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The theory of angular correlation is given in a form applicable to the successive emissions of any nuclear
radiations. It is shown that the theoretical specification of angular correlation requires two kinds of in-
formation; namely, the angular momenta of the nuclear states and emitted radiations, and the Hamiltonian
interaction between the outgoing particles and nucleus. The former information enters in the same way in
all angular correlations while the latter, differing with the kind of particles emitted, is needed to obtain the
angular distributions associated with each component of a line. The structure of such angular distributions
is studied in relation to isotropy requirements and an explicit construction to exhibit them is given. Systematic
simplifications in the calculation of angular correlation functions W(&) are shown to result from several
theorems relating to the combinations of transformation coefficients occurring in W (#). These make possible
a complete tabulation of W(#) in canonical forms applicable, on proper specialization, to any angular cor-
relation in which the angular momentum of the decay products in either transition is 1 or 24. The speciali-

zations for a- and y-emission are given.

I. INTRODUCTION

HE theory of the directional correlation between
gamma-quanta emitted in successive nuclear
transitions as given by Hamilton! has proved to be a
valuable tool in nuclear spectroscopy. In many cases,
comparison of experiment? with theory has yielded con-
sistent assignments of the angular momentum quantum
numbers for the nuclear states involved and the multi-
pole orders for the successive gamma-radiations. These
successes have stimulated further work on the angular
correlations of successive nuclear radiations. Thus far,
most of the detailed extensions®—¢ of the angular corre-
lation theory have been concerned only” with the y—v-
angular correlation. However, experiments on other
types of angular correlations, e.g., 3—+,? internal-con-
version®-y and!® a—+y, have now also been reported.
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We have developed the theory of angular correlation
in a form applicable to the successive emissions of any
nuclear particles. It will be shown that the theoretical
specification of the angular correlation requires two
kinds of information: (a) information associated with
the rotationally invariant description of the nuclear
states and the successive decay products, as for example,
their angular momenta, parities and the polarizations
and direction of emission of the emitted radiations;
(b) the specific interaction Hamiltonian giving the
coupling between outgoing particles and the nucleus.
The use of information of type (a) is of quite general
validity, being based solely on rotational invariance
arguments, and is common to all angular correlations.
On the other hand the information of type (b) will vary
with the kinds of particles emitted and will, therefore,
be different, say, for a 8—+y-correlation than for a y—-
correlation.

Our program for this article is to carry through the
explicit calculation of angular correlation functions
using only “rotational” information of type (a). There
are several advantages in such a procedure. In the first
place, we are then able to tabulate the angular corre-
lation functions in ‘“canonical” (or parametric) forms
which are applicable, on proper specialization of the
parameters, to any cascade emissions in which the
angular momenta of the successive decay products is 1
or 2h. In this way one can eliminate completely the
duplication of rather formidable! calculations which
would otherwise be necessary if, say, the y—v, 8—v
and internal conversion —y-correlations were treated

10 B. T. Feld, Phys. Rev. 75, 1618 (1949). Also R. Garwin and
W. Arnold, private communication, B. Rose and A. R. W. Wilson,
Phys. Rev. 78, 68 (1950).

11 Thus M. Fierz, Helv. Phys. Acta XXII, 489 (1949) gives
general expressions for y—+ and internal conversion — y-angular

correlations, but his results cannot be compared with experiment
since none of the required sums are evaluated.
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324 D. L. FALKOFF
separately ab inmitio. Secondly, one obtains a certain
insight into the physical reasons for angular correlation
and the structure of the correlation function by con-
sidering the general case. In particular, one can establish
which properties of angular correlation are independent
of the choice of interaction Hamiltonian.* This is of
especial interest for B-emission where the choice of
interaction is far from unique.

The results of most interest to experimentalists are the
discussion and tables of Section IV. In order to get
numerical values for the correlation functions, W (&),
one has only to insert the appropriate values of the
parameters for the particle emissions of interest. The
necessary specializations of the parameters for corre-
lations involving a-particles and vy-rays are given as
illustrations in Section III; the B—+y-correlation is dis-
cussed in a subsequent article.

II. THE ANGULAR CORRELATION FUNCTION, W(8)

Consider the successive emissions of particles, say,
1 and 2, in directions k; and k. respectively during
transitions 4—B, B—C between states 4, B and C of a
nucleus. (The nuclear states, each having definite total
angular momentum will be degenerate with respect to
their magnetic quantum numbers /, m, p respectively.)
The problem is to find W(d#)=W(k; ko), the prob-
ability that particle 2 is emitted at an angle ¢ with
respect to the direction of emission of particle 1.

Hamilton! gave a rigorous quantum mechanical
derivation of W (&) for the y— y-correlation by applying
second-order time dependent perturbation theory to an
initial system of excited nucleus and quantized radiation
field. With minor notational changes, his derivation is
equally valid for more general correlations, and the final
form may be written:

W(9)=51S2 21, | Xm(At| Hi(k1) | Br)
X (Bn| Ha(ko) | Cp)*[2, (1)

where A4,, B., C, represent wave functions for the
degenerate sublevels of initial, intermediate and final
nuclear state.

Hi(k,) is the interaction Hamiltonian for emission of
the first particle in direction ky; Hs(ks) for emission of
particle 2 in direction k.. Either H factor may also be
a function of other arguments as, for example, the spin
or polarization of the emitted particle as well as the
direction and energy of any other simultaneously
emitted particle (e.g., the neutrino in g-decay).

The symbol S; denotes an average over-all directional
information (such as spins, polarizations or directions
of emission of other particles) associated with the first
transition, except for the direction of k; of particle 1,
with a similar meaning for .S, and the second transition.

12 This was done by C. N. Yang, Phys. Rev. 74, 764 (1948),
who treated angular correlations using solely rotational invariance
arguments. By purely group theoretic methods he proved theorems
about the forms of the angular distributions without actually ex-

hibiting them. See also R. D. Myers, Phys. Rev. 54, 361 (1938)
and G. Goertzel, reference 3.
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The matrix elements (4| H| B.) are probability am-
plitudes for the various possible transitions between
degenerate sublevels.

Equation (1) is seen to differ from what one would
expect from conventional second-order perturbation
theory only in that the degeneracy of the nuclear states
has been taken into account and non-angular dependent
factors such as common energy denominators have been
discarded. It is not, however, in a form which is easy to
use because the products of probability amplitudes in
(1) are summed over intermediate sublevels m before,
rather than after, squaring, which gives rise to inter-
ference between the various ways in which a transition
can occur from a given initial sublevel 4; to a final
sublevel C, via different intermediate sublevels B,.
This interference can be removed!? by simply taking the
z-axis of quantization along the direction of emission
of one of the decay particles. Thus, with £ (ky, 2)=0,
£ (ko, 2)=9, Eq. (1) reduces to:

W ()= n{XiLS1|(4:| Hi(0)| Bn)|*]
X2 o[ Se| (Bu| Ho(8)[C) [} (2)

This equation is the most convenient starting point
for all explicit calculations of correlation functions.
Moreover, in this form involving only squares of matrix
elements, the summands in (2) have a particularly
simple physical interpretation, namely

S1| (4, Hi(0) | B,n) | *= P (0)

is the (relative) probability for the emission of the first
particle along the #=0 direction during a nuclear
transition between sublevels 4; and B,,. Similarly

So| (B | Ha(9) | Cp) [*= Prmp(9)

gives the (relative) probability for particle 2 to be
emitted at angle & in the particular transition B,—C,.
And the over-all correlation function is, therefore, of
the form

W(3) =2 imp Pim(0) Pry(d). (2a)

Since the probabilities for each transitipn now appear
independently in (2a), it is natural to begin the analysis
of W(#) by studying the structure of Pnm(¢) for a
single transition.

III. THE STRUCTURE OF A SINGLE TRANSI-
TION BETWEEN DEGENERATE LEVELS

We now treat the angular distribution and intensity
of the radiation associated with each component of a
line.! First Section III(A) we state some general proper-

13 Hamilton (reference 1) has proved this in detail for the y—vy
case, and we have verified it for all the interactions of interest to
us. (See the Theses of D. S. Ling, Jr. and D. L. Falkoff, reference
7.) Although it seems almost intuitively obvious to us that the
removal of the interference in this way must hold whatever the
interaction H, we have not been able to give a convincing general
proof for it.

14 Following the terminology of atomic spectra (see E. U.
Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge
University Press, London, 1935), Chapter IV) we define a line as
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ties of the P (d) sufficient to guarantee the isotropy
requirements for a line. This discussion generalizes to
transitions involving the emission of arbitrary particles
of angular momentum L the properties which are
familiar in atomic dipole radiation.!* At the same time
it leads to additional insight on the reasons for angular
correlation. Then in Section III(B) we give a con-
structive procedure for obtaining the angular distribu-
tions and (relative) intensities for each component of a
line from the Hamiltonian interaction describing the
emission of the given radiation. These exhibit the
properties assumed in Section ITI(A). Finally, in Section
III(C), the angular distributions are put in a particu-
larly simple parametric form which is convenient for use
in angular correlations.

(A) Isotropy Considerations

It will be shown in Section III(B) that the relative
probability for the component of a line corresponding to
a transition between states with total and z-component
angular momentum quantum numbers J, m and J', m’
respectively with emission of a particle with total and
z-component of angular momentum of L, M in the
direction ¢ (with respect to the z-axis) must have the
form:

JLJ'
Pt (8) =G, FLM(¥) with m'=m~+M.

JLJ'

©)

Here Gn,m is an intensity factor depending only on
the angular momentum quantum numbers JLJ', mMm/',
and FM(9) gives the angular dependence of the radia-
tion associated with the m—m’ component. Moreover,
these have the following properties:

FLM($)=FL~M(9), (4a)
f FpM(9)dQ is independent of M, (4b)
L
Y. FpM(¥) is independent of ¥, (4¢)
M=—L
J Iy
> Gum me+u is independent of M, (5a)
m=—J
L JLy
>~ Gm, mty is independent of m. (5b)
m=—L

We now make the physical assumption?® that all initial
magnetic sublevels for a line are equally populated, as
will be the case if the nuclei are randomly oriented.

the total radiation associated with all possible transitions between
two degenerate levels consistent with the angular momentum
selection rules. A component of a line refers to the radiation arising
from a transition between a particular pair of sublevels. Thus,
Pom:(9) refers to the component B,,—Cr of the line B—C.

18 This assumption of “natural excitation” is also made in the
derivation of W(#), Eq. (2). It could be violated if the nuclei were
anisotropically excited, as by unidirectional radiation.

Then the following theorems are direct consequences
of the properties (4b), (4c), (5a), (5b).

Theorem 1: The total probability for transitions from
each magnetic sublevel, m, of the initial level is independent
of m.

Proof : This probability is proportional to

> f QP (9).

Since m'=m-+M, for fixed m one can replace Y, by
Z M. Then

P f dQPmm,(0)=[ZMGi,L,ﬁM f FLM(z?)dﬂ]

which by (4b) and (5b) is independent of .

In virtue of the relationship of the lifetime of a state
to the probability for spontaneous transition from it
this shows that the lifetime of each initial sublevel is
the same.

In a similar way one gets:

Theorem 2: The total probability for transition to each
final sublevel m' is the same independent of m'.

Theorem 3: The total intensity of all components of a
line with the same M =m'—m is independent of M.

(The equal intensities for the normal Zeeman triplets
are a familiar example of this theorem in atomic
spectra.)

Finally, suppose one does not average over all direc-
tions of emission, but considers instead the sum of the
radiations due to all components for fixed #. Then
using (4c) and (5a) one obtains:

Theorem 4: The sum of the radiations from all com-
ponents of a line is isotropic, i.e., is independent of 9.

Let us now apply these isotropy results to the case
of two successive emissions. Assuming equal populations
for the initial magnetic sublevels, Theorem 4 guarantees
that the radiation in the first emission will be isotropic.
Moreover, the radiation from the second transition will
also be isotropic since the initial sublevels for it are the
final sublevels for the first emission, and by Theorem 2,
these are all equally excited! How then does an angular
correlation occur? It is the crux of the angular cor-
relation theory to note that the equal population for
the (intermediate) sublevels is obtained (Theorems 1
and 2) only after averaging over all directions, d. If
one specifies the direction of emission, &, for the first
transition, then the relative populations for the ter-
minating sublevels of this transition will not be the
same; they are in fact given by

JLJ'
2 m Gur—pt,m FLM(9)

which is not independent of 7.



326

It is this unequal weighting of the intermediate sub-
levels when the direction of the first emission is specified
which gives rise to the angular correlation.

(B) Angular Distributions and Intensities of
Components

We now exhibit the reduction of
Pt (3) =S| (Buw| H|C) |2 (6)

to the form (3). The matrix element is taken with
respect to the initial and final nuclear wave functions.
These are in general not known, but they can be desig-
nated by their associated quantum numbers. Denoting
all other quantum numbers than the total angular
momentum and its g-component by «, we can write:

(B H|Cr)=(aJm|H|d'J'm').

Two requirements are now imposed on the interaction
Hamiltonian H : First, H should be invariant under any
rotation of space coordinates. Second, it should cor-
respond to the emission of a particle (or particles) with
total angular momentum L.16

The rotational invariance of H can be guaranteed if
it can be written as an inner product of two tensors of
the same order. Such tensors must of course be con-
structed from the various argument vectors (and
spinors)'” on which H depends. These argument
vectors will be of two kinds: those, denoted by X,
which are nucleonic operators and with respect to
which the nuclear matrix elements are taken, and
vectors, denoted by A; which are associated with the
description of the emitted particles, such as propagation
vector k, polarizations e, etc. The A;, being independent
of the nuclear coordinates, can be taken outside of the
matrix elements. We choose one tensor to be a function
of the X;, say 7'(X,), and the other a function of the
A,‘I T (Al)

To make these tensors unique, we use the require-
ment that the matrix element is to correspond to the
emission of a particle with angular momentum L.
Group theoretically, this means that under a 3-dimen-
sional rotation of coordinates the tensor 7'(X,) should
transform irreducibly according to the (2L+1) dimen-
sional irreducible representation DL of the 3-dimen-
sional rotation group.!® The construction of the required
irreducible tensor of order L is given in Appendix I.
Denoting the irreducible tensor by its components
Tiyig-- iz, where each 2y, 72, -+, i=1, 2, 3, one has

16 The case of more than one value of L in a single transition is
treated in reference 6.

17 We do not consider spinors separately since in most applica-
tions they occur quadratically and in this form the various co-
Eraria.r)lts are tensors. W. Pauli, Ann. Inst. Henri Poincaré 6, 109

1936).

18 E. Wigner, Gruppentheorie (Friedrich Vieweg and Sohn,
Braunschweig, 1931), Chapters 14 and 15. H. Weyl, The Theory of
Groups and Quantum Mechanics (Dover Publications, New York,
1948), Chapters 3 and 4. B. L. v. d. Waerden, Die Gruppen-
theoretische Methode in der Quantermechanik (Verlag. Julius
Springer, Berlin, 1931), Chapter III.
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then:
H(A,‘, X,)= Z ) T‘L‘y--iL(Ai)Til-“iL(X,'). (7)

i1 L

In this form H is rotationally invariant and cor-
responds to a definite value of L. But to get the angular
distributions associated with each component, one
needs a decomposition of H according to the (2L+1)
possible M values. This decomposition is provided by
the identity (proved in Appendix I):

L

M=Z— L Yz (A)*Y (X))
= Ty (M) Ty - 20(Xa) 8

il, LREN 1’.L

where the Yy are suitably polarized® and normalized
solid harmonics. For then one gets for the nuclear
matrix element:

(aJm|H| ' J'm")
L
= Y You(A)*(aJm| Yu(Xs) | o' T'm’).

M=—L
Since the Y are eigenfunctions of L., one has
(aJm|Yra(Xs)| o/ T'm')=0, unless m'=m-+M,

which is just the magnetic selection rule. In virtue of
this, the indicated sum reduces to a single term:

(a]m I Hl a’]'m’) = ‘yLAI(A;)*(a]ml ‘HLM(X.')I a’J’m’),
©)

with M =m'+m.
The matrix element on the right can always be
factored in the form?

(aJm| Yru(X)| o' T'm')

=fla, o, J, T, X)(JLT'm' | TLmM), (10)
where the first factor being independent of m, m/, M,
is the same (albeit unknown!) for each component of
the line, while the second factor is completely deter-
mined by the indicated angular momentum quantum
numbers, and is just the well-known (real) transforma-
tion coefficient for the vector addition of angular
momenta.?

On substituting (7), (8), (9), and (10) into the general
expression (6) for Pn.(9), and dropping the factor
common to all components one gets explicitly the de-

19 The term polarize is used here in the technical sense of in-
variant theory. See. H. Weyl, The Classical Groups (Princeton
University Press, Princeton, 1939), p. 5. Also Appendix I.

20 E. Wigner, reference 18, p. 264. C. Eckart, Rev. Mod. Phys.
2, 305 (1930).

2 Condon and Shortley, reference 14, pp. 73-78. E. Wigner,
reference 18, p. 206.
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composition (3) assumed in Section III(A), with:

JLJ'

Gomymr = (JLI'm'| TLmM )?
FrM(9)=Sa:| Yu(A))|?

(11)
(12)

where Sa; denotes an average over all A;, except the
particular vector specifying the direction of emission.

The properties (4a, b, ¢) for the F M(#) can be
established from (12) by noting that they are satisfied
by the ordinary spherical harmonic angular distribu-
tions | YVra(d, ¢)|? (see Example (a) below) and these
formal properties are not affected by the subsequent
polarization and averaging processes indicated in (12).
The properties (5a, b) can be proved for (11) by group

JLJ!

theoretical methods.?? The G, m yield the familiar selec-
tion rules for the vector addition of angular momenta
J+L=1J, m+M=m', and are the same for any particle
emission characterized by these angular momenta. For
the distinction between the different kinds of particle

emissions, one must look to the angular distributions
Fp M(9) of Eq. (12).

EXAMPLES.

and

(a) Spherical Harmonic Distributions. The simplest example of
(12) is that in which there is only one argument vector: A;=k;
namely, that one specifying the direction of emission of the
particle. Then there is no need for a summation, .S, over any other
directional information, and (12) yields:

FM(9)=| Yrau(K) [2=R22 | Yiu (9, o) [, 13)

where the Y7x(9, ¢) are the usual spherical harmonics; 3, ¢, the
polar angles of k.

These “spherical harmonic distributions” are appropriate for
the emission of any spin zero particle, in particular, a-particles
or scalar mesons with orbital angular momentum L. Dropping
common factors, these F1¥ (&) are for L=1 and 2:

L=1: |Yy0|%=2 cos?d,

| V1, 41]2=1—cos?3, (19
L=2: |V30|2=1—6 cos?3+9 cos*d,

[¥2,41]|2=6 cos?3—6 cos'd, (15)

| Y5, 42| 2=%—3 cos?d+3 costd.

(b) Gamma-angular distributions. The various electromagnetic
multipoles can be obtained by expanding the exponential in the
interaction Hamiltonian, H~p-A=p-eek-r. Thus for electric
dipole, H=p-e. In this case the irreducible tensors are just the
vectors p, the nuclear momentum operator, and e, the polarization
vector for the emitted quantum, these vectors transforming ac-
cording DL with L=1. Using the solid harmonics Y, o(r) =3z,
Yy, £1(r) =F[(x4y)/2¥], the identity corresponding to (8) is

pe= 2 Yuu()*Yiu(e)
M=—1

whence applying (12) with S now denoting an average over the
two polarizations e; and e; perpendicular to k, one gets for the

electric dipole angular distributions
Fo(8) =Ze| (yL o(e) |2=en2+ex?=1—k2=1—cos?d, (16)
FiE1(9) =Ze| Yy 11(e) | 2=3(14cos?9).

2 See for example, G. Breit and B. T. Darling, Phys. Rev. 71,
465 (1947).

If one retains only the second term in the exponential, then
H~(p-e)(k-r)=2.-,,~ ekipix;, 1,5=1,2,3.

Here H is rotationally invariant, but the tensors e;k; and pix;

are not irreducible. In fact, p;x; can be decomposed into the fol-

lowing irreducible tensors:

(i) a symmetric tensor with spin zero:

Tii(p, 1) = pixj+pixi—3(p-1)ds;.
(ii) axial vector:
pixi— pixi=—(EXp).

(iii) scalar: pr
which transform irreducibly according to DZ with L=2, 1, 0.
respectively. The first gives rise to electric quadrupole radiation,
the second to magnetic dipole, while the third, the electric
“‘unipole” 2 does not give rise to any radiation. Thus the inter-
action for pure electric quadrupole radiation can be written:

2
H=Zﬁ T.-,'(p, r) Tfi(e> k) =2 (HEM(e) k)*‘yw(l’, l'),
M=—2

where T;;(e, k) is of the same form as Tyj(p,r) in (i) and the
polarized solid harmonics are given in Appendix I. The angular
distributions obtained using (12) are:

Fy0=06 cos?3—6 cos*d,
Fy¥1(9) =1—3 cos?9+4 costd,
Fo¥2(89) =1—costd.

These particular distributions can be derived by other methods ;24
in fact, using only classical electromagnetic theory. However, our
formalism is particularly well suited to the g-decay theory for
which there is no classical analog.

17

(C) Parametric Forms of F ¥ (8)

The general expression (12) for the Fz(¢) not only
yields the “isotropy conditions” (4b, c) used in Section
III(A), but also strongly restricts the form of Fr(&).
Indeed, from the invariance of (12) under reflection of
coordinates: FrM(9)=F M (—9®)=FM(x—9),itfollows
that F1™(¢) must be a function of cos®#. And since the
| Yra(A;)|? like the spherical harmonic distributions
(13), transform under rotation of coordinates according
to DX DL*, each FrM(¥) can be at most? a poly-
nomial of degree L in cos*?. Therefore one can writé in
general

L
FrM(9)=Y C; costis, M=0, &1, ---, +=L. (18)

=0

The (2L+1)(L+1) coefficients C;®*) cannot all be
independent since the conditions (4a, b, ¢) must be
satisfied. However, even with these constraints imposed
on the FrM(#), there could still remain L?4-1 possible
independent coefficient among the C;#9. It is, therefore,
noteworthy that the maximum number of independent
coefficients in the most general set of F M(9) is L+ 1 and
not L4 1. This can be seen as follows: Consider any
FM(9) for any fixed M50, the C;" being left arbi-
trary. Physically, FL¥ (&) is associated with radiation
having a z-component of angular momentum M about

2 H. C. Brinkman, Zur Quantenmechanik der Multipolstrahlung
(Proefschrift, Utrecht, 1932), p. 29.

2 The angular distribution for electromagnetic multipoles have
been given in a closed form, which is easy to evaluate, for arbitrary
L in reference 6.
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some arbitrary z-axis. Suppose one chooses a new z’-axis
so that the z’-component for this same radiation becomes
M'=0. Then one will have F M(#)=F°(¢') where ¢’
is measured with respect to the z’-axis. If one now
expresses ¢ in F °(¢') in terms of &, then on equating
the coefficients of linearly independent powers of cos?}
in the resulting equality, one will get the C;*) ex-
pressed (linearly) in terms of the (L4-1)C;(. It follows,
moreover, that the (L-+1) linearly independent coef-
ficients may be taken as the (L+1) coefficients,C,%0,
for any fixed M. The normalization of the F¥(&) being
arbitrary, one can divide through the set of F ¥ (d) by
any one of the C;**). Then the maximum number of
independent ‘‘homogeneous parameters” required to
parametrize the set of F M(9) is L. We illustrate the
use of such parametrizations for L=1 and 2.
For L=1, the most general set F;*(8) can be taken
in the form:
F19(%)= (14X\)— 2\ cos?d,

Fi#(3) =14\ cos?d, (19)

where \ is the one arbitrary homogeneous parameter.

Several special cases of N are noteworthy:

(a) A=1 yields the dipole y-distributions (16),

(b) A=—1 yields the spherical harmonic distribu-
tions (14),

(c) When A=0, both Fi°(¢¥) and F,*'(¥) are inde-
pendent of &, even though L=1. Examples of this in
the B-theory are the tensor and axial vector allowed
transitions.

For L=2, a convenient parametrization for the
general set of FoM(d) is:

F0(3) = p1+ cos*I+ pe costd,
Fo#(9) = (u1+§)+ (nat3) cos’®—3us cos'd,
FyE2(9) = (m+3pet3) — (mt1) cos®d+guz cos'd.

Another equivalent set with different choice of the
two independent homogeneous parameters is

F(9) = (k14 ka)+ (3ka—1) cos?d+cos*d,
For\(9) = (ki +3ky—5)+ ($ka+31) cos?d—% cos'd,
Fot2(8) = (k14 3ky— §) — 3ks cos?9+§ cos*d.

For y-quadrupole, (17), ki=k,=0, while for the
internal conversion F.M(d3) Ling” has shown that
k] =F22(0)=0

The advantage of such parametrizations is that they
reduce the problem of finding the set of Fr¥ (&) asso-

(20)

(21)

FALKOFF AND G. E.

UHLENBECK

ciated with a given particle emission to that of evalu-
ating the L parameters which uniquely determine the
F1M(9). In particular it is only necessary to find F ()
for one particular M ; the other F ¥(d) can then be
written down at once from the parametric forms.

We have chosen to express the F () in powers of
cos®¥, since this form is most useful in tabulating
angular correlations for comparison with experiment.
Had we chosen an expansion in terms of the spherical
harmonic distributions the form of the parametrization
would have been neater. Thus for L=2, the corre-
sponding expansion equivalent to (20) or (21) is:

F2(8)=A| V0|2 4+3B[4] V1,0[242] V3, 1|2 ]+C,
FyE(9)=A| Vo 11| >+ BL| V1,0 >+ | Vi, 41|2]+C,
FyE2(9)=A |V 12|+ B[2| V1, 11| *]+C,

with the |V rx|? given by (14) and (15) and 4, B, C
arbitrary scalar parameters. Formally, one sees that the
effect of averaging over spins, polarizations, etc. in
(12) is to introduce linear combinations of spherical
harmonic distributions for /< L. For each /, these linear
combinations must be such as to satisfy (4b, c).

(22)

IV. REDUCTION AND TABULATION OF
CORRELATION FUNCTIONS

The general expression (2) for W () becomes, using
(11) and (12):

W)= n{[Zm(I'm'| LMy | Tm)*Fr,#1(0)]

X[ m(Jm| LMo | J"m"")FL,"2(9) ]} (23)

Without carrying out any of the indicated summa-
tions, one can make some general statements concerning
the form!? of W(#). Thus, since the F M(d) are poly-
nomials of degree at most L in cos®$, and since one
may choose the z-axis along the direction of emission
for either the first or second transition, it follows from
(2) that W () is a polynomial in cos*} of degree at most
L, where L is the minimum of L, and L,. Another more
obvious consequence is that if the angular distributions
F1M(8) for each component of one of the emissions are
isolropic (even when L>0) then there can be no angular
correlation.

To obtain the coefficients of the powers of cos?$ in
W (), the F ¥ (¢) must be exhibited and the indicated
sums in (23) must be carried out. Having given a pro-

TaBiE I. R/Q for Li=L,=1. $=¢(), A) is given by Eq. (28).

AT =1 AJ =0 AT =—1
Aj=1 _1 —(2J+3) (J+1)(2T+3)
T 10¢+3 (1077 + @7 +1) (107 (27 —1) 16+ L672—ST—1]
Ai=0 —(2J-1) (27—-1)(2J+3)
J [10(J+1)Jo+ (47 +3) [107(J+1)J¢+[2724-27+1]
Aj=—1 J(2T—1)

10(J+1)(2J +3)¢+(6J2+177+10)
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TasrLe IL R/Q for Li=1, Ly=2 or Ly=2, Ly=1. For L;=1, Ly=2, ¢ denotes ¢1,, Eq. (30). This same table may be used for L;=2,
Lo=1 provided one takes ¢= ¢ and AJ and Aj are taken to refer to the first and second transition respectively, as per Eq. (25).

Aj=1 Aj=0 Aj=—1

AT=2 =3 37-1) —307—1)7

= 21+8 2017 +1) 16+ (5T +8) (20T 1) (2T 3) JoF 16724347 +21]
A1 3(J+6) —3(2J—1)(J+6) 327 —1)(J+6)

(427 6+ (13— 06) (127 +1) 1+ (1672 +257—6) (420 +1) (27 +3) 16+ (26/7+ 597 +48)

AT=0 (27 —3)(2T+35) — (27 —=3)(2J+5) (27—3)(2J+5)

= (147 (27— 1) 16+ [8/—67+5] (AT +1) 16 +L67°+6—5] (AT +1) (27 +3) J6+[872+227+19]
Ae1 32J+3)(J—3) —3(27+3)(J—5) 3(J—5)

= (427 (27— 1) J6+[267°— 1T +15] (2701 Jo+ (1672477 —15] (20U +1)1p+L137+19]
A2 —3(J+1)(27+3) 3(27+3) -3

[217Q27-1)]J¢+[1672—2J+3]

(217 ]¢+[5/—3]

219+8

cedure for the former we next show how this latter task
can be considerably simplified.

(A) Relations between Sums

Following Hamilton’s notation,! let J'=J—Aj,

J"=J4+AJ and define

A5 L

gnt,m= (T —Af, m— M| LM |Jm)>
=(J—Aj, L, J, m|J—Aj, L, m— M, M)?,
AJ,L
Gm, m4+M= (]ml LM, ]+A], m—i—M)Z,

Aj L Aj, L Aj, L AJ, L AJ, L AJ, L

dm = fgm—1, m+gm+l,m; Dm =Gm,m—l+Gm.m+ly
A3 L Aj, L A4 L . AJ, L AJ, L AJ, L
Em = gm—2, m+gm+2, ms Em = Gm m+-2 m, m—2-

et simile.

Then using (4a), Eq. (23) becomes
W (8) = n{[gnnF1:°(0)+dnF L' (0)+ - - - ]

X | GrmF L (8)+ DpFL(9)+ - - - ]}, (23a)
where we have dropped superscripts, the gmm, dm, of
the first bracket being associated with the Aj, L of the
first transition and Gmm, Dn with the AJ, L, of the
second. For given L, and L, there are (Li+1)(Lo+1)
indicated sums of products of squares of transformation
coefficients occurring in (23a) which are to be evaluated
for all possible J, Aj=0, &1, -+ -+L;, AJ=0, £1, - --
=+ L,. Fortunately, these sums are not all independent.
Namely, we can prove® that all the (Li+ 1)(Lo+1) sums

26 A constructive method of proof, outlined in the thesis of D. L.
Falkoff (reference 7) is to make use of the fact that W (&) must
be the same whether evaluated by taking the z-axis along the
direction of emission of the first or second particle. By varying the
choice of the arbitrary parameters in the Fr*(d) and equating
the two different formal expressions for W (&) obtained in this
way, one can get all the relations between these sums of products
of matrix elements. See also Appendix II. The work of Gardner
(reference 7) suggests the possibility of a more direct proof using
methods developed by G. Racah, Phys. Rev. 62, 438 (1942), for
dealing with multiple products of transformation coefficients.

(X gmmGmmy 2om GmGmm, €lc.) occurring in W(J) can be
expressed as linear combinations of (L+1) linearly inde-
pendent sums, where L is the minimum of L, and L,
these relations holding for all J, Aj and AJ. Moreover, the
(L+1) independent sums may be laken to be the (L4-1)
sums occurring in the 2¥1— 2Ly —+ correlation.?

The explicit relations between these sums for L;,
Ly;=1 or 2 are listed below with the notation
S m @md i 1G w7 L2 abbreviated still further to dG. In
each case, the sums which are underlined represent a
convenient choice of the linearly independent ones.

(a) Li=L,=1.

Sums: gG gD
dG dD
Relations: dG=gD
¢G=3%[dD—dG]
(b) L1= 1, Lg=2
Sum: gG gD gE
dG dD dE
Relations: dE=2gD
gE=dD—gD

dG=3[2dD—¢D]
gG=3[5¢D—dD]

(C) L1= L2= 2.

Sums: ¢G gD gE
G dD dE
eG eD eE

Relations: dG=gD
eG=gE
eD=dE

¢G=1[2dD—dE]
G =3[ —2dG+3dE]
¢E=1[6dG+4dD—3dE]

26 That only (L+1) such sums occur in W(d) for the y—+-
correlations follows from the fact (references 1, 3, 6) that for the
y-angular distributions F1,M(0)=0 except for M =+1.
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TaBrLe III. The linearly independent sums, dG, dD, dE for

TaBLE IV. Linear combinations of the sums dG, dD, dE oc-
Ly=L,=2. (Common factors for each Aj, AJ are dropped.)

curring in Canonical correlation functions for L= L,=2.

Aj=2, AT =2 (dG)=5/2 For brevity, the following combinations are denoted by their
or (@D)=14/3 order of appearance in the table, thus:
Aj=—2,AT=-=2 (dE)=10/3 (1): dG+dD+dE
(2): dD+4dE
Aj=2, AT =1 @dG)=(2J—-1) 3): dD—dE
or (@D)=1/6(23J—10) (4): dG+1/2dD—dE
Aj=—1,AT=—2 (dE)=2/3(7J+4) (5): —6dG+4-4dD—dE
— e — (6): 3dG+13/2dD+17dE
Aj=2,AJ=0 dG)=Q2J-1)(J-1) (7): 1/3dG+1/2dD+dE
or (dD)=1/3(16J2—6J+11) (8): dD+dE
Aj=0,AT=—2 (@E)=2/3(J—1)(10J+7) ©9): 2dG—dD
Aj=2, AJ=—1 @G)=1/24J—-1)(22—J+3) 1)y 2172
or (dD)=1/6(46J3—"75J2+14J —33) (2) 18
Aj=1,AT=-2 (dE)=1/3(28J3—48J2+45J+21) 3) 4/3
Aj=2, AT=2 @) 3/2
Aj=2,AT=-2 (dG)=1/2(20J4—52J3+312— 177 +6) or ) 1/3
(@D)=1/3(56J4—148J34-130J2—29J +15) Aj==—2,AT=-2 (6) 189/2
(dE)=2/3(20J*—76J3+85J2—20J —12) 273 13/2
AAAAA — 8 8
Aj=1,A7=2 (dG)= (27 +3) 9 1/3
or (@D)=1/6(23J+33)
Aj=—2,AT=—1 (dE)=2/3(1J+3) 1 21/27
(2) 9/2(57+2)
Aj=1,4a7=1 (dG)=1/8(1*+1J—6) 3) —1/6(57+26)
or (dD)=1/24(59J2+59J — 66) Aj=2,AT=1 4) —3/4(J+6)
Aj=—1,AT=—1 (dE)=1/12(23J24237+42) or (5) —2/3(274+5)
Aj=—1,AT==2 (6) 63/4(7J+2)
Aj=1, AT=0 @dG)=1/2(J—1)(274+3)(4T+1) (7) 1/4(29746)
or (dD)=1/6(2873—12J2—19J+-87) (8) 1/2(177+2)
Aj=0,AT=—1 (@E)=1/3(J—1)(16J24-34J+39) ©9) 1/6(J-2)
Aj=1,AT=—1  (dG)=1/8(14J*—33J3—11J2+69T+9) () 772J-1)
(dD)=1/24(118J5—9J3— 132 — 27]-26;) g; (3%%;2 1]01 5 gZS}H)
dE)=1/12(46J*—9J%*—103J2—2 1 - -
e Tk @ AHaraar
. _ - or 4
R 77 s v A A T R y=0,87=2  (© 1/2608r 1027 105)
Aj=—2,AJ=0 (dE)=2/3(J+2)(10J+3) &) (2T—1)(6J+1)
2j=0, A7=1 (dG)= 1§2g+2)(2é—1)(41+3) ©) —1/3QJ+1)@27+5)
or (dD)=1/6(2873+96J%4-89J — 66) - _ _
Aj=—1,A7=0  (dE)=1/3+2)(16]2—2]+21) g; g%f{éﬁ{_ Ry 49
3) —1/6(2743)(5J2—18J+25
Aj=0, AT=0 (dG)=1/3(2T—1)(2T +3) (22427 +3) Aj=2, AT=—1 f4§ _3% ]fl)()}_ Y Jj;) 5)
(@D)=1/3(32J4+64J3—44J%*—76J 4-87) " or (5) —2/3Q2T+3)(TJ+2)(2T+53)
(dE)=2/3(8T++16J3+222+ 14 —39) Aj=1,87==2  (6) 63/4(J—1)(J—1)(14J+5)
. —— (1) 1/4(5873—93724207 +15)
Aj=—1,AT=2 (dG)=1/2(4J+35)(2J2+5T +6) (8) 1/2(34J3—357J24-87+23)
or (@D)=1/6(46J3+213J24302J +168) ©9) 1/6(2J+3)(J2+187+5)
Aj=—=2,AT=1 (@E)=1/3(2873+132J2+1857 +60)
(1) 21/27(J—1)(2T—1)(2]—3)
Aj=—1,AT=1  (dG)=1/8(14J*+89T3+172J2+ 64 —24) (2)  9(8J*—28754+30J2— 7] —3)
(dD)=1/24(118J+481J3 (3) 1/3(J+1)(2T+3)(8J2— 18T +13)
+72272+ 5007 — 120) @ 3/20+10)(T—1)(27—3)(2T+3)
(dE)=1/12(46J*4-193J34-200124327+96)  Aj=2,AT=—2  (5) 1/3(J+1)(2T+3)(T+2)(2J+5)
(6) 63/2(J—1)(J—1)(67+1)(2T—3)
Aj=—2,AT=2  (dG)=1/2(20J*+132J34307J2+315J +126) (1) 1/2(J —1)(2J—3)(26J2—19] —3)
(@D)=1/3(56J4+372J3+910J2+957T +378) 8) (27—1)(16J°2—42J24-29743)
(dE) =2/3(20J+15673+433J2+ 4987 +189) 9) 1/3(J+1)2J+3)(272—9T+1)
o (1) 21/2(J+1)
Since Hamilton! has evaluated the linearly inde- g; 9_/%%{ 5"}‘22 1
pendent sums for the y—~-correlations with L;, Ly=1 aj=1 AJ=2 4) —3/4(J—5)
. : : or (5) —2/3(27-3)
or 2, these relations give dlrec.tly all the necessary sums N2 AT=—1 (&) G3/ATTES)
for any other correlation with these same values of (1) 1/4(297+23)
Ly, L,. (8) 1/2(177+15)
For the cases in which L;= L,= L, a rather interesting ©) 1/6(/+3)

property of correlation functions can be proved based
on the symmetry of the sums; e.g., dG=gD, eG=gE,
etc. as is illustrated in (a) and (c). Namely, for the suc-

cessive emission of particles p and ¢, each with angular
momentum L, W (&) is the same for the sequences of stales
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TABLE IV.—Continued.

TABLE IV.—(Continued).

(1) 21/47(J+1)
) 9/8(972+97+10)
(3) 1/24(13J24+137—150)
Aj=1, AT=1 @) 3/16(J—5)(J+6)
or (5) 2/3(27—3)(2J+5)
Aj=—1,AT=—=1 (6) 63/16(13)2+137+10)
(1) 5/16(11724+11T+6)
(8) 1/8(3572+35J+6)
) —1/24(1772+177—30)

) 7JJ+1D)2I-1)
(2) 1/2(52734-44J24-7J—175)
3) —1/6(2J—-3)(2TJ+5)(J+11)
Aj=1,AJ-0 4) 1/4(J—5)(2J—=3)(2J+53)
or (5) —8/3(J+2)(2J-3)(2J+5)
Aj=0, AJ=—1 (6) 7/4(76J34-56J2—5J —175)
(7) 1/4(36J3+4-24J2—7J—25)
(8) 1/2(2073+4-8J2—3J+3)
9) 1/6(2T7—3)(2J+5)(ST+T7)

(1) 21/47(J+1)(J+2)(2J+3)

(2) 9/8(18J4+75J°+86J2+287+24)

(3) 1/24(27—1)(13J34-547241887+312)

@ 3/16(J+2)(2J—1)(J+6)(J+6)
Aj=—1,4a7=1 (5) 2/3(J—1(2J=1)(2T—=3)(2J+5)

(6) 63/16(J+2)(J+-2)(26J24-7J+46)

(7) 1/16(J42)(110J3+-25772+1087 +36)

(8) 1/8(70J4+-28973+4-374J%+18874-24)

©9) —1/2427-1)(1773—1872—164T—24)

(1) 21/2(J+1)(J+2)(2J+3)(2T +35)

(2) 9(8T:460J3+4162J241837 470)

(3) 1/3J(27—1)(8J2—347+39)

4) 3/27(J+2)(2T+5)(2]—1)
Aj=—2,47=2 (5) 1/37(J—1)(2J—1)(2T—3)

(6) 63/2(J+2)(J+2)(6J45)(2J +3)

(7) 1/2(J+2)(2T+5)(26724-71J 4-42)

(8) (2J+3)(16J3+90J241617 +84)

9) 1/37Q2J—1)(21*+137+12)

1) 21/47J+1)(J-1)(2T-1)

(2) 9/8(18J4—3J3—31J2—9J425)

3) 1/24(2J4-3)(13J3—15724119J—165)

4) 3/16(J—1)(2J+3)(J—=5)(J—=3)
Aj=1,AT=—1 (5) 2/3(27+43)(2J—3)(2T+5)(J+2)

(6) 63/16(J—1)(J—1)(26J2+45T +25)

(1) 1/16(J—1)(110J34-73J2—76J —75)

(8) 1/8(70J4—9J3—73J2—27J—9)

9) —1/24(2743)(17J34-69.2— 777 —105)

1) 7J+1)(2J43)
() (321474 +27)
(3) —1/327=3)2T+7)
Aj=0, AT =2 @) —1/2Q27—3)(2J+5)
or (5) 4/3(J—1)(2J=3)
Aj==2,A7=0  (6) 7/2(4472+1047+45)
(1) 1/2(2072+487+23)
(8) (27+3)(6J+5)
©) —1/327—3)(2T+1)

1y 7J(J4+1)(2743)
(2) 1/2(5273+4112724757+90)
(3) —1/6(2J—3)(2J+5)(J—10)
Aj=0, AJ=1 4) 1/4(J+6)(2T+5)(2T—3)
or (5) —8/3(2J—3)(2J+35)(J—1)
Aj=—1,A/=0 (6) 7/4(76J34-17272+-111J4-90)
(1) 1/4(36J°+-84J2453J4-30)
(8) 1/2(20J3+4-52J%+-41J+6)
©9) 1/6(27—3)(2T+35)(5T—2)

(1) 14/3J(J+4+1)2J—-1)(2T+3)

(2) (3274464134442 +127—75)

(3) 1/3(27—3)(2J4-5)(424-4J—11)

4) 1/6(27—3)(2J+35)(2T—3)(2T+75)
Aj=0, AJ=0 (5) 16/3(27—=3)(2T+5)(J—1)(J+2)

(6) 21/2(16J4+4-32J%+16J2—25)

(7) 1/18(20874+416J3+160J2—48] —225)

8) (2J—1)(274-3)(4J2+4T—1)

9 —1/32J=3)(2J+35)(42+4T-17)

(1) 21/2(J+1)(J+2)(2J+3)

(2)  9/2(10J3-+472+667 +24)
(3) —1/6(2T—1)(5J2+287+48)

Aj=—1,07=2 (4 —3/4J+2J+6)2J—1)
or (5) —2/3(J—1)(27—1)(27—3)
Aj=—2,AT=1  (6) 63/4(14J3+65J2+927+36)
(1) 1/4(58J3+267J2+3807 +156)
(8) 1/2(34J3+4159J2-+2247+96)

©) 1/6(27—1)(J2—16J—12)

J—=Aj—J—J+AT as for J+AJ—J—J—Aj. Thus

A7 AT
W

@)=Wra (). (24)

When both particles are the same, as in y—+y-cor-
relations, this relation asserts no more than would
follow from the equality of the correlation function for
direct and inverse processes as is implied by the her-
miticity of all matrix elements in W(«#). Indeed, her-
miticity yields quite generally

85,47 —AJ, AT
WeLi, Lo(8)=WiLa Ly (8). (25)
po o, p

However, for unlike particle emissions and same L, (24)
is a stronger relation since it equates two direct processes.
The proof of (24) follows directly by expanding both
sides of (24) and using the symmetry of the sums
(proved for any value of L in Appendix II) and the
hermiticity property of the squares of the transforma-
tion coefficients:

Aj, L —Aj, L
Em'm = Gmm’ .

(B) Canonical Forms for Correlation Functions

We now combine all the preceding reductions of the
angular distributions FpM(d) and sums (- - -2 d,27%
XGnm®T1E2) occurring in W(#) to obtain ‘“canonical
forms” for the correlation functions with L;, Ly=1 or 2
which will be both general and easy to evaluate. The
only indeterminateness remaining in the W (&) which
we tabulate is the specification of the parameters for
the F M(¥); these will vary with the particles involved
in the angular correlation.

(a) L1=L2= 1

Inserting the parametric forms (19) for the FM (&)
in W(9), Eq. (23a), one gets for the most general
Ly=L,;=1 angular correlation:

W(8#)=1+R/Q cos?s (26)
with
dD-2dG

R/O=
& ¢(\, A)[dD+dGH-dG

@7)
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where
4—(A—1)(A-1)
B0\ )= ——
4ANA

(28)

X and A being the arbitrary parameters for the first and
second transitions, respectively.

The ratio R/Q in the form (27) is tabulated for all
J, Aj=0, =1, AJ=0, =1 in Table I.

If the second transition is dipole —+, then A=1 and
¢ reduces to 1/\. For a— y- or y—y-correlations, A= —1
and +1 respectively.

(b) L1= 1, L2=2

One obtains in a similar way :

W () =14+R/Q cos*s
with

dD—2¢D
R/Q

)= . (29)
¢12[dD+gD +-gD

Here ¢12(N\; Ay, As) is a definite function of the param-
eters \ for the F1#(#) and A, and A, for the Fo¥ (). Its
value for given F1”(d) and Fs¥(d) is of course inde-
pendent of how (or whether) one chooses to parametrize
the latter. If, in particular, one chooses A; and Asas K
and K, Eq. (21), one gets

d12(N; Ky, Ko)
L [15(Kit2K)+ 5K —2— 0K,
@K1l 2 ]

30)

This is applicable to any correlation with L;=1,
L,=2, but is especially convenient when the L=2
transition is v or internal conversion since for both of
these K1=0. For the y-quadrupole, Eq. (17) K,=0 also,
so that

¢12()\; 0, 0) = 1/')\

The ratio R/Q in the form (29) is tabulated for all
J,A7=0, =1 and AJ=0, 41, =2 in Table IIL.

(b’) L1=2, L2= 1.

By using relation (25) one can obtain any correlation
for Li=2, Li=1 involving successive nuclear states
J+AJ—J—J—Aj from its inverse in Table II, which
is set up for Lij=1, L,=2 and successive states
J—=Aj—T—J+AJ.

For some B-interactions, the choice of parameters y;
and ws, Eq. (20), for the F3¥(9) is convenient, since
p2=0. Then the appropriate ¢1(u1, u2; A) to insert in
(29) becomes:

5@3uit 1)+ 3pst A(Su— 3us—3
¢21(#1, M2, A): ! M2 ( M1 U2 )’
2A(6u2+7)

31)

where A is the parameter for the L=1, F,;¥(33), (19).
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If the second transition is y-dipole, A =1, this reduces to
10u,+1
6us+ 7

G(u1, po; 1)= (32)

(C) Ly=Ly=2.

Taking ki, k2 and K, K», Eq. (21), as parameters for
the F2*(d) for the first and second transitions respec-
tively, and expressing all sums occurring in W (9), Eq.
(23a), in terms of the linearly independent ones, dG,
dD, and dE, one obtains

W () =14+ (R/Q) cos*¥+ (S/Q) cos*d, (33)

with

Q= [glel_ %(k1+K1)+5(k1K2+ k2K1):|
X [dG+dD+dEJ+ kK[ 3dG+ (13/2)dD+ 17dE]
— (Kot k2)[3dG+3dD+dEJ+ (1/18)[dD+dE],
R=[21k:K.—k:— K> ][dG+3%dD—dE] (34)
+3§[2dG—dD],
S=—1[dG—2%dD+LdE].

These general expressions simplify considerably if one
of the transitions, say the second, is y-quadrupole. Then
K,=K,=0, and one gets:

Q= —6k,[dG+dD+dE]

— 6k[dG+3dD+3dE]+[dD+dE],
R=—18k,[dG+1dD—dE]+3[2dG—dD],
S=—[6dG—4dD+dE].

Equivalent expressions for Q, R, and .S when the param-
eters for the first transitions are u;, u» are:

0= 6u1[dG+dD~+dE]+3ud E+[dD+4dE],
R=6p[dD—dE+6[dG+1dD—dE],
S=us[6dG—4dD+dE].

When p,=0, S=0.

To facilitate the use of these formulae, the linearly
independent sums dG, dD, dG as well as all of the linear
combinations of them occurring in (34), (35), (36) are
tabulated for all J, Aj=0, =1, &2 and AJ=0, +1,
+2 in Tables III and IV.

In all tables, common factors have been dropped. In
particular, the normalization factors in the trans-
formation coefficients were discarded. Where no entry
is given in a table, the W(d) for that choice of Ly, L.,
Aj, AJ, J, may be obtained from one equal to it in
virtue of the relations (25) or (24).

As regards the conditions for the valid use of these
tables our assumptions are the same as Hamilton’s in
his y— y-correlation tabulations. In particular, we have
assumed that only one L is associated with each transi-
tion. If either transition is mixed, i.e., has two L values
associated with the outgoing particles, then, as shown
in reference 6, the resulting W(d) is not simply the
weighted sum of the W(¥)’s found from each L con-
sidered separately: major interference effects can also
occur. It would not be very difficult to tabulate
“canonical” correlations functions which include this

(35)

(36)



DIRECTIONAL CORRELATION OF SUCCESSIVE NUCLEAR RADIATIONS 333

interference, since the necessary sums have already
been evaluated in reference 6. However, it hardly seems
desirable to introduce this complication into the theory
until experiment demands it.

We should like to acknowledge the kind cooperation
of Professor D. R. Hamilton in making available to us
unpublished computations of his which greatly sim-
plified the preparation of the tables. We have also
benefitted from many discussions with Dr. D. S. Ling,
Jr. concerning his related work on internal conversion
angular correlations. The preparation for publication
was supported in part by the joint program of the ONR
and AEC at the University of Notre Dame.

APPENDIX I. IRREDUCIBLE TENSORS
AND SOLID HARMONICS

Weyl (reference 19, p. 149 et seq.) has shown that if a tensor
of order L satisfies the conditions

(a) Tiya- -+ 1s symmetric with respect to the interchange of
any two indices,
(b) Ziy Tiririz- - -iz=0: all spurs vanish,

then it is irreducible under the n-dimensional orthogonal group.
For the 3-dimensional rotation group these conditions can also be
shown to characterize all the irreducible tensors. In this case, for
each L there is, to within an equivalence, but one irreducible
tensor having (2L+1) independent components which transform
irreducibly according to DL.

Let Tiys- - -ir,(r) be the irreducible tensor constructed from the
reducible tensor with components wxiixis---xiz by imposing the
conditions (a) and (b). Since the solid harmonics Yrau(r)
=rLV m(9, @) are also a set of (2L+1) linearly independent
functions homogeneous of degree L in r which transform irre-
ducibly according to DZ, these must be linear combinations of
the (2L+1) linearly independent components of the irreducible
tensor T%1iz- - 41(x). Moreover, since the only invariants which can
be constructed with each of these sets individually are

2 Tiesin(@® T in(o),
i1e i,

L
z L] ‘HLM(Y) |2 and

by suitable adjustment of their normalization, these must be
equal:
L
z I(yLM(r)P: 2 Ti1i2~'"A'L(l‘)Tiliz'“iL(r).
M=-L e L

(37

n

This identity can be extended to the case in which there are as
many as L distinct argument vectors A, B, - - -H by making use
of the process of polarization, defined by the operation:
1 d 9 <]
— 3 AiBir+ Hip — —— ... 2
Llgeap ne i Oxiy 0xi2  Oxig

applied to any homogeneous monomial of degree L. In particular,
this gives a unique prescription for defining irreducible tensors
and solid harmonics of as many as L distinct argument vectors.
Thus

Yru(A,B, .- H)=1/L) Z AiBi--

i1 i
g 9 a

LmaT” . .———-axib‘yLM(l’).

Polarization leaves invariant the transformation properties since
it replaces vectors by other vectors. The generalization of Eq.
(37) which follows by polarization is Eq. (8).

Example: Taking

Yo, o(r) = (§)3(3z2—r?),

X Hi

Yo, 41(r) = F2z(xkidy),

Yo, 42(r) = (x1y)?, (38)
the completely polarized solid harmonics are
.. o(4, B) = (HI[34.8,—A-B],
Yo, 11(A, B) = F[4:(B,%iB,) +B.(4,%id,)],  (39)

Yo, 12(A, B) = (4,+14,)(B:+iB,).

The irreducible tensor T;(r)=uxx;—%r25;; when polarized
becomes:
Ti,(A, B)=A:B;+A4;Bi—%(A-B)d;;

and for any four vectors A, B, C, D, one gets then

2 YuuA, BYur(C, D)*= 3 T4, BIT4(C, D).

M=—2

APPENDIX II. THE SYMMETRY OF THE SUMS

The symmetry relations between sums of products of squares
of transformation coefficients (e.g. gD=dG, etc. in the abbreviated
notation of Section IV) which hold when L;=L;= L can be proved
by using the properties of the parametrized FpM(8), M =0,
+1, -+-, L. Namely the set of F *(#) as given by (12)
will in general be (L-+1) linearly independent functions of
cos*$ because they are obtained by applying the same linear
operations (S) to the set of (L-+1) linearly independent
| YLu(3, ¢) |2 Moreover, it follows that one can then always
choose the L-+1 arbitrary parameters so that all FrM(0)=0
except for one M, say M =1, for which F1'(0)=1. Inserting such
a set of FL,M(9) for both the first and second transition in W(#),
(23a) and equating the two W(d)’s obtained by taking the z-axis
to be the direction of emission of the first or second particle
emitted respectively, one gets

2 @l i Gry ™  FLO(8) 4Dy F L (8) 4+ - - ]
= Snlgm, b FLYS) +dniFL () + - - - 1D

Equating the coefficients of the linearly independent Fp™(d¥)
gives the symmetry relations for all sums containing dn% and
D,A’. Similarly, by taking different F1#(0) 0 in turn, one gets
all the other symmetry relations.

In the same way one can also obtain all the relations be-
tween sums for any L, and L,.



