We are indebted to Mary Novick, Robert Keyes, Jerome Lerner, and Jack May for assistance in various phases of these experiments. A final report on this work will be submitted to this Iournal.

¹ Hornyak, Lauritsen, and Rasmussen, Phys. Rev. 76, 731 (1949).
 ² D. Saxon, Phys. Rev. 73, 811 (1948).
 ³ Perlman, Ghiorso, and Seaborg, Phys. Rev. 77, 26 (1950).

A 1.0-Mev Energy Level in C^{13}

ISADORE B. BERLMAN Physics Department, Washington University,* St. Louis, Missouri May 23, 1950

⁴HERE has been some discussion recently in the literature¹⁻³ as to whether C13 has a 1.0-Mev energy level as obtained from the reaction $C^{12}(dp)C^{13}$. A carbon target⁴ was bombarded by 10-Mey deuterons from the Washington University cyclotron. The recoil particles were recorded in Ilford E-1 nuclear emulsion plates which were placed at various angles to the cyclotron beam. At 90° there was a homogeneous group of particles which was attributed to the reaction $C^{12}(dp)C^{13}$. There were no recoil particles from the reaction in which C13 would be left in the 1.0-Mev excited state. However at 115° and 155° there were two prominent groups of proton tracks, the first of which was analyzed as being due to the above reaction where C¹³ was left in the ground state, and the second as being due to the reaction where C^{13} was left in the 1.0-Mev excited state. These results indicate that there is an angular dependence for the second group of tracks.

To prove that there was no oxygen in the carbon target as a contaminant which would be producing these proton groups due to the ground state of O¹⁷ and the well-known 0.88-Mev level, a second target composed of Li₂O was bombarded with 10-Mev deuterons and the recoil particles were recorded at 90° to the beam. In this case there were two homogeneous proton groups from the reactions $O^{16}(dp)O^{17}$ and $O^{16}(dp)O^{17*}$. If oxygen were a contaminant of the carbon targets causing the observed groups at 115 and 155° one would also expect the two groups of particles at 90°.

The reason that Buechner¹ and Heydenburg² did not find the 1.0-Mev level in C^{13} may be the fact that they used lower bombarding energies.

I wish to thank Dr. R. N. Varney for his constant interest, encouragement, and assistance.

* Assisted by the joint program of the ONR and AEC.
¹ Buechner, Strait, Sperduto, and Malm, Phys. Rev. 76, 1543 (1949).
² Heydenburg, Inglis, Whitehead, and Hafner, Phys. Rev. 75, 1147 (1949).
³ K. Boyer, Phys. Rev. 78, 345 (1950).
⁴ To be published in greater detail later.

Gamma-Gamma-Correlation Experiments*

J. R. BEYSTER AND M. L. WIEDENBECK Department of Physics, University of Michigan, Ann Arbor, Michigan May 31, 1950

HE correlation of successive gamma-rays has been reported previously for a number of radioactive substances.¹ We have also investigated the gamma-gamma-correlation for several of these activities and for a few other isotopes. The apparatus consisted of two scintillation gamma-counters with 931-A photomultipliers and stilbene crystals. Figure 1, curve A, shows the observed function for Co⁶⁰ and Fig. 2 that of Rh¹⁰⁶. These are essentially in agreement with the observations of Deutsch and Brady. The significance of the function for Co⁶⁰ has been discussed by Brady and Deutsch1 and by Segrè and Helmholtz.2 The explanation of the $\mathrm{Rh^{106}}$ data is still a matter for speculation.

FIG. 1. Gamma-gamma-correlation functions of Co⁸⁰ (curve A), $Cs^{13.4}$ (curve B), and Ag¹¹⁰ (curve C).

FIG. 2. Gamma-gamma-correlation function of Rh106.

Figure 1, curve B, is the observed function for Cs¹³⁴. It will be recalled that Cs134 has essentially three gamma-rays in cascade, the upper gamma occurring about 25 percent of the time.³ It is possible to explain the experimental data with the assumptions that the two lower transitions are quadrupole between states possessing angular momenta J=4, 2, and 0, and that the upper transition is quadrupole with J = 4, 5, or 6 for the uppermost state. The polarization correlation experiments⁴ and the measurements of the total absolute conversion coefficient⁵ for Cs¹³⁴ indicate that one of the lower transitions may be magnetic quadrupole.

Curve C is the observed correlation function for Ag¹¹⁰. An interpretation of this function is difficult because of the large number gamma-rays present in the structure.6

We have also observed that the correlation function for Na²⁴ is the same as that of Co60, and have found some evidence of gamma-gamma-correlation in $\rm Hf^{181}$ and $\rm Tb^{160}.$

- * This research was supported in part by the AEC.
 * L. Brady and M. Deutsch, Phys. Rev. 74, 1541 (1948).
 * E. Segrè and A. C. Helmholtz, Rev. Mod. Phys. 21, 293 (1949).
 * L. G. Elliott and R. E. Bell, Phys. Rev. 72, 979 (1947). K. Siegbahn and M. Deutsch, Phys. Rev. 73, 410 (1948).
 * A. Williams and M. L. Wiedenbeck, Phys. Rev. 78, 822 (1950).
 * M. L. Wiedenbeck and K. V. Chu, Phys. Rev. 72, 1171 (1947).
 * Kai Siegbahn, Phys. Rev. 77, 233 (1950).