17)

The error thereby incurred is of the order (pro)', where
ro is a measure of the nuclear force range. Since the
inQuence of molecular binding is only of interest for slow
neutrons, (kro)'~10 ', and we need not introduce a
correction to compensate for this replacement.

is the Fermi approximation.
To include the last term in (2.15), we observe that it

may be written, in terms of wave functions, as

Jt 4&, & &*(r„, r)V(r„—r„)

1 1
)&~ r„, r +—r„', r' ~V(r„' —r„')

F.+i~ H, SC,—
' )

X+,&+&(r„', r')dr„drdr„'dr'. (2.23)

We shall again introduce an approximation which
exploits the short range of V in comparison with
molecular dimensions, namely, the replacement of (2.23)
by

Jt 4b& &*(r„, r) V'(r„—r )E&+&(r, r') V(r„'—r ')

&(4',&+&(r„', r')dr„drdr„'dr', (2.24)
where

1 1
It&+&(r, r')=

) r„, r +—r„', r' ). (2.25)
F.Hie Ho Xo—



VARIATIONAL PRINCIPLES I 479

1
+,&+&+—V@, &+&= F,(r)+ I E'+&(r, r')

3CO

X V(r„'—r~') +,&+&(r„', r')dr„'dr' (2.26)

The conditions that 'T'~, be stationary are then ex-

pressed by
In the second version, the summation over the states
of the system mol. ecule plus free neutron is explicitly
performed over the independent states of the molecule
and of the neutron. For the evaluation of the corre-
sponding matrix element of 1/3CO, it must be realized
that the latter operator refers to the relative motion of
neutron and proton only. Thus

which, in virtue of (2.5) and (2.6), imply that

qr &+) —P(r r )G &+)(r)

where G '+'(r) obeys the integral equation

1 ~ &- dk pMq
(2 2p) ] r„, r —r„', r' (= ~~ exp(ik (r„—r )(

Xo ) & (2&r)'

Xexp(ik (r„'—r„'))
G.&+'(r) —t ~ E'+'(r, r')G &+&(r')dr'= I'.(r). (2.28)

This is a generalization of the integral equation obtained

by Breit.
The stationary value of ' f'~ is given by

T&,.~(F)„V%',&+&) = t I F&,*(r)G,&+&(r)dr. (2.29)

The integral equation for G, '+'(r) can be solved by suc-
cessive substitutions,

G, &+&(r) =F,(r)+t I E'+&(r, r')F, (r')dr'

(r„+r r„'+r 'y
X~I — —l~(s-s'), (233)

2 2

where s symbolizes the set of internal molecular coor-
dinates, omitting r„. We are actually interested in
(2.33) as r„&r„and r„'~r~'. In this limit, &1(r„+r~/2

r„'+—r„'/2) becomes B(r~ r„') an—d we may employ
the completeness relation for the molecular eigen-
functions,

l)(r„—r„')5(s—s') = 5(r r') =—p~ x„(r)x~*(r'). (2.34)

One can now combine (2.32) and (2.33) to form

E&+)( I &+&r, r)E (r, r )

XF,(r«)dr'dr«+. . . . (2 3O) E&+'(r, r') =g ~t exp(ik r„)&&,(r)
7 " (2n.)'

which is evidently a power series expansion in a/f,
where / is a characteristic molecular dimension. Since
&i/i~10 —', the series converges rapidly and it is quite
suflicient to retain only the first term beyond F,(r) to
obtain an accurate estimate of the correction to Fermi's
approximation. Therefore,

T&„ t F&,*(r)F,(r)dr+t'~t F),*(r)E'+'(r, r')F, (r')
aJ

Xdrdr' (2.31).
To construct E'+'(r, r'), we observe that

X +
&+ie —(k'k'/2&&) —W (k'k'/M)

Xexp( —ik r„')&&,*(r')

M p dk
exp(ik (r„—r„')

k' ) ~ (2s.)'

2&&/M 1
+—

&&,(r)-x,*(r'). (2.35)
k '+zg —k' k'

1
r„, r —r„', r'

E+ze—IIO, )
Here

k,'= (2&i/k2) (E W,)—(2.36)

=P e„(r„,r) -4.*(r„', r')
k+ Z6 Err,

and»=(2&&/k')e. The k integration in (2.35) involves
the well-known integrals

dk
exp(ik r„) x„(r)

(2s-)'

and

dk exp(ik (r„—r ')) exp(ik„~ r —r„'~)
(2.37)

(2~)' k' —k '
ir& —4s.

~

r„—r„'~

x
F+ ie (k'k'/2&i) W, ——

Xexp( ik r„')&r„—*(r'). (2.32)

dk exp(ik (r~ —r~'))

(2s )'
(2.38)
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in6nitely heavy molecule. Our results for these situa-
tions are in agreement with those of Breit. In particular,
for a free proton k~=k, since there is no internal
molecular motion, and (2.41) reduces to

(2.39) 4xk'
T&,.= t'= — a(1+ika)

M
(2.42)

the propagating or attenuating nature of the spherical
wave corresponding to whether or not the excitation of
the molecular state p is energetically possible. Finally,
then t'= ——

~ f ~

' sinl&e" =—4m'' 1 tanb
(2.43)

M k1—i tank

This is simply the exact version of (2.7)

rC &+&(r, r'}=— P X„(r)x,'(r')
4+k' 7

2p, exp(ik„~ r,—r„'~ )-1
X—

3E
f
r„—r~'/

4m&'
T,g

— a Fb*(r)F,(r)dr
M

(2.40)

with tanb replaced by ku, the low energy limiting form,
hut retaining the complex factor 1/(1 —i tan6) 1+ika.
The latter has a negligible eGect on transition proba-
bilities in the energy range of interest, but is necessary
to preserve the general conservation theorem (1.74).
We shall, indeed, verify (1.74) for the more general ex-
pression (2.41). It is most evident from (2.31) and
(2.32) that

+a 2 ~" F~*(r)x~(r) x.*(r')

(2u/M) exp(ik,
~

r„—r,'~) —1
X F,(r')drdr' . (2.41)

r2 —r„'

The ratio 2p/M ranges from unity, referring to a free

proton, to 2, which applies to a proton bound in an

XF,*(r')F.(r') drd r'

(2.44)

in which T„on the right side is computed from the
Fermi approximation. This is in accordance with the
approximate nature of (2.41).


