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Liquid Helium II:The Hydrodynamics of the Two-Fluid Model*
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The University of Connecticut, Storrs, Connecticut

(Received March 10, 1950)

Exact non-linear equations of motion for reversible processes in the two-Quid model of liquid He II
are obtained from a variational principle of the type 6rst introduced by Eckart in a different connection.
Transitions between the two fluids are taken into account. Except for a term giving the eQect of these transi-
tions the equations obtained are substantially identical with those given by Landau. In the limit of very
small velocities they reduce to the linear equations obtained by Tisza. The momentum and energy theorems
are shown to be satis6ed.

x= p./p (1.2)

is a function of temperature and pressure, being unity
for T&» T~, and zero for T=O. The quantity x can thus
be interpreted as a disorder parameter associated with
the ) -transition. Experimentally it is found' that

x (T/Tg)" (T& T),). (1.3)

The two Quids can move relative to each other, each
having its own hydrodynamic velocity field, v„and v„,
respectively. The motion of the liquid as a whole is
then given by

pV= p8Va+ pnVny

I. INTRODUCTION

HE two-Quid model of liquid He II developed by
Tisza' ' and, from a different point of view, by

Landau, 4 is based on these fundamental assumptions.
(a) At temperatures below the X-transition liquid

helium can be regarded as a homogeneous mixture of
two Quids, the "superQuid, " with density p„and the
"norma) Quid, " with density p . The total density of
the liquid is then given by

p= p8+ pn.

In thermodynamic equilibrium the ratio

(b) The superfluid has zero entropy. Thus, if
5=entropy per gram of liquid He II, S„=specific
entropy of the normal Quid,

(1.6)

For reversible processes inside the bulk liquid the law
of conservation of entropy accordingly takes the form

BpS/Bt= —div(pSv. ) = —div(p„S„v.). (1.7)

Tisza considers Eqs. (1.6) and (1.7) to be approxima-
tions valid only for temperatures T~& 1.'K., where the
phonon contribution to the entropy is a negligible frac-
tion of the whole, whereas Landau considers these equa-
tions to be exact.

From the latter point of view the superQuid consti-
tutes at all times a single macroscopic quantum state
with properties varying adiabatically with the macro-
scopic boundary conditions and with the properties
of the normal Quid with which the superQuid is in
contact. The normal Quid, on the other hand, is a
statistical mixture with the distribution in momentum
space depending on temperature and pressure. The basic
ideas underlying this picture are perhaps best expressed
by writing down the kind of distribution in velocity
space to which it corresponds:

and the relative velocity of the two Quids by

V=V„—V . (1.5)

p(r) = t {p„(r,'u)+ p, (r)8[u —v, (r)j I du,
J

* Part of the work reported here was done at Duke University
under Contract N7onr-455 with the ONR.' L. Tisza, Comptes Rendus 207, 1035 and 1186 (1938).

2 L. Tisza, J. de phys. et rad. I, 165 and 350 (1940).' L. Tisza, Phys. Rev. 72, 838 (1947).' L. Landau, J. Phys. U.S.S.R. 5, 71 (1941);8, 1 (1944).

p (r) = p„(r,u)du, p„v„=' p„(r,u)udu. (1.8)

All the quantities in Eq. (1.8) are, in general, also
functions of the time.
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For what follows it is not essential which of the two
points of view outlined is adopted. In the one case the
equations we shall obtain can be regarded as approxi-
mations valid even for reversible processes only at
temperatures above 1.'K; in the other case they can
be regarded as exact for reversible processes.

Tisza' makes the additional assumption that for
reversible processes p„and p, obey separate conserva-
tion laws, no transitions between the two Quids taking
place in the bulk liquid. This, together with Eq. (1.7),
implies that the specific entropy of the normal Quid,

5„,is a constant independent of temperature and pres-
sure, so that in the diagram of state of liquid He II lines
of constant x would also be lines of constant entropy.
While this assumption may be approximately correct,
it is certainly not exactly fulfilled. Thus, for example,
along the )-line, which is the line x=1, the entropy
varies' between —0.45 and —0.55 Clausius/g. In any
case Tisza's assumption is unnecessarily restrictive;
we shall see that transitions between the normal and the
superQuid have an effect on the hydrodynamic equa-
tions of motion.

(c) The viscosity of liquid He II as observed in
oscillating disk experiments, ' for example, is due en-

tirely to the normal Quid. The superQuid moves without
internal friction.

The model based on the assumptions (a, b, c) ac-
counts rather well for the peculiar properties of liquid
He II, at least in the limit of small velocities of the two
Quid s.

In his 1947 paper Tisza gives a derivation of hydro-
dynamic equations of motion of the two Quids based on
the Hamilton principle of particle mechanics. In apply-
ing this principle to hydrodynamics one is using the
substantial description of the motion since Hamilton's
principle describes the motion of individual particles,
which means the motion of individual Quid elements in
the application to hydrodynamics. Consequently the
Lagrangian density must be summed over the Quid

elements, which means that it must be integrated over a
volume mowing with the /mid However . this treatment
cannot be carried through consistently in the present
case of two distinct velocity fields since one obviously
cannot integrate the Lagrangian density over a volume
moving with both Quids at the same time. Tisza does
not, in fact, distinguish clearly between local and sub-
stantial derivatives and his equations are valid only in
the limit of small velocities when the difference between
local and substantial derivatives can be neglected. As
was pointed out by Landau, ' Tisza's equations fail to
satisfy the law of conservation of momentum.

Recent work~ ' on heat conduction and second sound

'%. H. Keesom, IIelium (Elsevier Publishing Company, Inc. ,
Amsterdam, 1942), p. 246.' K. H. Keesom and G. E. Mc%ood, Physica 5, 737 (1938).

~ L. Landau, Phys. Rev. 75, 884 (1949).
8 %'. Band and L. Meyer, Phys. Rev. 73, 226; 74, 386 and 394

(1948).' F. London and P. R. Zilsel, Phys. Rev. 74, 1148 (1948).

propagation data in liquid He II has called attention to
the importance of non-linear terms in the equations of
motion. In particular, Gorter and Mellink" have shown
that the heat conduction data in narrow slits can be ac-
counted for by the ad hoc assumption of a mutual fric-
tion between the normal and the superQuid propor-
tional to the cube of the relative velocity.

Without entering into the question of the ultimate
validity of the two-Quid model, it is the purpose of the
present paper to obtain from the basic assumptions of
the model exact non-linear equations of motion, at
least for stationary and quasi-stationary processes.
In this paper we shall confine ourselves to reversible
e6ects, neglecting the viscosity of the normal Quid.
The e6ect of irreversible entropy production on the
equations of motion will be considered in detail in a
later paper.

The equations of motion will be obtained from a
variational principle of the type first introduced by
Eckart" in classical electrodynamics. The Lagrangian
density

I.=kinetic energy density of matter —potential
energy density, (1.9)

is here associated not with a definite element of matter
but with a volume element fixed in space and is inte-
grated over a stationary volume. A11. derivatives are,
then, local derivatives and one is dealing with a local
description of the motion. In the two-Quid case this
approach obviates the difhculties of a substantial de-
scription connected with the fact that parts of a given
element of Quid move with different hydrodynamic
velocities.

In the local description of the motion the hydro-
dynamic velocities are not the time derivatives of
true coordinates of the system; consequently, in
Eckart s variational principle, they are varied inde-
pendently and not as the time derivatives of coordinates.
As a result of this feature of the treatment one obtains,
beside the equations of motion, certain subsidiary condi-
tions on the velocities. In the case of the hydrodynamics
of an ideal Quid these conditions amount to a restriction
to potential Qow. It may be argued that these sub-
sidiary restrictions are exactly what is required to give
a correct description of the inotion of a "superQuid" as
distinguished from the infinitely many possible solu-
tions of the hydrodynamic equations with given
boundary conditions if arbitrary turbulence is ad-
mitted. In fact Eckart's method was used by CookI2 to
obtain the London equations" for superconductivity
without additional assumptions. In the present case the
restriction obtained for the superQuid velocity field v„
(Eq. (2.10)), is exactly the condition stated by Landau'

' C. J. Gorter and J. H. Mellink, Physica 15, 285 (1949)."C. Eckart, Phys. Rev. 54, 920 (1938)."E.Cook, Phys. Rev. 58, 357 (1940)."F. and H. London, Proc. Roy. Soc. A149, 71 (1935); F. Lon-
don, Une EoueeMe Conception de la SupraconductjÃte (Hermann
et Cie, Paris, 1937).
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and by F. London" as characteristic of superQuid How.

This restriction is in line with the point of view which
considers the state of motion of the superQuid as de-
termined uniquely by the macroscopic conditions.

It should be pointed out, however, that whether or
not the subsidiary restrictions obtained from the varia-
tional principle are considered to be relevant to a
correct description of the states of motion of the two-
Quid model, the vaIidity of the equations of motion
obtained is unaBected. The subsidiary conditions only
restrict the class of admissible solutions of the equa-
tions of motion. They do not acct the equations
themselves.

In the present case the potential energy density used
in the Lagrangian (1.9) is the internal energy density,

pU, where U is the internal energy per gram of liquid
He II.

The point of view adopted will be that of considering
the actual system to be approximated by a collection of
small volume elements each of which is in thermo-

dynamic equilibrium with definite values of the tem-

perature, T, the pressure, P, and x. Then T, P, and x
are, in general, functions of both the time, t, and the
position, r, of the volume element. As was pointed out

by Callen, "who used this method of "local equilibrium"
in a discussion of the thermoelectric efkcts, the ap-
proximation involved corresponds to the approximate
solution of Boltzmann's kinetic equation in statistical
mechanics, when one assumes that the statistical dis-

tribution is given by a local-equilibrium distribution,
with the parameters being functions of t' and r, plus a
small correction term. The latter is neglected in calcu-
lating "Qow terms, " but it becomes important when

irreversible processes associated with collisions are
consldel ed.

The assumptions involved in this "local equilib-
rium" approach are correct if the processes considered
are slow compared to the relaxation time for the es-
tablishment of local equilibrium; that is, for stationary
and quasi-stationary processes. Thus we should not
expect our equations to be applicable exactly to such
processes as second sound propagation at high fre-
quencies.

In the case of local equilibrium the local value of x
is determined by the local values of S and p. If the two
Quids were at rest with respect to each other this equi-
librium value would be determined by the condition

The quantities to be varied are p, S, x, v, and v, . The
volume of integration V is fixed in space.

The Euler variational equations of (2.4) are

Bp: —,'(1—x)vP+-', xv„'—U pBU/—Bp

+Bn/Bt+[(1 x)v,+xv„]—gradn
+SBP/Bt+Sv„gradP =0; (2.5)

Bx: —-', v 2+-,'v„'—BU/Bx+(v„—v,) gradn=0; (2.6)

85: —8U/BS+ BP/Bt+ v„grad8=0;

Bv„:xv„+xgradn+5 gradP=O;

8v, : v,+gradn=0.

From (2.9) it follows immediately that

curlv, =0,

(2 &)

(2.8)

(2 9)

(2.10)

which is the condition posited by Landau4 and by F.
London. "

The equations of motion are obtained by eliminating
the Lagrangian multipliers n and P from Eqs. (2.5) to
(2.9). By straightforward substitution one obtains

gradp= (v, —v„)x/5, (2.11)
and

BU/Bx= ,'(v„—v )'.-
Using the thermodynamic identities

(2.12)

II. THE EQUATIONS OF MOTION

The Lagrangian density (1.9) is in the present case

I = 2ps&s +gpn&n p~
=p[,'(1—-x)v,'+ ', xv„'-—U], (2.1)

where the specific internal energy is taken as a function
of p, S, x:

U= U(p, 5, x). (2.2)

The equation of conservation of total mass"

8p/Bt = —div(p, v,+p.v„)
= —div{ p[(1—x)v.+xv„]I (2.3)

and of entropy, Eq. (1.7), are introduced as subsidiary
conditions.

The variational principle then states that

~81

{p[-,'(1—x)vP+-,'xv„'—U]
V)0 ay

n{8p/Bt+ d—iv p[(1 x)v, + xv„]—I
p[BpS/—Bt+div(pSv„)]Idrdt=0 (2.4).

(8U/Bx) s, ,=0.

In the general case of relative motion of the two Quids

the equilibrium value of BU/Bx depends on the kinetic
energy of relative motion.

one has

and

BU/85= T BU/Bp=P/p'

BP/Bt =T+v„(v„—v, )x/S

(2.13)

(2.14)

14 F. london, Phys. Soc. Cambridge Conference Report, p. 1
(1947}.

"H. 3. Callen, Phys. Rev. 73, 1349 (1948}.

Bn/Bt= ,'v, ' ,'x(v„v,)'+ U-ST+P—/p—. (2—.15)—
'~ We are dealing here with local derivatives.
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I)e6ning the substantial derivatives

D/ Dt'= 8—/at+ v, grad
D„/Dt=8/—Bt+v„grad (2.16)

III. THE MOMENTUM AND ENERGY THEOREMS

The momentum theorem is obtained most easily by
use of Eqs. (2.22). One has

we obtain the equation of motion of the superfiuid:

D„v,/Dt .= av, /ctl+ ', gra-dv, '
= -gradLG--', x(v„-v.,l'], (2.17)

where the thermodynamic potential |"is

G= U ST+—P/p.

Thus, remembering (2.12),

D,v, ,lDT =S gradT
—(1/p) gradP+ (p„/2p) grade', (2.18)

where v is the hydrodynamic velocity of relative motion
defined by Eq. (1.5).

Similarly, from the relation

D„v/ Dt= Bv„/Bt+,' gradv„-' —v„t&curlv„, (2.19)

the equation of motion of the normal fluid is found to be

ptt
D„v„/Dt=——S gradT ——gradP

pn p

1 ptt———gradv'+vD„S„/S,Dt, (2.20)
2 p

where S„is the specific entropy of the normal fluid

given by Eq. (1.6).
The significance of the last term in Eq. (2.20) can be

clarified by introducing explicitly transitions between
the normal and the superfiuid. AVe rewrite the con-
tinuity Eq. (2.3) in the form of separate equations for
the two fluids:

Bp„/Bt+div(p„v„)= I',
d p, ,'Bt+div(p„v,) = —I'.

(2.21)

I' then represents a source density of the normal fiuid
and a corresponding sink density of the superQuid.
Using Eqs. (2.21) and the definitions (2.16) of the sub-
stantial derivatives one obtains the following identities
for any function f:

Bp„v„/dt= p „D„v„/Dt—div(p „v„v„)+v„I',
Bp,v, /Bt = p,D,v„!Dt div—(p,v,v,,)—v, I". (3.1)

8(-,'p„i„')/dt=p„v„D„v„/Dt
—div(-.'p„,n„'v„)+-,'v„'I',

i7(2ip, i,,')/dt= p-, v, D,v„/.D.t.
—div(-,' p,u, v2,)——,'v, 'I'..

(3.3)

Hence, using the equations of motion, (2.18), (2.20'),
the rate of change of the kinetic energy densityis
found to be

—(k .p'v+2p-v-')
8f

= —V.gradP —p,,Sv gradT ——,'v'1"

~ pspe
v gradv' —div(-,' p„vgv„+-',p„v„'-'v„).(3.&)

2 p

Defining the substantial derivative moving with the
center of mass velocity V

D!Dt:8/Bt+V gr—ad, (3.5)

and using the conservation of total mass, Eq. (2.3),
one has

Now

it p U!Bt= pDU/Dt div(p UV—) (3.6)

pDU/Dt = pBU/8pDp/Dl
+p8 U/BSDS/Dt+ p8 U/BxDx/Dt
=PDp, 'pDt+ pTDS!Dt+ ', pn'Dx/Dt. (3.7)-

Using Eqs. (2.18) and (2.20'), and adding Eqs. (3.1) one
obtains for the rate of change of the total momentum
density pV, defined by Eq. (1.4)

BpV/Bt= —gradP —div(p v v„+p,v,,v,). (3.2)

The energy theorem is obtained in a similar manner.
Equations (2.22) yield

Bp f/Bt= p„D„f/Dt div(p fv, )+fl',—
Bp,f/dt= p,D,f/Dt div(p. fv, ) fI'— —

From Eq. (2.3)

Dp/'Dt = —p divV; (3.8)
The conservation of entropy, Eq. (1.7), then gives

p„D„S„/Dt= —S„I'. (2.23)

We can thus rewrite the equation of motion (2.20)
in the form

ptr i
D v,/Dt= ——S gradT ——gradP

pn p

1 p,———gradv' —vI'/p„. (2.20')
c p

by Eq. (1.7)

pDS/Dt = 8pS/Bt+ div(pSV) = —div(p, Sv); (3.9)

and by Eq. (2.21)

pDx/Dt= Bpx/Bt+div(pxV) = I' —div(p, p„v/p). (3.10)

Thus one obtains for the rate of change of the internal
energy density

8pU/Bt = PdivV Tdiv(p, Sv)+-', v'I'— —
—pv' div(p, p„v/p) —div(pUV). (3.11)
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Adding Eqs. (3.4) and (3.11) yields the energy
theorem

collisions:
bv, =o. (4.3)

—(-', p,v, '+-', p v '+ p U)
8$

div—{PV+p,STv+ ', p, p„-Pv/p

+-,'p v 'v +-',p.vPv, +pUVI. (3.12)

IV. DISCUSSION

The equations of motion (2.18) and (2.20') are essen-
tially identical with those given by Landau4 except for
the last term in the equation of motion of the normal
Quid, which gives the effect of transitions between the
two Ruids. This term is new. In the limit of very small
velocities the variational principle employed here be-
comes identical with Hamilton's princip)e of particle
mechanics, and our equations reduce to the linear ones
obtained by Tisza. '

It is interesting to note that in reversible processes
on]y the velocity of the normal Quid is affected by tran-
sitions between the two Quids. This is closely connected
with the basic assumption that the superQuid has zero
entropy. Using the interpretation expressed in Kqs.
(1.8), whereby the local hydrodynamic velocity of the
normal Quid, v„,is an aM'rage over a statistical distri-
bution, whereas v, is the exact local velocity of all the
particles constituting the superQuid fraction of the
mixture, we may exeInplify the situation by a simple
kinetic model: Consider transitions between the two
Ruids to occur through two-particle collisions of the
type

ul+ u2~uR+ vs) (4 1)

8M„=—8M, =m, k7) (4.2)

m is the mass of the single particle of the liquid. There
is no change in the velocity of the superQuid due to such

v here u~, u2, and u3 are velocities different from v„and
the particles having these velocities are thus part of the
normal Quid. Such a collision proceeding from left to
right of Eq. (4.1) constitutes the transition of one
partici. e from the normal to the superQuid; proceeding
from right to left it represents an elementary transition
from the superQuid to the normal Quid.

Consider 6Ã such transitions from the superQuid to
the normal Quid taking place in a small volume element
of the liquid, resulting in a change in the mass of normal
Quid

—bP, =SP„=M„5v„+v8M . (4.5)

Thus one obtains for the change in the velocity of the
normal Quid

bv„=(v, —v„)hM„/M„, (4.6)

which is just the last term in the equation of motion
(2.20') of the normal Quid. )

Throughout the present paper we have confined
ourselves to a consideration of reversible effects, the
method of derivation from a variational principle not
being suitable for the treatment of dissipative processes.
Thus we have neglected the viscosity of the normal
Quid. If the viscosity were to be taken into account
there would appear, in particular, a dissipative term
proportional to the square of the velocity of the normal
Quid in Eq. (1.7) giving the rate of change of the en-

tropy density. A similar term would then appear in
Eq. (2.23) relating the source density F of the normal
Quid to the rate of change of the entropy. Thus the term

—vt'/p.

in the equation of motion (2.20') would be modiQed by
a correction term cubic in the velocities, which is the
type of term shown by Gorter" to be required for a
correct description of the heat conduction data. Irre-
versible effects will be considered in detail in a later
paper.

The author is indebted to Professor F. London of
Duke University for suggesting the problem and for a
number of stimulating discussions.

f Eofe added in proof.—By considering the conservation of total
energy

z='m„~„'+ps,&, +gr, +m )v
in these collisions one can obtain directly the equilibrium condi-
tion (2.12):

0=&E,=~Pm„+m„v„~v„+(m.+Sr„)(aV/au. )m. .
Using Eq. (4.6) this yields immediately

(M,+m.)av/m. =~e.

However there is a change in the momentum of the
superQuid due to the change in the number of particles
constituting the superQuid,

8P,=v, bM, = —v,bM„.

Since the total momentum is conserved in these
collisions we have for the change of momentum of the
normal Quid


