
PH YSICAL REVIEW VOLUME 79, NUMBER 2 JULY 1S, 19SO

Antiferromagnetism. The Triangular Ising Net
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In this paper the statistical mechanics of a two-dimensionally infinite set of Ising spins is worked out for
the case in which they form either a triangular or a honeycomb arrangement. Results for the honeycomb
and the ferromagnetic triangular net differ little from the published ones for the square net (Curie point
with logarithmically infinite specific heat}. The triangular net with antiferromagnetic interaction is a sample
case of antiferromagnetism in a non-fitting lattice. The binding energy comes out to be only one-third of
what it is in the ferromagnetic case. The entropy at absolute zero is finite; it equals

2 &/3
S(0)=R— ln(2 cosco}des =0.3383R.

The system is disordered at all temperatures and possesses no Curie point.

I. INTRODUCTION

l 'HANKS to the work of Kaufman and Onsager' '
we are now in possession of a method of solving

exactly a certain number of cooperative problems in
physics. We can obtain the thermal properties and some
order-parameters for a two-dimensional periodic struc-
ture whose members are "spins" capable of existing in
two states; these spins interact with their nearest
neighbors only, according to the mode put forward by
Ising. 4 In addition to the general theory, the papers
quoted contain also its application to the rectangular
Ising net which is shown in Fig. 1. The main feature of
their results is the temperature singularity. The singu-
larity is mainly known at this time through its mani-
festation in the specific heat curve. For a complete
study of this "Curie point" transition one wouM like
to know also the magnetic properties. These quantities
are not available in the literature at this time although
the spontaneous magnetization has been calculated. '

In the original calculations the Ising model was
thought of as ferromagnetic. Within recent years, how-
ever, antiferromagnetism has received considerable
attention, and one might wish to think of the model
in terms of this new application. The salient features
of antiferromagnetism are described in an article of
Bizette. ' The specific heat resembles that of ferromag-
netic materials; the susceptibility curves resemble the
specific heat curves somewhat, having a pronounced
maximum at the Curie point. Both these features can
be accounted for qualitatively on the basis of nearest
neighbor interaction. The specific heat calculation of
Onsager' actually does not distinguish at all between
ferromagnetism and antiferromagnetism, owing to the
well-known symmetry property which applies to all
lattices having a- and P-sites with all O.-sites surrounded
by P-sites and vice versa.

A closer study of antiferromagnetism removes to a
great extent this superficial similarity. It may be seen
from the work of Hulthen' that the difference between
the quantum and Ising interactions is much more
drastic in the antiferromagnetic than the ferromagnetic
case. Specifically, a linear chain of quantum spins
whose interaction is JZe; e,+& has a lowest energy
which is 1.775 times that of a corresponding set of
Ising spins. This situation is in contrast to the ferro-
magnetic case and by itself removes any hope of a
simple analogy. In addition, the antiferromagnetic
materials MnO, MnS, MnTe, FeO crystallize in the
NaCl structure; this gives the paramagnetic metal
ions a face-centered cubic arrangement. Such an ar-
rangement of sites does not divide into n- and P-sites
in the manner described above. In consequence, even
for an Ising antiferromagnet the thermal properties are
not trivally related to some "equivalent" ferromagnetic
arrangement.

This paper is one in a series of related studies on these
non-trivial aspects of antiferromagnetism. We will
derive in it the properties of an antiferromagnetic
triangular Ising net (Fig. 2). This arrangement is a two-
dimensional analog of the face-centered cubic structure,
in that it is also a lattice into which antiferromagnetism
does not fit. The Kaufman-Onsager calculation can be
carried out for it and full results obtained. We shall

' L. Onsager, Phys. Rev. 65, 117 (1944).' Kaufman, Phys. Rev. 76, 1232 (1949).' B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).' K. Ising, Zeits. f. Physik 31, 253 (1925).' B. Kaufman (private communication).
6 H, Bizette, thesis, Paris, Masson et Cie, pp. 62—96,

FIG. 1. Rectangular Ising net. The circles indicate the location of
the spins and the straight lines the interactions.

7 L. Hulthen, Arkiv f, Mat. Astr. o. Fys. 26A, No. 11 (1938}.
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find that the lowest energy state of the model is dis-
ordered and actually possesses a finite entropy; there is
no discontinuity in the specific heat and probably no
maximum in the susceptibility. Results for the ferro-
magnetic triangular net and the honeycomb net will

be obtained as a by-product of the work; they do not
differ essentially from the results obtained for the
square net. ' '

given in reference 8, Eq. (23). For infinite systems we

may suppress a negligible factor sinh2J. and write it in
the form

f(L)/(2 sinh2L)~~'= f*(L*)/(2 sinh2L*)~'~-". (3)

Although this dual relation is a reversible one, we shaH

use it in the following in a one-sided way and preferably
associate the star with the honeycomb.

It is possible to return from f*(L*) to f by a second
algebraically independent transformation, the so-called
star-triangle transformation. ' The transformation is
illustrated in Fig. 4. In the state sum, f*, the summation
is carried out over all spins, p. In executing this sum,
one can, however, divide them into two classes which
are marked, respectively, by full and open circles in

Fig. 4. The sum over the open circles is carried out first;
this is relatively simple because the summation over
p, o in Fig. 4 involves only the three spins p~, p. , and p, ;&.

& v~&~y~ 9

FIG. 2. Triangular Ising net. No perfectly regular antiferromag-
netic arrangement can be 6tted into this structure.

or

or

sinh2J sinh2J*= 1,

tanh'2L+ tanh'2 J.*=1,

(2a)

(2b)

cosh2L tanh2L~= cosh2L* tanh2L= 1. (2c)

The dual relationship for the partition functions is

8 G. H. Kannier, Rev. Mod. Phys. 17, 50 {1945),Part IV.

II. QUALITATIVE DISCUSSION

It is convenient to discuss by simpler methods two
salient features of the triangular net; namely, the ferro-
magnetic Curie point and the antiferromagnetic zero-

point entropy.
The derivation which locates the Curie point and

establishes the symmetry property about that point
may be found elsewhere in the literature. ' We will not
return to this derivation, but make use of the results.

The calculations involve one parameter J only,
which is defined as

L= J/(2kT),

where J is the coupling energy (energy required to turn
over one pair of spins from the parallel to the anti-
parallel position), k is Boltzmann's constant, and T is

the temperature. It is shown in reference 8 how the
partition function for any two-dimensional net is

linked with the partition function for the "dual" which

is constructed from the first by replacing all areas by
points and vice versa. The dual for the triangular net is

the honeycomb; their mutual relationship is illustrated
in Fig. 3. This dual relationship involves a "dual"
temperature J*. It is shown in reference 8 that the
relation between L and J* is

FIG. 3. Dual relationship between the triangular and the honey-
comb net. Areas replace corners in a reciprocal fashion, sides re-
place sides.

The result of the summation can be expressed by a
fictitious interaction J between p, &, p2, and p, 3 which

is shown in heavy dotted outline. These dotted inter-

actions, when continued throughout the lattice produce
again a triangular net, but with a new interaction J+.
Apart from certain factors, the partition function for
the triangle net at the "temperature" L is thus equiva-
lent to the same partition function at the "tempera-
ture" L+ where L+ is derived from J+ by Eq. (1). The
relation between J. and I+ is found to be' expressible
in the forms

[exp (4L)—1j[exp(4L+) —1]=4,

(coth2L —1)(coth2L+ —1)= 1,

tanh2 J+tanh2L+ = 1,

and the symmetry relationship for f reads

(4a)

(4b)

(4c)

f(L)/(2 sinh2L)'v" = f(L+)/(2 sinh2L+)~~' (5)

We shall. refer to the temperature defined by (4) and

(5) as the "inverted" temperature and to the process
as temperature inversion. The dual temperature is thus
the "inverted" temperature for the square net.

It may be noted that relationships (3) and (5) com-

pletely specify the temperature inversion for the honey-
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sech21~+ sech2I.~= I. (7b)

comb. Ke find that

f*(L*)((2sinh2L*)"'"= f*(L +)/(2 sinh2L~) v'~'. (6)

The relation between L* and L*+ follows from (2c) and

(4) as
sinhl. * sinhI. *+=-'„ (7a)

or

we show that it cannot possibly be lower; second, we
actually construct states of this energy, ' For the 6rst
point we decompose the net into triangles as shown in
Fig. 5. Each triangle contains three interactions, and
the best we can achieve within each is to have two
spins of one sign and one of the other. Thus the 6nal
arrangement contains at least one-third of the wrong
interactions.

There are actually states in which the number of
wrong interactions is just one-third which have there-
fore the energy minimum

U(0) = ——,'5J= —-', SJ. (10)

An example of such an arrangement is shown in Fig. 6.
It consists of rows of positive spins alternating with
rows of negative spins. It is not likely to be ever realized
because there are arrangements of much higher weight.

FIG. 4. Star-triangular transformation: Removal by summation
of the open-circled spins from the honeycomb state sum (full
lines) leaves a triangular net (dotted lines}.

It is curious that the quantity entering into (3) is also
the one entering into (5) and (6). At this time, this is
not obvious from any previous reasoning.

The relationships (2), (4), and (7) locate the Curie
point of the material as the point at which the tempera-
ture equals its inverse.

From the partition function, f, the internal energies
are obtained by diGerentation

U = —
2 Jd(lnf)/dL. (g)

Thus each of the relations (3), (3), and (6) has a corrol-
lary involving the energies V. We shall restrict out-
selves to (3) which yields

U(L) U"(L*)+- =~V+iV*=5, (9)——,
'J coth2L —

2J coth2I. *

where 5 is the number of sides of either one of the dual
nets.

The second part of this qualitative discussion will be
concerned with the antiferromagnetic triangular net.

It was mentioned that the thermal properties of the
rectangular and honeycomb net are independent of the
sign of the interaction J; this symmetry is also apparent
in the relations (2) and (7). For the triangular net,
however, we must expect entirely diBerent results in
the two cases.

The fact that antiferromagnetism does not ht into
the triangular pattern modifies particularly the low
temperature behavior because of a different type of
ground state. The energy of this state is quite easily
perceived to be only one-third of the corresponding
ferromagnetic value. We prove this in two steps: 6rst,

I' IG. 5. Decomposition of the triangular net into individual
triangles. Each interaction forms part of one and only one tri-
angle. At least two neighbors must be equal in each triangle.

Figure 7 shows one which consists of rows of alternate
spins. Each row may be laid independently; i.e., we

may commit a large number of "stacking errors" and
still stay in the ground state. The entropy of the ar-
rangement is still zero because the weight is propor-
tional to cV& only. In Fig. 8, on the other hand, we have
an arrangement of finite entropy. "We see that in this
arrangement the correct energy is obtained by an un-
balance; around a (+) spin the ratio of right and wrong
interactions is 6:0, while for the more numeous (—)
spins it is 3:3.From this latter ratio it follows that we
can reverse any one of the negative spins without
changing the energy. We may even perform this opera-
tion independently for each one of the encircled nega-
tive spins and thus gain a weight of 2~". This is not
yet the full weight because there is a large amount of
contingent freedom. Since the encircled spins can be
varied independently, it will occur quite often that three
encircled spins forming a triangle have equal sign.
In the overwhelming majority of cases (by the argu-
ments of fluctuation theory) each of the arrangements

' The following proof is due to %. Shockley.
'0 The following considerations are due to P, O'. Anderson.
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X /'

Ii/i/i/i/i/
, /i/i/i/i/i/i!

i/i/i/i/i/i/i/i/
/i/i/i/i/i/i/i/i
i/i/i/i/i/i/i/i/'

' Ii/i/i/i/'
FIG. 6. A simple arrangement of minimum energy: Rows of positive

spins placed in alteration with rows of negative spins.

of Fig. 9 will prevail at least at one out of eight posi-
tions. It now happens for the center spin of this tripod
that its interactions are in the ratio 3:3.Hence it may
be reversed also and there are another (X/24)+ (X/24)
free spins added to the original number of iV/3. The
weight of the ground state thus is pushed to 2'~'"; it
is clear that it may be pushed up further by considera-
tion of more involved contingencies. We thus have for
the zero-point entropy

5(0) & (5/12)E ln2 =0.2888118. (11)

The exact value of this entropy will be derived later
(Eq (»)).

Long-range order is incompatible with a ground state
of this type. As an example, there is shown in Fig. 10,
an arrangement in which two ordered sections of the
type shown in Fig. 8 adjoin. Long-range order in each
ordered section is different and a transition region
results. This region has, however, the same low energy
as do the ordered regions themselves. We conclude
therefore that long-range order o6'ers no energy ad-
vantage for this structure.

It has been mentioned earlier that we are not able,
at this time, to compute the paramagnetic susceptibil-
ity. We can, however, draw qualitative conclusions
easily. The situation exemplified by Fig. 10 clearly
implies an infinite susceptibility at absolute zero. After
that, the susceptibility must drop and there is no
physical reason to expect that magnetization will ever
become easier as the temperature rises. Thus we would
expect a paramagnetic sort of a curve which is at
variance with experimental observations. '

III. CALCULATION OF THE THERMAL PROPERTIES

We shall, in this section, supplement the considera-
tions of Section II by calculating explicitly the thermal
properties of the triangular net; these can be obtained
by applying the methods of Kaufman and Onsager. ' '
The reader is assumed to be familiar with this earlier
work and we shall only note the necessary modifica-
tions.

The honeycomb may be deformed topologically to

/ X /

, /i/i/i/i/ii
, /i/i/i/i/i/i/

, /i/il'i! i/'i/i~ /i/
/i/i /i /W /i/ i/ &/ i ~

i/i/i/i/i/i/i/i/'

FIG. 7. An arrangement of minimum energy having medium-high
weight: Rows of alternating spins stacked at random.

operators in the arrangement

~ .V)V3V)V4VgVgV)V4Vi

Two rows of spins will have to be laid down before the
cycle repeats. Consequently, Eq. (29) of reference 1 is
replaced by

XP= (Vs Vi V4 Vi) P. (15)

Among the various steps which follow (15), the
passage to operators P;, Q, defined in reference 2

requires some discussion. This necessary transition
introduces unsymmetric end terms, such as the one in
reference 2, Eq. (14). The author feels that it is not
generally worth while to pay too much attention to
such terms. Bulk properties and even short-range order
should be unaGected by a modification of the "seam. "
Long-range order is probably affected because such a
modification of operators may remove the degeneracy.
It is known that degeneracy is essential for the study
of long-range order. " Apart from such special require.

"J.Ashkin and W, E. Lamb, Phys. Rev. 64, 159 (1943).

take the appearance of a "brick" net (Fig. 11). This
rectangular arrangement difFers from the one studied in
reference 1 only in that certain interactions are missing.
This means some minor modification in the basic
operations.

We shall assume that the brick net is being built up
sideways rather than upward. Xo interaction is then
missing in the direction of the build-up and the operator
Vi can be taken over unaltered from reference
Eq. (21) as

Vi= (2 sinh21. *)~~'e ii (12)

The reversal of the dual star is in accordance with the
convention adopted earlier. In place of the operator V2
defined in reference 1, Eq. (28), we have two operators
V3 and V4 which alternate. They are, respectively,

Vi ——expH*(sisq+ s3s4+ .), (13)

V4 ——expH~(s„si+s&s3+ ). (14)

The partition function is obtained by using these
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FIG. 8. An arrangement of minimum energy having 6nite
entropy: Tvvo sublattices have spins of axed sign, but in the third,
each sign individually may be picked at random.

FIG. 9. Two arrange-
ments (a, b) of con-
tingent freedom. If three
neighboring ringed spins
of Fig. 8 happen to have
equal sign, their center
may be chosen at ran-
dom. Such considera-
tions make the entropy
larger than -', R ln2.

(a)

(b) /

ments we may disregard this refinement and consider
Eq. (41) of reference 2 as the matrix of the rectangular
Ising problem (apart from a factor dropped in pa, ssing
from Eqs. (4) to (g) of reference 2). Its analog for the
brick lattice is obvious; it contains three rather than

two types of factors, each of which represents a set of
commuting plane rotations. YVe write the rotation
represented by V& in the form

'
cosh2L

cosh2L i sinh2L
—i sinh2I cosh2I.

cosh 2L
—i sinh2I.

i sinh2I.
cosh 2L

—1 Slnh2I

(16)

i sinh2L cosh 2L

Similarly V~ represents the matrix

' cosh2L* i sinh2L*
—i sinh2L~ cosh 2I.*

cosh 2L~ i sinh2L*
—~; sinh2I. * cosh2I*

(17)

Finally, V4 represents the matrix

cosh 2L*
—i sinh2L*

i sinh2L*
cosh2I

cosh 2L*

The analysis following Eq. (43) of reference 2 applies to the present case except that f=4. The resultant matrix
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has the same form as their Eq. (50) with
' cosh2L" (cosh'2L

+sinh'2L cosh2L*)
i sinh2L* (cosh'2L

+sinh'2L cosh2L*)

—cosh2L sinh2L
(1+cosh2L*) sinh2L*

—i cosh2L sinh2I.
sinh~2L*

—z sinh2L* (cosh 2L) cosh2I" (cosh'2L
+sinh'2L cosh2L*) +sinh'2I. cosh2L*)

i cosh2L sinh2L
(1+cosh2L*) cosh2L*

—cosh2L sinh2L
cosh2I.* sinh2I. *

—i cosh2L sinh2L
(1+cosh2L )

cosh'2L cosh2L*
+sinh'2L

i cosh"-2L sinh2L*

—cosh2L sinh2L
sinh2L*

—i cosh'2I. sinh2L* cosh'2L cosh2L*
+sinh'2L

'
sinh22L sinh~2L+

—i sinh'2L
cosh2L* sinh2L*

—cosh2L sinh2L
sinh2L*

(20)

i cosh2L sinh2I.
(1+cosh2L*)

i sinh'2L
cosh2L* sinh2L*

cosh2L sinh2L
cosh2L* sinh2L*

—i cosh2L sinh2L
(cosh2L~+ 1) cosh2L*

sinh'2I. sinh'2L* i cosh2L sinh2I.
sinh'2L*

—cosh2L sinh2L
(cosh2L*+ 1) sinh 2I.*, (21)

The secular equation of this matrix has the form

x' —Ax'+ Bx'—.4x+ 1=0.

yields a quadratic equation in cosh'. This equation is

cosh r —(K —1+cosEd) cosh'r
+-', K

'—K
'—COSED=0, (24)

The roots are therefore pairs of reciprocals and the where

substitution

(23) and

& +6 =2 cos(g) (25)

K= (e —I)/(ERE~+ 1)-'. (26)

K is a symmetric parameter similar to that defined in
reference 1, Eq. (114). It is zero for high or low tem-
peratures and reaches a maximum of s at the Curie
point; for antiferromagnetic interactions it is negative.
In view of this symmetry, the roots of (24) are invariant
with respect to temperature inversion and the only
asymmetric factor entering into the partition function
is the scalar factor evident in (12). We thus get the
analog of reference 2, Eq. (71), as

f*(L*)= (2 sinh2L*) "II'*" 1 exp[&~y, ~~&+ 1y2&~&], (2p)

, , ~IXIX/i/~/i/
FIR5T ORDERED

T / 1I / 1 / g / &I / g I T I g / g

li I t l 4 I k I S I h I T I k I&.
/X /x IX /X /w IX I&X! X/ Q/ g/ X/ 3/ ~/ i/

~/X/X/X/X/X/t/X/~/'
/1, /X /1 /X /1. /X

&/ &I '&S I g/ & / &S/ X/

'~ I XIXIXIXI&ii/~
SECOND ORDERED + +———+ —+—

~/X/g/X/g/XI'
/i /~

Fto. 10. Two adjoining regions having different types of long-
range order. The energy of the transition layer may be made just
as low as that of the ordered regions. co'"& = 4Trm/n. (28)

where p1 and yE are the two roots of (24) with Ed= Ed& &

and
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X"= (2 sinh2L)""Ill" 2 expL-,'y '"'+-'y '"'] (29)

The expression obtained is for two rows of n spins in
the arrangement of I'ig. 11; i.e., for 2n spins in the
honeycomb. Thus 1V*=2n, and the factor in (27) is
just the asymmetric factor to be expected from (3).
An inspection of Fig. 3 shows that

X=-'X*=n.2

The expression (27) becomes thus the partition function
for n triangular spins; altering factors according to (3)
we arrive thus at the partition function X(L) per spin
of the triangular net as

\
r 4 P

Fzc. 11. The "brick" net. When all interactions are taken to
be equal the net is equivalent to the "honeycomb" of Fig. 3.
However, it suggests a way of applying the method of Kaufman
and Onsager which is basically rectangular.

or, passing to the limit of infinite I and using Eq. (28), to the form
we find

Ink= In(e2~+e —~)
p2x'

Ink=-,' ln(2 sinh2L)+ —
~' Ly, (a&)+y2(co)]du&. (30)

8~ ~o

We use the solution of (24) in the form

1
+ —

i

i In[1+4K costs costa'
8m ~P 2

—4K cos2co']du des'. (32)
cosh22y=22LK '+cos222~]l&2 cos2cu.

This gives

1
Ink =—In(2 sinh2L)

2

Employing the substitution
31

~ =2(&2+&2) &=2(« ~2)
we obtain

Ink= in(e2~+e-~)

1 ~2 1jt'1 1 )' 1 1
+— arc cosll —

i
—+cos —co

I
+ cos (0 d(d

4~ ~o 2(K 2 ) 2 2

1 (2 1(1 1 )' 1 1

+—
~

arc cosh —
~

—+cos'—co
~

——cos—co d~.
4~ ~o 2&K 2) 2 2

We apply the identity (107) of reference 1 to the in-

tegrals and observe that the sign of the cos term oc-
curring there is immaterial; thus we get

2n p2x'

+ ~ InL1 —2K+2K cosh)i+2K cos(d2
82r2 "2

+2 K COS(2r —Mi —dd2) ]d(u&d(o2. (33)

The form (33) is of the type first suspected by Kac and
Berlin. "The number of cos terms equals the number of
linkages and the number of integrations equals the
number of dimensions.

Applying formula (8) to Eq. (32), we find for the

ink =—ln(2 sinh2L)
2

1 '-' ' p1 1
+—~

I 111
~

+COS8», &„&K 2 J

1
+cos—cu —2 cos~' deed~'

2

-0.2

-0 4

-0.6
U

~ IJI -0.8

-1.0

-1.2

EDDIC
CURV

0~P,Q N

&pyIC CU pVE

~CURIE POINT

+2m' 2x
t I

+ ~ ~ ln
I

—+cos'—co
)

8~20, J, E» 2 )

—cos —co+2 cosa)
2

Combining the integrals and using (26) we reduce this

-I ~ 6
0 2 4 6 8 10 12 14 16 18 20

1 2KT
ILI IJI

FIG. 12. Energy-21s. -temperature plot for the triangular Ising net.
Ferromagnetic and antiferromagnetic coupling.

'2 M. Kac and T. Berlin (private communication).
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energy U

2e4z(3 -e4z)

x(e4z+ 1)'e

of U at the absolute zero is only one-third of the ferro-
magnetic value.

To obtain the entropy at absolute zero, we return
to Eq. (32) and set e= —1, I. +~—. We get

ln7
-=I I.

l

[(1—x2) ((1 —2 e)2 —4ex —4 „&x2)]»

The integral is a complete elliptic integral of the first
kind. Because of Landen's identity, its reduction to
the standard integral E'(k) is not a complete determi-
nate process. The most convenient reduction happens
to dier from the one found in handbooks. It is

pP dx

~, [(~-x)(P-x)(x-~)(x-S)]»

[(~—v) (P —~)]'—[(~—&)h' —@]'
2E

[( -~)(t»-~)]»+[( -~)(~-~)]»

[(~—v) (P —~)]'+[(~—P) (v —b)]'

This gives in our case

1 (2+ p2m.

+
I

~ in[1 —4 coscu cosa&'+4 cos'u']dud~'.
Sx2 ~t)

Remembering that
~
—U/8 F~+S /R

)

we see that the first term just re-establishes the energy
value (11):

—U(0)/~2'= ' I
l

=
I
J I/2&7'.

The second term is therefore the entropy

g 2x p2Ã

S(0)=
I in[1 —4 cosco cosa&'+4 cos'co']dcodco'.

Sx2 ~0 ~0

The integral over co can be found in tables. " It equals

4s ln12 cosa&'1[1—D(2 cosco')]

where

p(3 —p,) (2/s. )E(k)
1

1+ I» I [1+4(1—
I
~l)']'

1 —
I» I

1+-'(1+I» I)' "
k=

1+I~I 1+l(1—I» I)'

p, = 1—2 tanh2L, .

~x/3

S(0)=—
I ln(2 cosa&')d~'.

J, (37a)

(35)

(36)

The integral must be computed by numerical methods.
By elementary considerations we can get the alternate
expression

S(0) 3 &~te

ln(2 costa)da&.

where D is the Dirichlet function, D(x)=1 if Ixl &1,
(34) D(x)=0 if Ixl)1. Thus we get for the zero-point

entropy

The parameter p defined here is a very convenient one
with which to express the results. It is not itself in-
variant against temperature inversion, but its square is,
as may be seen from (4c). When p varies from —1 to +3
it covers both the ferromagnetic and antiferromagnetic
range; this can be observed from the following juxta-
position

ferromagnetic absolute zero,

ferromagnetic Curie point, U = —5 J,
ferromagnetic high
antiferromagnetic temperature,

antiferromagnetic absolute zero, U= ——,'.'I»'
~

J
~

.

Results for the honeycomb follow from the above by
application of (2) and (9).

Curves which illustrate formula (34) are plotted in
Fig. 12. The energy-vs. -temperature curve for the
ferromagnetic triangular net is in all essentials identical
with the one for the square lattice. The antiferromag-
netic one is new. It shows no singular point. The value

(37b)

The small interval suggests a power series in co. We get
from it

S(0) 1 1 px~' 1 /7ry"—=-12—
I

- I-
I
-

IR 2 12». 6J 120». 6)

1
= 0.338314 (37c)

630 ( 6) 45360 & 6&

in agreement with the inequality (11).
In conclusion the author wishes to express his

thanks to his colleagues of the Bell Laboratories, par-
ticularly Dr. C. Kittel who first brought antiferromag-
netism to his attention, and to Dr. P. W. Anderson
and Dr. William Shockley who made the contributions
mentioned in the text.

'3 Bierens de Hahn, Xouvelks Tables d'Integrales Definies,
Table 330, integral 5.


