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The angular distributions for the components of a line in a P-transition are exhibited for use in obtaining
numerical values for the angular correlation between successive nuclear beta- and gamma-radiations. The
calculations are made with each of the 6ve linearly independent electron-neutrino interactions (assuming
Z=O) for allowed, first and second forbidden P-transitions. In general, the theory yields an angular correla-
tion for forbidden P-transitions which will vary with the interaction and the degree of forbiddenness, and
thus a8ords a means of disintinguishing between these. It is shown that no angular correlation is to be
expected whenever, (a) the P-transition is allowed, (b) the transition is classified as forbidden but has an
allowed energy spectrum, (c) only the low energy P-particles are counted.

I. INTRODUCTION

HEN any two particles are emitted in successive
nuclear transitions, theory'' shows that there

can, in general, be an angular correlation between their
directions of emission. The form of such a correlation
function, W(6), depends only on the angular momenta
of the nuclear states involved and of the outgoing par-
ticles. However, the determination of the coefFicients of
the powers of cosV in W(8) requires more detailed
information concerning the interactions describing the
respective emissions.

The P—y-angular correlation is of particular interest
in this respect, for we shall show that it can be used
both to determine the degree of forbiddenness for the
P-transition and to distinguish between the diferent
electron-neutrino interactions which are possible ac-
cording to the Fermi' ~ theory of P-decay.

In reference 1 we have reduced the problem of cal-
culating the angular correlation to that of obtaining,
for both the P- and y-transitions, the angular distribu-
tions Fr,~r(8) which are associated with each component
of a line. The required angular distributions for the
electromagnetic multipoles have been derived else-
where. " '

It thus remains to obtain the angular distributions
Fr,~(8) associated with transitions between the dif-
ferent magnetic sublevels of the nuclear states involved
in the P-transition. This is done in Section II, using the
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solid harmonic decomposition of irreducible tensors
exhibited in reference 1, Section III(B).The applications
to, and discussion of, the P—y-correlation are given in
Section III.

All of our calculations are with the Fermi theory of
P-decay in the Z=O approximation. In order to apply
the "canonical correlation functions" tabulated in
Section IV of reference 1, we must further make the
same two assumptions which underlie Hamilton's
tabulations for the y —y-correlation, namely (a) that
the natural line-width of the intermediate nuclear state
be much larger than the hyperfine splitting of that
state —or in other words that the lifetime of the inter-
mediate state be short enough —and (b) that only one
angular momentum be carried o8 by the outgoing par-
ticles (i.e., P-particle and neutrino) for a given P-transi-
tion, and similarly for the p-transition. The second
assumption as applied to the y-transition requires the
y-radiation to be a pure multipole field and not a
mixture of multipoles. ' Applied to the P-theory, it
means that we consider only one matrix element at a
time, rather than the mixtures of unknown matrix
elements which occur in the usual "forbidden" 4'
P-transitions. This policy has the advantage that the
predicted P—y-correlations can then be made com-

pletely definite and do not involve any unknown ratio
of matrix elemerits. One could, of course, extend the

P—y-correlation theory to take into account mixtures
of matrix elements as was done for the y —y-correlation
in reference 8, but the present status of the experiments
on P-emitters does not yet warrant such an additional
complication. '

9If sufhcient experimental evidence were available, then the
angular correlation could yield information not obtainable by
the usual P-lifetime or P-spectrum measurement. Namely, while
these latter can in principle determine the relative magnitudes of
the nuclear matrix elements, the angular correlation with mixtures
also is sensitive to the relative phases of the matrix elements. See
reference 8 for a detailed discussion of this point as applied to
y —y-correlations.
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IL THE g-ANGULAR DISTRIBUTIONS

The probability per unit time for emission of a
P-particle with energy W and momentum y in the solid
angle dQ, and simultaneous emission of neutrino with
momentum q and energy E=8'0—8' in the solid angle
dQ„can be written" as

each component. It can be, for example, any one of
the irreducible tensor matrix elements for L=O, 1, 2, 3
listed in Table I of reference 4. The G, JLJ' are the
squares of the transformation coefhcients for vector
addition of angular momenta I reference 1, Eq. (11)].
The Fz,~(8) are given explicitly by reference 1, Eq.
(12) with S replaced by J'dO„S, , „. Thus

P(W) d Wd 0+0„=G'/(2s)'pWE'S, „

XI(y, IaIy, )I dagIIgW, (1)
FI~(8; W) =

) d D„S,, „ I gr, sr(A, ) I

' (4)

where H is the electron-neutrino interaction, lP, , and Pf,
initial and final nuclear wave functions, and 8,, „
denotes an average over the two possible spin orienta-
tions for electron and neutrino. A detailed treatment of
the matrix elements occurring in (1) for allowed and
forbidden P-transitions with each of the Ave linearly
independent electron-neutrino interactions, II, has been
given by Konopinski and Uhlenbeck. ' %'e shall assume
familiarity with the methods and notations of their
paper, and shall consider here the extensions of it
necessary for the treatment of angular correlations with
P-particles.

The usual P-theory„ insofar as it is concerned only
with obtaining P-lifetimes or the shapes of the energy
spectra, has no need to take into account the angular
momentum degeneracy of the nuclear states. However,
as shown in reference 1, Section III(A), for the angular
correlations it is necessary to obtain the angular dis-
tributions FL, (8) associated with each component
m—+m'=m+M of a line, and to specify the angular
momentum quantum numbers for initial and final
nuclear states. Thus, in the notation of Section III of
reference 1, we denote initial and final nuclear states
by the quantum numbers O.Jm and n'J'm' respectively.
Then from (1), the (relative) probability for P-emission
with energy 8' in the direction 8 during the transition
+JAN—+n'J'm', irrespective of the spin polarizations of
P-particle or neutrino, or direction of emission of the
neutrino, is given by:

P- (~; W) =)"«S, 1(~~
I
&

I

a'~'~') I' (2)

where factors in (1) common to each component are
dropped. Konopinski and Uhlenbeck4 have already ob-
tained the various interactions, H, in irreducible tensor
form. Hence one can directly apply the solid harmonic
decomposition, reference 1, Eq. (8), to obtain the
required angular distributions for each component
m—+m'. In particular, if the interaction B involves only
one irreducible matrix element corresponding to angular
momentum l., then the analysis of Section III(B)
of reference 1 shows that (2) can be written in the form

JLJ'
P. (e; W) = IK I

G... F,~(e; W), m'= m+tlf (3)

Here K represents the unknown nuclear matrix
element f(a, a', J, J', X„.) of reference 1, Eq. (10),which
is independent of ns, m', M and, therefore, common to

F,o(a) = da,S,, „I(A*a)I2

J

t dQ„(1—p q/WK) 1 (6)

is isotropic, as one would expect physically for a scalar
operator.

(ii) First Forbidden Trattsjtioms

The interaction is here

H= i(A*8)(P r) —(A—*aB) a~, (7)

where P=y+q; e and e~ are Dirac operators on light
and heavy particles (nucleons), respectively. Applying
the solid harmonic decomposition to each of the vectors
P, x, 0,, e~ this becomes

1

&=-L'(A*&) Z V (P)*e (r)

+ 2 (A "JJi~(a)*&)'pier(aH)]. (g)

"A11 constant factors are dropped.

the argument vectors A; depending on the interaction.
These will be called differential angular distributions,
since they apply to P-particles with energy between W
and 5'+dW. One can also obtain angular distributions
for a component irrespective of the P-energy:

W'0

Fr~(8; Wo)= pW(WO W)'Fr—~(8; W)dW. (5)

These will be called integrated angular distributions.
Had we not assumed Z=O, both the difFerential and
integrated Fl~(8) would also have depended on Z.

We illustrate the use of (4) with the polar vector
interaction, and then enumerate the results, similarly
obtained, with the other interactions.

(A) Polar Vector Interaction

(i) Allowed Transitions

The matrix element for allowed transitions is:

8 'I &I6)= (A*&)(W', 6),
where A and 8 are 4-component Dirac spinors for the
electron and antineutrino respectively. The scalar
nuclear matrix element, (P,, ft) corresponding to 1.=0
is denoted by J'1 in reference 4. The associated angular
distribution, given by"
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From (2) and (3), denoting the nuclear matrix elements

by fa, fr,
J1J'

F„„,(y; W) =g„„, Jfdn„Z. „[g»,(P) I"-

X
~

(;1*8)~' r +
~

(A*'jj&sI(a)*8)(', a

+ i(A'B)(A*'tl ( )8)*J~r e*+c.c. (9)

FP(6 W)=-'q'+p'(1+2q'/3WIC) cos'@,

Fj+'(6 W) = ', q'+-'p'(1+2q'/3—WK)

—-'p'(1+ 2q'/3WK) cos'0,

(10)

(b) ! e

1' '(8 . W) =F + '(8 W) = 1

(e) $J~El i r*+c.c.
J

Fro(8; W) =q'/3K+ (p'/W) cos'-8,

Fi(& W) = (p'/2W+q'/3K) (p'/2W) cos-a. —
(12)

These Fz~(6), like all those that we shall obtain,
satisfy the "isotropy conditions" of reference 1, Section

The resultant angular distribution in square brackets
is seen to involve the weighted sum of the angular dis-

tributions associated with each of the matrix elementsfe and fr pius an interference term with coeflicients

j(fn.fr*—fa*.fr). If only one unknown matrix
element were present, then being common to all com-

ponents it could be dropped since only the angular dis-

tributions and not absolute transition probabilities are
needed for the angular correlation. However, when two
matrix elements are retained, one can divide through by
the squared magnitude of one of them, but the resultant
expression (e.g. , Eq. (9)) will still depend on the
unknown relative Phase and relalive magnitude of the
two matrix elements. In this case, since fa, J'r are
both vector operators, L=1, the transformation coef-
ficients enter in the same way in (9) for both their
squares and the interference cross term, and hence the
resultant F (8; W) is still suitable for use with the
canonical correlation functions tabulated in reference 1.
This would not be so if the matrix elements belonged
to different values of L (see "second forbidden transi-
tions" below).

The angular distributions associated with the re-

spective matrix elements in (9) are:
2

(a) r
J

III, namely, that fFr. ~(8)dQ is independent of cV,

and P Fz.~(8) is independent of 6. Moreover, they

will also satisfy the parametrizations for the Fz™(6)
exhibited in Section III(C) of reference 1 for L= 1 and
I.= 2.

Thus for
~

J'r~ ' the one "homogeneous" parameter X

of Eq. (19) of reference 1 for the differential angular
distributions (10) is"

—p'/2(1+ 2q'/3WK)
)(p)=

q'/3+ p'/2(1+ 2q'/3WK)
(13)

The corresponding parameter X(WO), for the inte-
grated distributions is obtained from (13) by weighting
both numerator and denominator by the "statistical
factor, " (Wv —W)'(W2 —1)&WdW, and integrating over
the P-energy spectrum. This, and all subsequently ob-
tained integrated parameters associated with matrix
elements corresponding to L=i or 2 in the various
P-interactions, will not be listed explicitly, but are
plotted in Figs. 2 and 3 respectively as functions of lVO.

For fn, both X(p) and X(WO) are zero For .the
interference angular distributions (12):

—p'/2W
) (p)=

p'/2W+ q'/3K

As shown in reference 1, Section III(C) the para-
metrization of the Fz~(6) is but the formal expression
of the fact that it is sufficient to obtain any Fz~(8) for
fixed M' and then the remaining Fz,sr(8) are uniquely
determined. They may then be obtained explicitly from
the parametric representation. Accordingly we shall
henceforth exhibit only one of the Fz~(8), say FI,'(8),
from which can be read oG the values of the differential
and integrated parameters for obtaining the remainder
of the set. These parameters are all that are needed to
make the tabulated correlation functions of reference 1,
Section IV completely definite.

It is rather interesting that the angular distributions
(11) associated with J'I are isotropic, notwithstanding
the fact that 0; is a vector operator, I.=1. Physically
this is understandable since the angular momentuni of
the outgoing P-particle and neutrino due to the u term
in the first forbidden interaction is wholly spin angular
momentum. (This is because one has set e'P'=1 in

this term, which is equivalent to assuming that the
electron and neutrino are emitted in s-states). But
since one has averaged over all spin orientations one
should not expect any net angular dependence from
this term. On the other hand, J'r comes from the (P r)
term in the expansion of the exponential, and this is

"We use relativistic units A=m=c= 1, throughout; since the
neutrino rest mass is zero, E=q. We have not canceled the q/E,
for purely didactic purposes: (u) the factor 1/5'E identi6es terms
due to spurs in taking spin averages (b) to show the connection
with the corresponding formulas of reference 4.
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associated with the total Orbital angular momentum of
the emitted particles. In spite of this distinction we

classify both matrix elements as L=1, since it is this
value of L which determines the selection rules for the
matrix elements and the transformation coefFicients

(JII'M'~ JI.rnM) which enter into the explicit calcu-
lation of angular correlations (reference 1, Section IV).

Thus

(a) ~eX r

F,'(0; W) =
( P'Ll —(4q'/3WE)]+ 'q' i-

+p'$(4q'/3WK) 1]c—os'6, (15)

(iii) Second Forbidden Transitions

Konopinski and Uhlenbeck4 have shown that the
following irreducible tensor matrix elements occur in
the interaction for second forbidden transitions: the
scalars J'r'and J'n r, the axial vector J'n)(r, and two
second order tensors with spin zero:

X.X—-'r28"
'U & 2 3 V

whence

(b) R,;

p2—L1—(4q'/3H'E) ]
2

~(p) =—,
p'—L1—(4q'/3WIC)]+ ',q'-
2

(16)

A;, = a;x;+a,x; ,(e——r)8;,.

Of these, the scalars are discarded as having the same
selection rules as the allowed transition and repre-
senting only a small correction to it. The axial vector
(I.=1) and the two second-order tensors (I.=2) are
retained since they yield different selection rules than
either allowed or 6rst forbidden transitions. On re-
taining these latter three matrix elements, one gets not
only the angular distributions associated with each one
individually, but also additional interference angular
distributions associated with each pair. These inter-
ference terms are of two kinds. First there is the term
with coeflicients P;;A;,R;, which is similar to the
J'e J'r* cross term in (9) in that both irreducible
tensors belong to the somme J. Therefore, no new
products of transformation coefficients are introduced:
the same 6 ~~~' is common to squares of these matrix
elements and their cross terms. Hence the canonical
correlation function tabulations of reference 1, Section
IV are applicable to such mixtures even though one still
carries along the unknown relative magnitudes and
phases of nuclear matrix elements. The second type of
cross term is that involving the axial vector and either
3,; or E;;. For such cross products of operators trans-
forming according to diferent values of I., the inter-
ference term can be shown to vanish if one considers
only a single transition. (Thus, contributions from this
kind of cross term do not occur in the "energy correction
factors" obtained in reference 4.) However, they can be
shown to contribute to the angular correlation. ' The
occurrence of products of transformation coefFicients
with different J makes inapplicable the canonical cor-
relation functions tabulated in Section IV of reference 1.

In accordance with the policy stated in the intro-
duction, we shall consider only the angular distributions
associated with each matrix element individually for
then the theoretical angular correlations can be made
completely definite,

2 2 1 2p'-'q'-' ( 2q' ),
F~'(~ W) = q'+ —P'q'+ -P'+ -.

~

P'+
15 9 6 9WE( 5 )

2 4p2 2

+ p'q' p'+— —(-,'q'- —p') cos'8
.3 3WE

2P4 2-

+ —p4+ cos48. (17)
2 WE

Taking the homogeneous parameters for the A=2,
F&~(8) as n& and ns of reference 1, Eq. (20), these dif-
ferential parameters are here:

2 2 1 2p'q"-

q+ Pq +—P+-(P-+2q /5)
15 9 6 9WE

ni(p) = (18a)
2 4p2q2
P'q' P'+-, (l—q' P')—

3 3WE

3 2P'q2
P4+

2 WK
t ~(p)=

2 4p2q2
Pq' P'+ -(Sq' —P')—

3 3WE

(18b)

(c) A;,

whence

and

Fp'(8; W) =-', (2p'+4q')+2p' cos'8

"(P)=(P-+2q)/3P-

t ~(p) =o.

(19)

(20a)

(20b)

Note that although A;; has selection rules for L=2,
cos28 rather than cos48 is the highest power occurring
in the F&~(8), (19).This can be understood by the same
argument which applied to J'a above.

(B) Scalar and Pseudoscalar Interactions

The nuclear matrix elements for allowed, 6rst and
second forbidden scalar interaction are almost the same
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0 ™u

2p4~'
-p—
2 5'E

t ~(p)=
2 4P2q2

pV-p' — —(le' p')—
3 38'E

02

-02

FIG. 1. The differential parameter X(p) versus (W —1)t/(Wp —1)
for the matrix elements J'eXr and J'Pe)&r occurring in the
axial-vector and tensor interactions respectively. The solid line
denotes J'opr, the broken line J'Peter.

(i) Allowed Transitions: J'P, Jt3yq'
Fo'(i1) = 1. (21)

(ii) First Forbidden Transitions: J'Pr, J'Py&r

F '(i1 W) = -'q'+-'p'(1 —2q'/3WE) cos'i1 (22)

whence

as the J'1, J"r and It;, of the polar vector except that
the scalar Dirac operator P replaces 1. The only effect
of this is to change the signs of all terms in 1/WE in the
corresponding angular distributions for the matrix
elements fP, J'Pr and E;,~ The pseudo. scalar interac-
tion differs from the scalar only in that Py& replaces P
throughout. But since these operators affect the Fi, (i'I)

only through the spurs (from S, „) and these are the
same for both P and Pys, it follows that for all degrees of
forbiddenness the pseudoscalar angular distributions are
exactly the same as the corresponding scalar Fl~(8)

(C) Axial Vector interaction

(i) Allowed Transitions

The nuclear matrix element occurring here is J'e
corresponding to 1.=1, but the associated angular dis-
tributions are isotropic:

Fio(i1) =Fi+'(6) = 1.

Physically, the reason for this is the same as the isotropy
of the Fi~(i1; W) for J'n. Formally, all spurs in o are
the same as the corresponding spurs in e, and these
spurs yield terms linear in the neutrino and electron
momentum which vanish when averaged over all
directions.

(ii) First Forbidden Transitions

The matrix elements effective here (reference 4,
Table l) are

fear

r, fyq, foXr and

B;)=)Io;x,+o,x,. 3(a r)—b„—.

The erst two being scalars yield isotropic distributions
F00(8)=1.The member J'aX r yields the same F&~(i'I)
as J'nXr of the polar-vector second forbidden transi-
tions, (15) and (16), while B;, gives exactly the same
Fiu(i1) as A;, : (19), (20a, b). Note that no term of
higher power than cos28 occurs in any of these angular
distributions.

(iii) Second I'orbidden Transitions

The I'i~(6; W) associated with

T;,=) (eXr); x+(e Xr), x;

are obtained from the relation
—-'p'L1 —(2q"/3WE)]-

a(p) =
-', p'L1 —(2q'/3WE) $+-,'q'

(23) F;"(a;W)= dn„, S,, „i( Ag, u(aXPP)B)~-'

(iii) Second Forbidden Transitions: It„,E„»
Changing the sign of the 1/WE terms in (17), (18a)

and (18b), one gets:

which gives

2q4 p2q2 4 p2q4
Fio(i'I; W) = —+

15 3 15 TFE

t~1(p) =

2 2 1 2P'q'
g4+ P2q2+ P4 (P2+ 2q2)

15 9 6 98'E

4p 2g2

PV p'-—
2 3$'E

(24a)

p2q2 2p 4q2-

+ p4+ — cos26
3 O'E

2p g+ —p4+ cos'8. (25)
lVE
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The corresponding parameters are

(2V4/15)+(PY/3) —(4/15)(p''/WE)
u4(P)= (26a)

P'+(PYI3) (2—PVIWE)
—p4+(2P4q'/WE)

us(p)=
P'+(P'c'/3) (2P—YIWE)

We do not exhibit the Fs (~) associated with S,,A

since it corresponds to L=3 and the canonical correla-
tion functions of reference 1 are given only for L= 1
or 2. One can easily show, however, that cos'8 is the
highest power of cosd occurring in these Fs (~).

(D) Tensor Interaction

All the F' (~) for the matrix elements in the tensor
interaction may be found from those already obtained.
Namely, the nuclear matrix elements here di8er from
those for the axial vector and vector interactions only
in that o or a are replaced by Pe. The sole effect of this
is to change the signs of the 1/WE terms wherever
these occur in the associated F' (8).

(i) Allowed Transitions

The F'~(8) associated with J'Pe are isotropic.

(ii) First Forbidden Transitions

fpe. r is a scalar with Fcc(~)=1.fpe is isotropic
just as is J"n, (11).

8;,e= P[ ;a+x, o;
—x-', (o. r)b;,]

yields the same Fs-"4(8) as 8;, and 2;, (19) since no
1/WE terms are present.

However, the F&'u(8) for J'PeXr diBer by the sign
of the 1/WE term from the F~~(8) for J'eXr (15),
whence:

Before leaving the angular distributions, we state
several other applications of the methods used here to
obtain the Fz~(8; W). First the solid harmonic decom-
position of irreducible tensors may be used to show
generally that the maximum power of cos8 in any Sth
forbidden P-transition is cos'~8, notwithstanding that
irreducible tensor matrix elements corresponding to
L,=(V+1) do occur in the axial-vector and tensor inter-
actions (e.g., 8,; for iV= 1, etc.). Second, by averaging
the Fz (~; W) over 8, the resulting expression (which
is independent of 3f) gives precisely the "energy cor-
rection factors" to the allowed energy spectrum ob-
tained in reference 4 for the respective forbidden
matrix elements. Moreover, one can exhibit" the energy
correction factors in closed form for arbitrary, Vth
degree of forbiddenness and can show generally these
are at most of degree 2Ã in the energy, O'. Indeed, the
degree of the energy correction factor cannot be less
than the maximum power of cos8 for any given inter-
action. It follows that if a forbidden P trans-ition has an
allowed spectrum shape, then the associated Fz~(8) are
isotropic. The converse is not true in general (e.g. ,
J'e r). Finally, we remark that by not carrying out
the averaging over neutrino directions or over p-par-
ticle spin orientations, our formalism would yield the
angular distributions needed for angular correlations
in which both the directions of neutrino and of P-par-
ticle are specihed or in which both the direction and
spin polarization of the P-particle are given.

III. THE g —7 ANGULAR CORRELATION

%e now combine the preceding information about
the P-angular distributions with the properties of cor-

IC

0,8

06

', p'[1+(4qs/3W-E)]
~(p)=,

2P'[I+(4v'/3WE)]+2v'/3

(iii) Second Forbidden Transitions

Changing the signs of the 1/WE terms in (25), (26a,
b), the parameters for

T;,e= P[( Xr);x,+(eXr),x;]

02
& (0/o)

OI

-0.2-

-04-

-0.8

VECTOR)

VECTOR)

I I I I I I I

2 5 4 5 6 7 8 9
ENDPOIN7 ENERGY, Wo IN UNITS mc

JP~ (SCALAR)

JPh~Ã (PSEUDOSGALAR)

(POLAR VECTOR)

(2v'/»)+(PYI3)+(4I»)(PYIWE)
u4(P)= (28a)

P'+(PVI3)+(2PYIWE)
—p' —(2p4gs/WE)

"s(p)= (28b)
P'+(P V/3)+(2P V/WE)

FrG. 2. The integrated parameters, X(W'0}, versus 8'0 for matrix
elements with X=1 occurring in the various interactions. The
matrix elements fe, fo', fpo' having X=o (no correlation} are
not shown.

I' See the thesis of D. L. Falkoff, University of Michigan, April,

f h l l l 1948 for details. E. Greuling, phys. Rev. 61, 5(M (1942} obtained
by induction more general formulas for the Xth forbidden energy

tions are considered in Section III. correction factors which are valid also for Z&{).
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1.0

0,5

5 4 5 6 7 8 ~ 9 IO
Wo, 8 ENDPOINT ENERGY IN UNITS mc

-I0

—1.5

R TI
Rpl

INTEGRATED PARAMETERS

FOR

MATRIX ELEMENTS WITH L=2

LAR VECTOR)

-25

(SCALAR)

(PSEUDOSCAI AR)

FIG. 3. The integrated parameters p, I(WO) and p2($'o) &@'»&

Wo for matrix elements with 1.=2. @2=0 (no cos'0 term) for
:t;,, B;;, B;; andA;, ., .P

relation functions established in reference 1 to draw
conclusions" about the P—y-correlation.

Conclusions which hold irrespective of the particular
p-interaction are:

(1) For allowed p-transitions followed by any other radiation,
there can be no angular correlation.

(2) For any forbidden p-transition having an allowed spectrum
shape followed by any other radiation there can be no angular
correlation.

(3) For all 6rst forbidden p-transitions followed by any y-multi-

pole, W(8) is of the form A+B cos'8.
{4) For all second forbidden p-transitions followed by p-quad-

rupole or higher multipole, W(0) is of the form A+B cosV
+Ccos 8. However, if the y-transition is dipole, W(6) reduces
to the form A+B cos'0.

(5) For p-particles near the low energy end of the p-spect. rum
there is no p —y-angular correlation: p-particles having energy
near the maximum, Wo, will yield the strongest correlation.

More detailed results can be deduced by examination
of the behavior of the parameters for the Fz." (8) for
each matrix element (see Figs. 1, 2, 3). In particular,
to obtain numerical values for the coeScients of the
powers of cos'8 in W(i1) for any proposed decay scheme,
one has only to insert the values of the parameters for
the interaction of interest into the canonical correlation
functions tabulated in reference 1, Section IV. Since
these can dier markedly from matrix element to

"D. R. Hamilton, Phys. Rev. 60, 168 (1941). D. L. Falkoff
and G. E. Uhlenbeck, Phys. Rev. 78, 649 (1948). C. N. Yang,
reference 2,

matrix element, it follows that the P—y-angllar corre-
lalion can distinguish betroeen the diferent interactions
(The scalar and pseudoscalar interactions are excep-
tions, yielding identical correlations in all degrees of
forbiddenness. ) In this respect it should be noted that
although the angular correlation will be strongest for
electrons near the upper limit of the P-spectrum, this is
not always the optimum energy region for distinguishing
between interactions. For example, the matrix elementsfPa X r and faX r, occurring in the tensor and axial-
vector interactions respectively, yield the same cor
relation for the high energy P-particles, but differ appre-
ciably for intermediate energies. "This can be seen from
the behavior of their associated di6'erential parameters,
X(p), plotted versus (W—1)/(Wp —1) for different
values of 8'0 in Fig. 1.

In Figs. 2 and 3 the integrated parameters occurring
in the diferent forbidden transitions are plotted as
functions of 8'0. These are grouped according to values
of L; i.e., X(Wp) for L=1 in Fig. 2 and pi(Wp) and

up(Wp) for matrix elements with L=2 in Fig. 3.
With two possible exceptions" the experiments thus far

reported on P—p-angular correlations have given mostly
negative results. " In most cases the experiments were
done with p-emitters which would be classified as first
or second forbidden according to their ft values, so that
in general one would expect some angular correlation,
However, in no case was the shape of the P-energy
spectrum measured in conjunction with the correlation
experiment. Since, as we have seen, one can get no
correlation for forbidden transitions if the P-spec-
trum has the allowed shape, one can always ac-
count for a negative result by assuming that suitable
matrix elements (e.g., fe, fa r) are dominant even
when the transition is first forbidden. This is no longer
possible with second forbidden transitions where all
matrix elements (except fa r (~0 only) in the tensor
interaction) would yield a, correlation. However, it is

known that the classification based on f/ values alone is
not very dependable, so that perhaps all investigated
cases were only erst forbidden. Therefore, it seems to
us to be of great importance that the shape of the
P-spectrum should confirm the degree of forbiddenness.
For it is only if the shape agrees with a forbidden
transition while no correlation is present that one will

have a clear cut contradiction with theory.

"The reason for this is that the associated FIM(6) dif'fer only
in the signs of the 1/WX terms arising from the relativistic spin
averaging, and these terms do not contribute at either end of the
energy spectrum.

'~ S. Frankel, Phys. Rev. 77, 747 (1950); D. T. Stevenson and
M. Deutsch, Phys. Rev. 78, 640 (1950), report a p —p-correlation
in Rb'6. T. B. Novey, Phys. Rev. 78, 66 (1950) reports a p —&-
correlation in Tm"'.

'SM. A. Grace, R. A. Allen, H. Halban, Nature 164, 538
(1949). R. Garwin, Phys. Rev. 76, 1876 (1949). M. Kiedenbeck
and J. R. Beyster, private communications.


