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sign of this coeScient for LiF and NaC1, as calculated
from the theory of Mott and Littleton. In all the other
cases its sign is well established as negative, and the
calculations indicate that the contribution to the
decrease of the low frequency dielectric constant from
the decrease of the inner field is large. This is shown by
the values of hey

jhow

listed in the third and sixth columns
of Table IV.

V. CONCLUSION

The low frequency dielectric constant of ionic crystals
was measured at high pressures and found to decrease
with increasing pressure. The existing lattice theories
explain this decrease as arising not only from the
decrease in the lattice polarizability produced by the
increase of the repulsive forces but also because the
increasing overlap of adjacent ions at high pressures
reduces the internal field.

In contradistinction to liquids and gases, the change
in density of ionic crystals plays a minor role compared
to the change in overlap in affecting the low frequency
dielectric constant.
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A method is developed which, within the limits of the spherical cell approximation first presented by
signer and Seitz, permits the evaluation of the cohesive energy, lattice constant, and compressibility of a
monovalent metallic solid without the explicit computation of a central field for the atom. It is shown
that empirical values of the first few s and P levels of the free atom can supply the relevant information
usually obtained through the computation of a central field, so that a considerable simplification is possible.
The method is applied to the calculation of the usual solid state parameters for the alkali metals, Na, K,
and Rb. The results for Na compare very favorably with experiment as well as with those gained by previous
workers. The K and Rb computations agree decidedly less well with experiment, but the values for K are
appreciably better than those previously computed utilizing an explicit central field. The errors shown by the
K and Rb computations are believed to be the inevitable consequence of any theory derived by replacing the
eEect of the core electrons by an equivalent central field rather than a result of any peculiarities inherent in
the present approach.

I. Introduction: In the well-known s-sphere ap-
proximation developed by %igner and Seitz' for the
computation of the physical parameters of metallic
lattices the ground-state energy of the solid is the
lowest eigen-energy, eo, of the equation

d'U'" l(l+ 1)
+ e —V(r) — U&'&=0, (1)

dr2 r2

solved with l=o subject to the boundary conditions
that U&" be zero at the origin and that

- dU(0)-
r = U&0'(r, )

dr r =r.
* Junior Fellow, Society of Fellows.
' E. signer and F. Seitz, Phys. Rev. 43, 804 {1933};46, 509

(1934); F. Seitz, Phys. Rev. 47, 400 (1935}.This outline of the
method follows the development presented by J. Bardeen, J.
Chem, Pl ys. 6, 3Q' (1938).

In these equations the radius, r, is measured in Bohr
units and the energy, eo, in Rydberg units. The quan-
tity r, is the radius of the s-sphere and is related to the
lattice parameter, d, of a body-centered cubic lattice
like that of the alkali metals by the equation

d = (8~/3) &r, . (3)

The potential V(r) is taken to be identical with that
of the free atom, so that (1) is just the radial wave
equation of the free atom.

In addition to its ground-state energy the solid
possesses a mean Fermi energy which, at absolute zero,
is given by

9m'( 3 )'a 2.21u

10 E27r) rP r,.2

where a is a constant which Bardeen' has shown is
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given by
r, [U&o&(r,)j' r d U&»

3 [U&o&]'dr
J()

Here U'»(r) is that solution of (1) with f = 1 which goes
to zero at the origin.

The total binding energy of the solid is given by

Eg = 60+ 6@+Eg, (6)
where ~g is a small correction' term introduced to allow
for effects of electronic interactions and of deviations
of the solid state potential function from that of the
free atom. This correction energy may be approximated
by

0.284 0.576

r.,+5.1
The value of r, for which e~ takes its minimum value

is related to the lattice constant of the metal at ab-
solute zero by (3). The value of this minimum binding
energy less the first ionization potential of the free
atom is the cohesive energy of the metal at absolute
zero. The compressibility of the metal can be computed
from the formula

3 87 t0" d'e
cm'/dyne.

K rg dr.2

These three parameters exhaust the important physical
information to be gained without more knowledge of the
zone structure of the metal than is available in the
s-sphere approximation.

The problem of computing the above parameters is
now reduced to that of integrating Eq. (1) for l= 0 and
1=1. The solutions produced must all be zero at the
origin and in the case 1=0 must satisfy the additional
condition (2) at the cell boundary. For /= 1 the desired
solutions are completely determined (except in am-
plitude) by the boundary condition at the origin and the
condition that the energy appearing in the wave equa-
tion be eo, the eigen-energy of the solution U'". Such
solutions have been carried out by %igner and Seitz'
for Na, by Seitz' for Li, by Bardeen' for Na and Li,
and by Gorin' for K. All of these authors utilized central
fields of the Prokofjew or of the Hartree type and
carried through graphical or numerical integrations of
(1).All but Gorin obtained reasonably good agreement
with experiment.

Such numerical solutions of the wave equation are
entirely practicable, but the required integrations are
lengthy and are completely dependent upon the even
more tedious computation of a potential function. The
function matching method developed here succeeds in
avoiding many of these complexities. For it is noted

2 These corrections are discussed completely in the references
above and in E. %igner, Phys. Rev. 46, 1002 (1934); Trans.
Faraday Soc. 34, 678 (1938).

E. Gorin, Physik. Zeits. Sowjetunion 9, 328 (1936).

that values of the physical parameters of metallic solids
depend primarily upon the behavior of the solid state
wave functions outside the atomic core, and that in
this region the family of wave functions which are zero
at the origin is completely determined by the value of
its logarithmic derivative. This logarithmic derivative
is, in turn, a single-valued function of the energy
parameter in the wave equation and can, with the aid
of laboratory values of the first few energy levels of
the free atom, be approximated without an explicit
knowledge of V(r). The procedure, of course, assumes
the existence of some such "best central field" for the
atom, but it avoids the difhculties inherent in the cal-
culations of and with such a field.

oo

4&o'»(oo) =—+P ao'"(oo)R',
g k=o

(10)
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FIc. 1. I.ogarithmic derivative of hydrogenic wave functions
as a function of energy for various sphere radii.

II. Outline of the Function Matching Method:
The functions U&'&(r) may be considered to form a one-
parameter family (parameter eo) of those solutions of
(1) which are zero at the origin. In terms of these a new
function p&oi" (oo) may be defined as the logarithmic
derivative of U&»(r) at r=R, i.e., by

1 dU&"

4 io'"(oo) =
U(" dr „g

It can now be shown quite generally that, for sufficiently
small values of R, @&o&»(oo) is a smooth, non-oscillating
function of eo. For since the function V(r) must be
expressible in Rydberg units in the form —2Z/r+g(r),
where g(r) is an analytic function with a zero at the
origin, it follows straightforwardly that the logarithmic
derivative can always be expressed in the form
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TAaI.E I. Matching radius and hydrogenic deviations
for computations on Na, I, and Rb.

jeff

Na(s and p) K(s)

2.00 2.53
0.11 0.08'

K(p) Rb(s and p)

3.12 3.12
002b 005

a XV. Prokofjem, Zeits. f. Physik 58, 255 (1929)." D. R. Hartree, Proc. Roy. Soc. A143, 506 {i934).' D. R. Hartree, Proc. Roy. Soc. A151, 96 {1935).

in which the coefFicients aj, '" are polynomial functions
of the energy parameter ep. Further, the degree of these
polynomial functions increases quite slowly with k;
ap(" is independent of 6p, ai'" and a2{" are linear func-
tions of ~p, and, generally, a2~ ~(" and c2I,{') are poly-
nomials of degree k in ep. Thus, for all physically sig-
nificant values of ep and for sufFiciently small values of
R, @n&"(op) will be constant since terms beyond ap&"

may be discarded. With R somewhat larger, so that
the coefficients through ap&'& must be kept, P&p&" (op) will
show a linear dependence on ep, etc. The increase of
the complexity of the behavior of s»n&'&(op) ls slow, and
the function will be seen to be essentially simple for
reasonably large values of R.

An example of this behavior is shown in Fig. 1, where
s»&p'"(oo) is plotted as a function of energy for values of

~
op~ & 1 Ry. and for R=0.781, 1.53, and 2.53 a.u. These

curves are derived by integrating (1) with a hydrogenic
potential, V = —2/r, in which case exact solutions, with
zeros at the origin, are given by Whittaker's4 function
M„;(2r/n) with n= 1/( —oo)». It will be noted that on a
scale which places the radius of the first Bohr orbit at
unity, the logarithmic derivative is almost constant for
R=0.753, well behaved for R=1.53, and shows an
infinite discontinuity for 8=2.53. It is believed that
curves computed with other atomic potential functions
will show qualitatively similar behavior.

This behavior is made physically reasonable by
remembering that for small R,

~
V(R) ~)&~ op~ so that

changes in ep have little eGect on the solutions of the
wave equation, or on the logarithmic derivatives of
these solutions. This is conhrmed quantitatively in Fig.
1, for if ep

———1 is the minimum energy of physical
interest, then po ——V(R) = —1 for R=2, which is pre-
cisely the range in which &&»z&o&(oo) ceases to behave in
an essentially simple manner. When heavier atoms are
considered, the same reasoning justifies our expecting
essentially smooth behavior of pa&" (op) for all values of
R within or immediately outside of the atomic core.
This is illustrated by the Na s-state wave functions,
computed with a non-hydrogenic Prokofjew potential,
by Wigner and Seitz' which show no appreciable de-
pendence on ep for values of the radius r&2.3 atomic
units.

At large distances from the core of the atom (say
for all r&R'), the potential function, V(r), must exhibit
an essentially hydrogenic behavior. In this hydrogenic

4 E. T. Khittaker and G. N. %'atson, Woden Analysis (Cam-
bridge University Press, London}, fourth edition, $16.1.

region the general solution of (1) is given by an arbi-
trary linear combination of Whittaker's' two well-
known solutions of the conHuent hypergeometric equa-
tion, W &+»(2r/n) and W &+»( 2r/—n), where again
n= 1/( —pp)». The 6rst of these solutions, IV„, &+»(2r/ n)

is known to go to zero as r~~, so that if the atomic
term levels of the free atom are given by the set
op(k= 1, 2, 3, . . . ), then throughout the region r&R'
the functions W n, , l +»(2r/n) computed with n&„

1/( —pp)» are the radial wave functions of the valence
electron of the free atom. It follows that whenever
op= op the function U&'&(r) must be identical (except in

amplitude) with the function Wn&, l+»(,2r/n) through-
out the region r&R, for whenever E'p= 61, the functions
U&»(r) are the exact radial wave functions of the free
atom. This leads immediately to the conclusion that
whenever ~p = 6y the logarithmic derivative of the
functions Wo, &+»(2r/n), evaluated at R (&R'), must
be exactly equal to &f&R'"(op)

To this point the development is exact. The next
step, however, requires a crucial assumption whose
justification will be postponed to the next section.
Assume that there is some radius R which is small
enough so that P»&" (pp) is an essentially well-behaved
function of po and large enough so that V(r) is essen-
tially hydrogenic for all r&R. Then values of the
logarithmic derivative of the well-known functions
Wo, &+,'(2r/n) computed at r= R and for n&.. 1/( —pp)'——
will yield a discrete set of points lying on the smooth
curve P&p&" (op), and a simple polynomial function passing
through these points will serve to represent Pn&" (Eo)
throughout the range of ep of physical interest. For any
atom satisfying the above assumption, it is thus possible,
knowing the values of ej„ to produce a close approxima-
tion to &» n'&&(Ep) without a knowledge of the central field
of the atom. Further, once this function is given it is
possible, for all r&R and for any ep, to compute the
solutions, U&'&(r), which satisfy (1) and are zero at the
origin. This follows since, in the hydrogenic region,
U&"(r) must be some linear combination of the two
known functions W (&2+r/ )nand W „&+»( 2r/n), —
and this linear combination is completely determined
(except in amplitude) by its logarithmic derivative
yn&'&(Eo), which is now known.

Finally, if E&r, all the solid state parameters dis-
cussed in Section I may be computed utilizing the wave
function derived by the procedure above. The only ex-
ception is presented by the quantity n, whose definition
includes the term

fr

J
[U&o&(r) g'-'dr

p

However, since the integrand is negligible for values of r
inside the core, reasonably accurate values of n are
computed by extrapolating values of the integrand into

~ Reference 4, $16.12,
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TABLE II. The functions @g( ) and pg(') for Na, K, and Rb: data and results.

F.lement

Rb

0.3778
0.1432
0.07518
0.04628

0.3191
0.1274
0.06886

0.3071
0.1236
0.06725

Source

2.531

3.125

0 z(p)(~p)

—0.1820~02
+0.9252&0

+0.8704

0.8313&0
+1.0687

1.7706&0
+0.2943

3
4
5
6

0.22232
0.10197
0.05844
0.03786

0.200522
0.093884
0.054741
0.035893

0.191121
0.090511
0.053187

Source

b 2.000

3.125

3.125

tt&'z")(s)

—0.6088ep'
+0.8568ep

+1.7348

—1.0092~p'

+1.7112ep
+1.3340

0.7342&p'
—0.3658ep

+0.5078

' R. F. Bacher and S. Goudsmit, Afomsc Energy Levels (McGraw Hill Book Company, New York, 1932).
b C. E. Moore, A Multiplet Table of Astrophyskat Interest (Princeton, New Jersey, 1945, published by the observatory). Corrections for vacuum wave-

lengths were taken from the International Criticct Tables.
e C. E. Moore, Atomic Energy Levels (National Bureau of Standards, Circular 467, Washington, D. C., 1949), Vol. I.
d H. R. Kratz, Phys. Rev. 75, 1846 (1949).

the core from the hydrogenic region in which it is
accurately known.

The argument above may be conveniently sum-
marized as follows. For a given value of ~0, the solutions
U&'&(r) of the wave equation which is zero at the
origin must be identical (in the hydrogenic region
r&R) with some linear combination of Whittaker's two
well-known functions. The particular linear combina-
tion desired is completely determined by the function
pic&'&(eo), which is just the logarithmic derivative of the
correct solution, U&" (r), computed at R. If the hydro-
genic region extends near enough the core so that
@&i&»(eo) is a well-behaved function of eo, then the be-
havior of pe&" (eo) (and hence of the wave functions in
the hydrogenic region) is completely determined by the
first few values of @&i&»(e&,), where the c&, are the atomic
term levels. Finally, with the term levels given, these
values of P&i&"(ei)can be computed from the first of
Whittaker's functions, Wn, , i+-, (2r/r&).

III. The Choice of a Matching Radius R:
There is of course no single radius E. beyond which the
potential function of a complex atom is rigorously
hydrogenic. In practice therefore it is necessary to
choose the largest matching radius E such that the
points @&i&"(ei) lie on a curve which may be described
by a simple polynomial. If the 6eld is nearly enough
hydrogenic at the largest E, the function matching
approach may always be applied, for examination of
Fig. 1 clearly disposes of the danger that it should be
possible to pass a smooth curve through the points
&pR& &(6i) under circumstances in which the function
@&i'"(eo) was itself oscillatory or otherwise irregular.

The computations discussed in the next section show
clearly that the points pa&'&(ek) can be accurately
htted by a simple curve at distances, 8, well outside
the atomic core. It will now be indicated that the
deviations of the potential from hydrogenic behavior
at these distances may be expected to have negligible
eftect upon the results of computation, for the devia-
tions themselves are small, and the errors they introduce
are, to a 6rst approximation, mutually compensating.

TABLE III. Ground state energy and a as a function
of sphere radius for Na, K, and Rb.

—ep
Na —ep

4.0
45
5.0
5.5
6.0
6.5
7,0
7.5

0.1440
0.6150
0.6644 0.962
0.6235 0.980
0.5666 1.013
0.512,r&

—0.0826
0.4686
0.5281 0.745
0.5070 0.909
0.4679 1.'122

0.4280
0.3942

0.398o
0.5040
0.4933 0.132
0.4584 0.427
0.4202 0.781
0.386'

If the actual potential function of the atom is
written in the standard form V(r) = —2Z,«(r, then the
value of Z,«—1 at R is just the fractional deviation of
the potential from hydrogenic behavior at the matching
radius. Table I lists the matching radii used for the
s and p computations for Na, K, and Rb and the corre-
sponding values of Z.ff —1 derived from standard Har-
tree and Prokofjew fields for these atoms. It is observed
that the deviations from hydrogenic behavior are com-
paratively small and that the worst deviation is found
to occur fort Na, the only one of the elements for which
the over-all computation yields excellent results.

It is not at once apparent that the "small" deviations
listed in Table I will have a negligible effect on the
computation of the solid-state parameters, but both
theory and practice show this to be the case. For ex-
ample, a repetition of the Na ground-state computation
at R=2.53 (an increase of 25 percent in matching
radius which reduced Z,«—1 from 0.11 to 0.03) changed
the value of the ground-state energy by less than 1.5
percent throughout its range. This behavior, which was
duplicated again and again during the computations,
indicates both that the procedure is insensitive to
changes in E., as it should be, and that a ten percent
deviation from hydrogenic behavior at the matching

)The Prokofjew field for Na would be expected to yield a
larger value of Z, ff—1 than a Hartree field for the same element,
since the former allows for the polarization of the core by the
valence electron and the latter does not. However, an estimate o'f
the polarization effect indicates that the Hartree deviation would
be at least 0.05, so that the deviation for Na is at least as great as
that for the other elements.
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TABLE IV. Lattice constant, cohesive energy, and
compressibility for Na.

d(A'}

Cohesive energy
(K cal./mole}

a 10"
(cm'/dyne}

Wigner-
Experimenta Seitz

4.25

23.2

Bardeenb

4.53

12.0

Kuhn
and VV

4.14

25.9

a Except where otherwise noted experimental values are taken from J.
Bardeen, J. Chem. Phys. 6, 372 (1938).

b See reference i.

Vll-

D -0.3
cr.
hd
Cl
Ch
&- -Q.4
C:
z
0 Q5
4Jz
4J

-0.6

radius does not produce errors of equivalent magnitude
in the end products of computation.

That the error in the final product of the computa-
tion must be smaller than the deviations from hydro-
genic behavior can also be discovered by a rigorous
quantitative investigation of a closely analogous prob-
lem. Consider the potential V(r) to be strictly hydro-
genic (V(r) = —2/r) for all r&R' and to be given in the
region r(R' by —2/r+g(r). Then for continuity of
potential and field it is necessary that g(R') =g'(R') = 0.
Further, let the functions U"&(r) be the exact solutions
of (1) which are zero at the origin, and define an addi-
tional set of functions W&" (r) which are exact solutions
of the hydrogenic form of (1) and which are identical
with the functions U&"(r) for all r&R'. With these
assumptions and definitions the errors due to matching
in the non-hydrogenic region may be made explicit.

that when this "wrong" pg(" is used to select an ap-
propriate "wrong" wave function W", the two errors
are compensatory so that the net error is again 0(P).
It follows that if the potential function V(r) shows a
small fractional deviation, b, from hydrogenic behavior
at the matching radius, then the total error in the final
computation may be expected to be of order 6', which
will normally be negligible.

M„, &+, (2r/n) =I'(2l+2)n ' 'W" "&(r) (11a)

W„&~1(2r/n) = P(n+I+1)n ' '
X {cos(n—/ —1)n.W&' "&(r)

+sin(n —I—1)&rW&' "'(r) ]. (11b)

The particular advantage of this choice of solutions is
that both W" "&(r) and W&' "&(r) may be computed from
the series form

0.0

W&& a&(r) P n—2&:W&l)(r).
Ic=0

W&' "'(r) = Q n '"W'"(r)
k=0

(12)

IV. Computations and Results: Practical applica-
tion of the method described in Section II requires an
accurate knowledge of the values of the functions
W+„&+1(2r/n) over a wide variety of values of r and n.
Since interest is not restricted to integral and half-
integral values of n, the existing computations of the
conAuent hypergeometric function prove inadequate,
and it is necessary either to compute Whittaker's
functions over the range of r and n of physical interest
or to develop a new form for the general solution of the
hydrogenic wave equation.

The second alternative has proved the more prac-
tical, for it was possible, following a lead provided by
Wannier and Jastrow, ' to produce two independent
solutions of the wave equation, W&' "'(r) and W&' "'(r),
which are related to the standard forms by the formulas

I I

2.Q 2.5 3.0
I I I

3.5 4.0 4.5
I I

5.0 5.5 6.0

IC, IN ATOMIC UNITS

FIG. 2. Ground state and total energy vs. sphere radius for sodium.

For suppose that the matching process is carried
out at a radius R ((R') and that $ (—=R' —R) is a small
quantity. The deviation from hydrogenic behavior of
the potential function at the matching radius is then

0(P) and straightforward comparison of the two series
expansions about E' shows that the difference between
the correct wave functions U(') and the hydrogenic
wave functions 5'" used in computation is only
0(P). The difference between the correct logarithmic
derivative U"&'/U&" and the logarithmic derivative
Pn&" (=W'"'/W&'&) computed with the hydrogenic
wave functions is larger, being 0(f ). But it can again
be shown by the comparison of the appropriate series

-Q. I

EAI-
z

-0,2

LLI
CO
O
~~ -03

e,

"0.5

' 29
I I 1 I I I I

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

r~ IN ATOMIC UNITS

FIG. 3. Ground state and total energy vs. sphere radius
for potassium (complete computation).

' G. H. Wannier, Phys. Rev. 64, 358 (1943}.R. Jastrow, Phys.
Rev. 73, 60 (1948}.
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TAsr.z V. Lattice constant, cohesive energy, and
compressibility for K.

TAsI.E VI. Lattice constant, cohesive energy, and
compressibility for Rb.

Experi-
ment&

e(A'} 5.27

Cohesive energy
(K cal./mole}

(cm'/dyne}

5.8 5.8 4.51 5.01

6 14.5 27.9 24.2

27 30

Gorinb Kuhn and VV
Uncor- Plane
rected Corrected Complete wave

Z(A')

Cohesive energy
(K cal./mole)

~ 10"
(cm'/dyne)

a See reference a, Table IV.

Experiment'

5.60

18.9

31.9

Kuhn and VV
Plane wave

5.20

24.2

26

" See reference a, Table IV.
b See reference 3.
e F. Seitz, The Modern Theory of Solids (McGraw Hill Book Company,

New York, 1940), p. 356. Bardeen quotes an earlier measurement in ref-
erence a, Table IV.

in which the coefficients 8'g, '" and 8 l, '" are expressible
in terms of Bessel functions of the first and second kind.
The series (12) shows quite rapid convergence, so that if
the coefFicients are computed as functions of r, the com-
plete wave functions can be rapidly determined for
any value of n by a simple summation. It is really the
versatility and manipulability of this form of the
general solution of the hydrogenic wave equation which

gives the present method its speed and simplicity. In
fact, once the values of the coefFicients have been
tabulated, the computation of a set of curves like those
in any one of the figures which follow is little more than
a day's work. A complete analytic and numerical ac-
count of these solutions is presented elsewhere. '

One further remark may be of interest before the
presentation of the results of the computations. It has
been previously noted that for a suitably chosen value
of R the points pg'"(e~) must lie on a smooth curve,
and it actually turns out during computation that the
possibility of finding such a smooth curve is a very
sensitive check on the consistency of a set of experi-
mentally determined energy levels, ek. This was par-
ticularly true of the p-level computation, during which
an error of a few tenths of an inverse centimeter in any
one of the first four term levels made it impossible to
fit a smooth curve to the computed points Pg'"(~q).

This critical dependence of the products of computation
on the precise values of the energy levels employed
necessitated a thorough review of the data available on
the p-levels of the alkali metals, and the authors are
greatly indebted to Dr. Charlotte E. Moore of the
Bureau of Standards for her invaluable assistance in
locating the most accurate sources of this experimental
information.

Table II below lists, for the elements Na, K, and Rb,
the experimental energy levels used in the computa-
tions as well as the polynomial forms, pz'"(Ep), derived
from these. In each case one more energy level of the
atom is tabulated than was required to determine
completely the corresponding polynomial. The extra
energy level (normally the algebra, ically highest) was
used to check the polynomial form and agreement was
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Fre. 4. Ground state and total energy vs. sphere radius
for potassium (plane wave computation).

~ T. S. Kuhn, Quarterly of Applied Math. (to be published).

FIG. 5. Ground state and total energy vs. sphere radius
for rubidium (plane wave computation}.

in all cases better than O. i percent. Table III gives the
values, computed by the function matching method
outlined above, of eo and of a for various values of a new
variable, z, = (8r,) t.

In the range of values of r, which are of greatest
physical interest the functions ~0(r, ) and n(r, ) are
almost linear, so that it proved possible, by graphical
interpolation, to compute values of these functions for
intermediate values of r, with an accuracy of better than
O. i percent. Values computed in this manner were used
with Eqs. (3), (4), (6)—(8) in the preparation of Figs. 2—5
and of Tables IV—VI. These tables present together the
computed and experimental values of the three solid
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TAaLE VII. Estimate of fractional error due to dipole
eGects at the matching radius

~/2R3

Na(s and p) K{s)

0.080 0.163

K(p) Rb{s and p)

0.086 &0.264

YAal.K VIII. Estimate of fractional error due to dipole
effects at the sphere radius.

q/2r, 3 0.011

K K
complete plane wave

0.037 0.026 &0,070

state parameters described in Section I. The results of
previous computation are also tabulated for comparison.

Tables V and VI require further explanation. In the
first of these Gorin's "uncorrected" results are the
end products of a straightforward numerical integra-
tion of the wave equation utilizing a Hartree Geld;
his improved or "corrected" results were gained from
these by an essentially heuristic device, with little
quantitative basis, designed to allow for increased
"correlation eGects" in the solid. Kuhn and Van Vleck's
"complete" computation is the one described above.
Because it appeared that much of the error in this
result entered during the computation of e from Eq. (5),
a second, approximate, computation of the binding
energy was undertaken with a=1, the value which
would obtain in the plane wave case. These results
are tabulated in the column headed "Kuhn and VV:
plane wave. " The values of n obtained in the "com-
plete" rubidium computation were so anomalous that in
this case only the "plane wave" computation is tabulated.

V. Conclusions: It will be noted immediately that,
in the case of Na, the function matching method
yields appreciably better results than those gained with
the introduction of an explicit central field. It is not
immediately clear that the extent of this improvement
is more than fortuitous, since the agreement of these
computations with experiment is probably better than
ought to be expected from any theory which starts by
assuming a spherical cell. But the improvement does
confirm our earlier expectation that, in the spherical
cell approximation, any results gained with the intro-
duction of an explicit central Geld may be improved by
the function matching method, since the latter by-
passes the theoretical and practical difFiculties inherent
in explicit computation of a central Geld.

This conclusion is also supported in a general way
by the computations for K and Rb. Both of these dis-

play marked deviations from experiment, but both are,
almost uniformly, in better agreement with experiment
than Gorin's computation with a Hartree potential. It
is probable that the function matching method shares
in the de.culties noted by those previous workers who
have attempted a signer-Seitz computation for the
heavier elements, but within the limits imposed by the
uniform assumption that there is some best central
fieM for atomic and solid state problems, the method

developed above exhibits marked theoretical and prac-
tical advantages.

In an attempt to isolate the source of the error in
our K and Rb computations, inconclusive attempts
have been made to discover some approximation within
the procedure which can be shown to break down more
and more as the atomic number increases. Table I
above, which lists the fractional deviation of the ex-
plicit fields from hydrogenic behavior at the matching
radius, represents one such attempt. A similar estimate
of this deviation at the sphere radius, r„(where the
error introduced would not be self-compensating) gave
even more negative results, for (except in the case of
Na) the deviations were less than 0.2 percent, and
neither at the matching radius nor at the sphere radius
did the discrepancies show any marked increase with
atomic number. The possibility that the error enters in
fitting a smooth curve to the points pa&" (eq) also seems
barred, for again little increase in the difFiculty of finding
a fit was observed as the mass number increased.

It seems more probable that the existing errors are
due to a distortion of the core by the valence electrons.
To a first approximation such distortions may be
treated as a simple polarization of the core, and this
polarization effect does not appear in self-consistent
fields like those used (except in the case of Na) for the
computation of Table I. The contribution of this
polarization to the potential function can, however, be
estimated, for it may be expressed as a series whose
leading (dipole) term is just rljr' Rydbergs, where g
is the polarizability of the atom.

The constant p has been estimated by one of us'
from the known quantum defects of non-penetrating
orbits. Kith these values tlie fractional deviation due
to polarization (g/2r') can be computed at the matching
radius, R, and at the sphere radius, r, The results of
such a computation are given in Tables VII and VIII
below.

The estimates in Tables VII and VIII indicate
clearly that the polarization effects do increase with
atomic number, but there is question as to whether
they are large enough to account for the observed dis-

crepancies. The dipole eGects represent a serious over-
estimate of the total polarization at radii so close to the
core as those utilized above. The deviations at E are
partially self-compensating, and those at r, seem too
small to account for the error. On balance, it is improb-
able that polarization eGects are responsible for the
whole of the gross error observed.

A more accurate account of the eGects of core dis-
tortion would require the evaluation of Fock correla-
tion and exchange integrals between valence and core
electron wave functions. Such an analysis would prob-
ably do much to eliminate the errors, but it cannot be
undertaken with the function matching method, since
these correction terms demand a knowledge of the be-
havior of the wave functions within the atomic core.

g I. H. Van Vleck, Theory of E/ectric and ilEagnetic Susceptibili-
ties (Clarendon Press, Oxford, 1932), p. 215 ff.


