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Asymptotic Expression for the Stopping Power of X-Electrons
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An asymptotic form for the high energy stopping number of E-electrons (for any element) is determined

by using the Born approximation expressions for the excitation and ionization probabilities of the E shell.
The stopping number takes the form B~(B, q) =A(8) lnrI+B(e)+C(8)(2/r})+ ., where g is a dimension-

less quantity proportional to the energy of the incident particle and 8 is proportional to the observed ioniza-
tion energy of the E shell. Other results include the stopping number for hydrogen, obtained by sum-rule

methods, to order (2/q), and results of M. C. Kalske, obtained by numerical methods, for the low energy
stopping number of E-electrons.

I. INTRODUCTION

'HE stopping power formula of Bethe' is valid
without correction only if E))(M/es)E, & for each

electron in the atom; here E,i is the ionization potential
of an electron in the atom, m the electronic mass, E
and M the energy and mass of the incident particle. For
many important cases this condition is not well fulfilled,

particularly for the E-electrons of the heavier elements,
and it is useful therefore to obtain separately the con-
tribution of the E-electrons, in order that the formula
can be corrected. '

Curves for the stopping number, B~, of the E-elec-
trons have already been published in reference 1, and
this new calculation of an asymptotic expression for
large incident energies is undertaken to provide more
accurate results in this energy region and to extend the
former results to heavier elements.

II. GENERAL THEORY

If we measure all energies in units of the "ideal
ionization potential" of the K shell, Z,H'Ey, the contri-
bution to the stopping number due to excitation of
K-electrons is'

fa &max

where e=E —Ei is the energy given to the atomic e]ec-
tron, Q= (p —y')'/2m, p and y' being the momenta of
the incident particle before and after the collision,

Q; =e'/4g is the smallest possible value of Q for a
given e, Q,„=4&,with g=mv2/2, u being the velocity
of the in.cident particle. The minimum energy trans-
ferable to a E-electron, 8, is the observed ionization

energy of the E shell.
If we use hydrogenic wave functions for the evalua-

tion of the form factor F (Q), the contribution which

' For a general discussion of the stopping power theory to which
this paper is a supplement, see M. S. Livingston and H. A. Bethe,
Rev. Mod. Phys. 9, 263—26S (1937).' J. O. Hirschfelder and J. L. Magee, Phys. Rev. 73, 207 (2948}
have used the previously published (reference 1) stopping power
for E-electrons, modifying it for the I., M, etc. shells, to construct
directly, shell by shell, the stopping power of a number of sub-
stances for low energy protons.

arises from the continuum states e&1 will be the same
(in our units) as the continuum contribution in the case
of hydrogen. The integral over e from 8 to 1 will be
evaluated using the excitation functions for hydrogen;
however, the principal quantum number, n, of the
excited state must be allowed to vary continuously.

The asymptotic expression for BE. will be obtained as
an expansion in g which will take the form

B»(8, q) =A(8) 1nq+B(8)+C(8)(1/g)+ (2)

and we shall obtain A, B, and C.
The work will consist of several parts: (a) The excita-

tion function

pomsx dQ
—,I ~-(Q) I',C„=»J

Qmin

III. EXCITATION FUNCTION

The excitation function for a hydrogen-like atom is

2'» t™~dQ—
33 (1—1/I')+Q]

omin Q
L(1—1/n)'+Q]" —'

X (4)
L(1+1/I)'+Q]"+'

' H. A. Bethe, Handblch der Physik (1933), Vol. 24, p. S07.

wil) first be evaluated for discrete, non-integral, values
of I. It will be shown that the g-dependence arising
from the upper limit occurs erst in O(1/q') and that
the integral may therefore be extended to ~ and the
q-dependence, A(8) and C(8) in Eq. (2), obtained from
a small Q approximation. (b) An asymptotic expansion
of 4

„
for large n will be obtained, which will be useful

for n) 5. (c) The integration over e will be performed to
obtain the contribution of the states 8—e—1 to Bl;~

(d) The total stopping power of hydrogen will be found,

by sum-rule methods, to order 1/q. (e) The contribu-
tion of the discrete states to B~ for hydrogen will be
found. This will be subtracted from the total B~ for
hydrogen, obtained by sum-rule methods, and the
continuum contribution will thus be obtained. This will
be added to the result of Section V for severa1 values of
8, and will constitute our final result.
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%e shall write this as Similarly,

with
4"=&4 i+B.fz

qmii2 de (a+,Q)22
—3

Q (b+ Q) ii+3

„qmax (a+Q)
22—3

dQ
(b+Q) "+'

A „=(2'»/3e') (1—1/n') B~= 2'»/rs',

a= (1—1/n, )2, b= (1+1/sz)~.

(5a)

(Sb)

de (+e)=
1

~q;. Q (b+Q) "+'

an
lconst. —InQ;„

b n+3

+2Q;„n'(e'-+3)/(n'-—1)'},

2„P,/»=
I
xo„

I
'{const. +1nq+ 2(1+3/n')/4q }.

Combining (6) and (8), according to (5), and denoting
the constant by G(n), we obtain the result

(min=
p' —p" 2M' e( q; ) e

=—
I

1+ }=—(1+ /2ps).
p+p' 2p —q;. s 0 2p i s

Thus Q;„=q;'/2m=»'/4q; the next term, being of
relative order e(m/M) (1/q), has been neglected. For the
upper limit, Q,„,we may take the maximum energy
which a heavy particle can transfer to a free electron,
namely, 2m''=4q. |Ate may note, however, that if we
take Q,„.to be infinite we make an error in P~ of

t
-de(1+ /Q)= t. de—[1+0(1/Q)]=0(1/q ).

e' (1+b/Q) "+' ~ e'

Similarly, the error in P& is 0(1/q ). Since we wish to
compute only to order 1/q, we may take Q

For the above reason, assuming q to be large, we can
obtain the q-dependence of C„byexpanding the inte-
grand for small Q.

(a+Q)" '
dQ

(b+Q) 22+3

(1+Q/a)" '
dQ

b~+z Jq . (1+Q/b)n+3

Ke now examine the limits of integration. For a fixed
value of e=E —E1,

2~~= n' —p"= (u —p'). (I+p').

If we let q„„„=p —p', with p= I pl, then

@ /»=
I
so„l'lG(m)+in' —(1 9/—n-")/4, q}. (9)

Expression (9) is valid for any value of n, and there
remains the evaluation of the part independent of g,
Ixo„l'G(e). This is somewhat lengthy as no approxi-
mations can be made concerning Q in the integrand.
We can, however, set Q,„=a&.

Introduce the variable

s=e/v(b+Q)
with

y = (e—1)'/4e.
dQ=~bds/(1 Vs)',— dQ/Q=«/z(1 —Vs),

1+Q/b=1/(1 —ys), 1+Q/a= (1+s)/(1 —ys).

Equation (4) becomes

dQ (1+e/a) 22 3—
c-/»= l~o-I' Ji [1+3Q—/(ab)'*)

Jq;„Q (1+Q/b) "+'

p'/& ds—(1—~s)'(1+s)" '
zo

+3[~(&+1)]' «(1-V.-)'(1+s)"-', (»)

with zo =Qmiii/'Y (b+Qmiii)&&1.
I.et

1/y

Iz(a) = ds(1 —yz) "(1+s)"—',
20

an 3

b ii+3 J q

(1 Iq
de 1+e ~I ——

I
&a bi Then, as

1/y

(1+s)"—'ds/s.

pi-3l -+-
I +

&a bJ.
28 an —3

Bii4'2/»= [const —Qmiii].
n3 b"+3

and= Ix,„l'lconst. —3(1—1/I')/4q} (6)

(1—~z)' —1=—vs 2 (1—vs)',

~1/y 4

(1—ys)'(1+s)" 'ds/s= JI„—y P L„(e),
k=0

where x0„is the dipole moment, '

I
xo„l'=[2'S'(tl —1)'" ']/[3(N/1)'"+'] (I)

4'-/ =
I
&o-I'lbf-+3[~(&+1)]'L (~)

—v 2 L~(~) } (12)
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In L&(n), the lower limit can now be replaced by 1.75=n—5 by the expression
zero. Integrating repeatedly by parts we obtain,

~

&0.
~
'G(n) =2.31197(1/ns)+ 3.17662(1/n')

+0 75111(1/n )+7.3743(1/n ) —54.117(1/n") (14)(1+»)n—2

L/, (n) = (1—ys)"
(n —2) IV. ASYMPTOTIC EXPANSION OF %

Expression (9) for C„is valid for any bound excited
state, and G(n) has been determined for n 5. In this
part of the work we will get an asymptotic expression
for G(n) which will be useful for n) 5.

We write Eq. (4) in the form

vk
+ (1—v&)' '(1+&)+

(n —1)

y&k)(l+s)&
+

(n —1)n . (n 2+—k) o

(1—1/n')/3+Q28 tx
Qmxx /IIQ

4./»=-
n3 ~ Q;„Q[(1—1/n)'+Q]'[(1+1/n)'+Q]'

ky
Lk(n)—= +

(n —2) (n —2) (n —1)
(1—1/n)'+Q "

X (15)
(1+1/n)'+ Q

k)~k[1 (l+ l/y) x—2+/)]

+ x

(n —2) (n —1) (n 2+ k—)
The last factor in the integral of (15) can be expanded

Thus the result for C„/», apart from the r/-depend- for large values of n as
ence, is

L1+4(Q—l)/ "(1+Q)']~ "'"".

where 2 .™-dQQ+l
g) /» —

g
—4//)+Q)

n, ' ~Q;. Q (1+Q)'127'
f,(n)= L4(n)= —1+ j

n —2 (n 1) —(n 1)n— /xomxx dQ

3n' ~Q;„Q24'' 24y4[1 —(1+1/y) "+'] )

+ (13a)
(n —1)n(n+1) (n —1)n(n+1)(n+2) I —19Q'+3Q'+ 15Q+ 11/3

&
—4/(&+@) (16)

4~2 (1+Q)'
1+ +f~(n) =

(n-1) (n- 1)n If we now make the substitutions y=1/(1+Q),
yo

——1/(1+Q; ), y)=1/(1+Q ), we get, after some
simplification:

(n —1)n,(n+1) 5 (n —1)n(n+1)(n+2)
TWO

C „/»=— y'e '"dy[2+ 1/(1 —y)]
3n yI

1 l (1+y) 2(1+y)'
f,(n)= f1+ +

n-2l 28 f/0

C „/»=
~

xo„~'-IM.—3[y(y+1)]*'f)(n)
Expanding also the remaining factors of the integrand

+5&f2(n) &(1+—1/&)" 'fa(n)] (13) we obtain

6(1+~)' 24(1+&)'
+ + (13c)

(n —1)n(n+1) (n —1)n(n+1) (n+ 2)

Unfortunately, the integral M„can be calculated
exactly only for certain discrete values of n. A tabula-
tion of the numerical value of the part of M„which is
independent of g is given in Table I for those values of
n for which M„was integrated in closed form.

Bethe' gives expressions for 4„for n=2, 3, 4, 5.
These have been evaluated and the numerica, l results
for

~
xo„~',and for the part of 4„which is independent

of g, are given also in Table I.
The constant part of C „/» (the term independent of

))) may be represented within 0.1 percent in the range

1.75
2.00
2.25
2.50
3.00
3.50
4.00
4.50
5.00

+ y'e —4&dy

X[—32@+112y—68+11/(1—y)]. (17)

0.177425

0.979248
1.38629

2.98629

4.44946

)xp. )2

1.217489
0.554929
0.305527
0.188806
0.088989
0.049766
0.030924
0.020644
0.014519

G(n)

0.470380
0.689255
0.845516
0.960383
1.113891
1.208570
1.270918
1.314077
1.345081

) Xpn ( 2G(n)

0.572682
0.382488
0.258328
0.181326
0.099124
0.060145
0.039302
0.027128
0.019529

TABLE I. Calculated values of several quantities.
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Letting

pVO VO

I& I
——y'e—'&dy and R= e '"dy/(1 —y),

we note that

p 7/0 p BIO

y'e "dy/(1 y—) = (y" 1—)e '"dy/(1 y)—+R
yl fI1

and

Thus

(y"—1)/(1 —y) = —2 v'.

7/0 k-1
~ "e '"dv/(1 y)—=R—Q Ii,

28 3

4 „/e= I 2I4 Q—Ii+R—}
3e3 f=o

28

+—
I
—32I~+112I6—68Ig—11 Q Ii+11R}. (18)

9n' l=o

The integrals II-„areelementary, and the integral R
can be evaluated, giving

of (14) for n&5. To perform the integration for the inil

and the 1/il-terms it is convenient to expand
I xp I' to

order 1/n" as follows:

n'
I xo„l2= 1 56.294+5 73.076(1/n')+13 1634(1/n4)

+24.2952(1/n')+39. 4260(1/n')+58. 8077(1/n"). (21)

9,'e obtain, finally,

Di;(8) = [1.15599(1—8)+1.37215(1—8)'
+0.654622(1—8)'+ 1.01568(1—8)'
—4.67429(1—8)'+4.50977(1—8)']
+inil [0.781468(1—8)+1.04196(1—8)-"

+1.23877(1—8)'+ 1.39148(1—8)4

+1.51307(1—8)'+ 1.61515(1—8)'j
—(1/il) [0.195367(1—8) —0.618662(1—8)'
—1.25324(1—8) '—1.74256(1—8)'

—2 12640(1—8) '—2.43323(1—8) j (22)

from which

Dr(0.7) =0.377789 in&+0.488121+0.051963(1/v))
D K (0.75) =0.287153 indi+0. 385488+0.018884(1/g)
Di;(0.8) =0.210696 lng+0. 291738—0.000677(1/il)
Di; (0.9) =0.089961 lug+ 0.130034—0.011899(1/q).

VI. TOTAL STOPPING POWER OF HYDROGEN

We now obtain the total stopping number of hydro-
gen to order 1/g. Following the method of Bethe, ' we

break the stopping number

R= —e '[Ei(4(1—y,))—Ei(4(1—y,))).
Keeping terms to relative order 1/n-', the final expres-
sion for n large becomes:

I xo„l2n'G(n) = 2 31197+. 3 17662(.1/n') , (1.9)

This agrees with the results obtained in Section III,
Eq. (14) to order 1/n2 and agrees with the exact result,
given in Table I, for n=5 within O. i percent.

V. CONTINUOUS SPECTRUM CONTRIBUTION
TO 8~

t
Qm~ dQ

~H= 2 (E-—Ei) —,IF-(Q) I'

states

4 co

p dmin(») dq
q

co
3

into two parts (introducing q'=Q) as follows:

(24)

We will now obtain the contribution to 8~ of the
part of the continuous spectrum between 8 and 1.
This is given by

pl poo

Dz(8) =-
~' ede4 (e) =- (1—1/n')4 dn (20).

~ "(i—e)-&

where qo may be chosen arbitrarily, and will be taken
to be smaB. In the first term, integration and summation

have been interchanged, as qo and q,„areindependent
of n. Bethe' has shown that

2-IF-(q) I'(E-—Ei) = q',

@'„is given by (9) with Ixo I' defined by (7); G(n) is
given by (14) for 1.75~n~5, and by the first two terms

so that the first term can be integrated directly giving
2 ln(q .„/qo).

To evaluate the second term in (25), expand e~„(q')= (E —E,) I F„(q)I'/q' about zero in Taylor's series, getting

v-(q') = e-(o)+q'(dldq') v.(q') I.*-o.

The second term in (25) then becomes

—2Z-e .(0) ln(q- -/q ) Z-q-'(«-/dq')I "—='
4 Reference 3, p. 520.' H. A. Bethe, Ann. d. Physik 5, 325 {1930).

(26)
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As q„„,,2= (E„—E~)'/4g, we must evaluate the sum

, d I~-(q) I'
2-(&-—&i)' =2-(~ —&i)'— (27)

With Hamiltonian H and wave functions P,
(E„—L,))

e" P„*P,dr = (He"' e'"—'H)» =
I e"*[q' 2sq—(B/Bx)]}»——K&„,

(using atomic units throughout), a,nd

(E E)')—e'"*P *P dr= (HK KH)—

HK KH =—[H, e" ][q' 2iq—(B/Bx)]+e"*[H, q-'—2iq(B/Bx)] =e"*[q' 2iq(—B/Bx)]2+ 2iqe"'(B V/Bx)

Thus,
2

(E„—L',)' )I e'"*P„*P,dr = )t f *[q' —2iq(B/Bx)]e "*P dr

Making use of closure,

f„*e"*}[q' 2iq(—B/Bx)]'+ 2iq(BV/Bx) }P,dv.

P„(E„—E,)'I (e"*)~„I'= Pg*[q' 2iq—(B/Bx)]{[q' 2iq(—B/Bx)]2+2iq(BV/Bx) }P,dr

Ke obtain, hnajly,

Q„(E„E—g)'
I

(e"*)—»
I

'= —q'+4q4(P) n —2iq'(B V/Bx) g g
—(4/3) q'(P V) g)

—4q'((B V/Bx) (B/Bx) ) g g.

These expectation values can be obtained easily, giving,

8U 8 4 BU
(V')u ———1, (PV)„=8, =0,

8X BX Iy 3 BX

and thus
(l/q-")2-(~- —~ )'I (e'"*) -I'=+q'+4q-'+ l6/3,

E.q-'(d v./dq') I,* o= l/n, =

(28)

(29)

(30)

I.8-

I.6

.8

00 O.R 04 050.7 08 0.0 I.O

Pro. 1. Parametric curves of B~(8, q).

l,e
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(32)

VII. CONTRIBUTION OF DISCRETE STATES TO B~ FOR HYDROGEN

tA'e next obtain the contribution of the discrete states to the asymptotic stopping number of hydrogen; this is
given by g (1—1/n')I„/«. Bethe' gives formulas for 4„for n=2, 3, 4, 5 which we have evaluated, and which

discrete
states

agree with (9). These give
4,/« = 0.554929 lug+ 0.382488+0.173415(1/s),

4 ~/K =0.0889893 lug+ 0.0991244,
(33)

4'4/«= 0.0309238 1n&7+ 0.0393016—0.0033823(1/g),

4 &;/«= 0.0145191 lug+0. 0195294—0.0023231(1/q),

Bn = 2 ln(4r&)'q, ,„1/—g —2Q „p„(0)ln(1 —1/n'). (31)
The last sum in (31) has been evaluated numerically (observe that y (0)= ~xo„~'(1—1/n'-')) and is equal to

0.096990. We set q, = (4r&)' in (31), and obtain, hnally,

Bn=2 lug+2. 57861—1/g.

Q (1—1/n")4 „/,-«0 5382.28 lug+0. 430570+0.124661(1/g).
n=2

(34)

For e&5 we approximate the sum over discrete
states by an integral. For C„weuse the asymptotic
form of (9), (xo„~'G(n) being given by (19) and ~x,„~'
by (21). The expression used

n'4 „/«= 2.31197+3.17662(1/n')
+L1.56294+ 5.73076(1/n')+ 13.1634(1/n4) 7

XLing —(1 9/n')/—4'] (35)

gives agreement with the exact value at n= 5 to within
0.1 percent. The Euler-Maclaurin summation formula,

Q f(n)= " f(n)dn+f(6)/2
n=6 6

+6'/12 —6'/720+ . . (36)

with f(n) = (1—1/n')C „/«,5"=—f&"&(6), gives

P (1—1/n')C /«=0. 026778 in&7

6

+0.038120—0.0057038(1/g). (37)

20 (-p. .--- --- -=-=

'l.9~ ',
~W +- ~

l.8 :::.:,
'

I.S~ ""

l.5::::";;.. .. .

"*.IP"'''
!4-

l.3';."";

l.l ..:

et+~ j'j'.w: '::

~ +8- ~v. 3+.r ~c'& Il''

.+.4& -t+' '
, "H+ ' . '

l

:+~ +& - --& 1&-t4 -++ AH-.+ -+f: &--
- - 4+1- ~ +4 + ~ -+ Aw'. - "- 0 - tt ~ "-.~ .- ~ - ~ ~ + +f+

~ --4 --+--. --+ ~ -- ~ -.;

+" 'Wgf 4 ~
'w''' ''"'"' t ''' $$ f+

+H. +I+& ~ -" ..... +-' @--g++ .+ &
".&++".::~

"-"+.+-m. &et" k. . . . , "fk.-'-i - ~',' t -.---, +i":.','::, ,
',', - M".+."

j '-:~- g--'F- ~". "-''--1-- . "I ~-'.~+-.~.--+.

'''"++. -. ',.-" .-tt~-t+-. -i-.-+

' I ~ ~ ~ )

.8..

O.I 0.2 0.3 0.4 OS 0.7 08 O,S

I zG. 2. Parametric curves of C~(8, q).

I.O I.2 I.3 l.4
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The error in approximating the sum by (36) is better
than 0.01 percent.

The contribution of the discrete states to the hydro-
gen stopping number is thus, adding (34) and (37),

Q (1—1/m')C „/~=0.565006lng

q=2.5
5

10

ft =0.7

13.9
7.5
4.0

0.8

12.5
6.4
3.0

0.9

12.0
5.8
2.6

TAsLz II. Percentage difference between Fq. (40) and
the results of Walske.

+0.468690+0.118957(1/g). (38)

Subtracting this from the total stopping number (32),
we obtain the continuum contribution

Ex= Q (1—1/e')4 /a=1.43499lng
continuum

+2.10992—1.11896(1/g). (39)

When(39) isadded to Eq. (23), we obtain the asymp-
totic expression for the stopping power of E-electrons
of any element, Bx(8, q):
Bx(0.7, g) =1.81278lng+2. 59804—1.06699(1/q),
Bx(0.75, g) =1.72215lnq+2. 49540—1.10007(1/g),
Bx(0.8, q) =1.645691ng+2.40165—1.11963(1/g),
Bx(0.9 g) =1.524951ng+2. 23995—1.13085(1/q).

VIII. RESULTS

In Fig. 1 we give the results of M. C. Kalske' for
Bx(8, q) for 8=0.7, 0.8, 0.9, and for 0—g—1.5, for

' We wish to thank Mr. Walske for making available to us his
results, which have not previously been published.

which, of course, the expressions (40) are not valid.
These curves, having an absolute accuracy of 0.01 in
B», were obtained from a numerical evaluation of (1),
using for ~F (Q) ~'/Q expression (755) of reference 1.
Walske has carried his calculations up to q=10, and
for p)1 his values lie below those given by (40). As a
guide to the energy region where (40) may be applied,
we give in Table II the error in (40) for several values
of g.

For large values of g itis convenient to write Bx(8, q)
in the form

Bx(e, q)=A(e) 1ng+B(8)—Cx(8, g), (41)

where —Cx(e, g) approaches the1/g-ter min (40) as q
increases. In Fig. 2 we plot Cx(0, q) as a function of
(1/n)

The author wishes to thank Professor H. A. Bethe,
under whose direction this work was carried out, for
continued assistance and encouragement.
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A study is made of the angular distributions and the distribution in energy of the photo-protons arising
from the photo-disintegration of deuterium by the continuous x-ray spectrum produced when electrons ac-
celerated in the betatron to a kinetic energy of 20.3 Mev impinged on a 0.005 in. Pt target. The collimated
x-ray beam passed through a deuterium gas-filled reaction chamber in which nuclear emulsions were placed
to detect the resulting photo-protons. The angular distributions for six photon energy intervals are con-
sistent with a differential cross section in the center of mass system of the form: o.(8) =a+sin'8(1+u cos8).
Assuming an intensity spectrum for the betatron radiation of the shape determined by Koch and Carter a
curve for the relative cross section for the photo-disintegration of deuterium as a function photon energy
was determined. This curve falls off more slowly than does the Bethe-Peierls expression. The discrepancy,
however, is within the experimental errors and the uncertainties in the spectrum of the betatron radiation.

I. INTRODUCTION

'HE photo-disintegration process in deuterium,
i.e., the process D(leo, e)P, has been the subject

of considerable experimental study during the last few
years. Most of this work has been done with photons
having energies below 3 Mev. Both the photo-neutrons'

* Assisted by the joint program of the ONR and the AEC.
t Part of a thesis submitted in partial fulhllment of the require-

ment for the degree of Doctor of Philosophy in Physics in the
Graduate College of the University of Illinois.

f Deuterium gas obtained on allocation from the U. S. Atomic
Energy Commission.
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and the photo-protons' have been observed and their
angular distributions studied. At these low energies
both the observed angular distributions and the total
cross sections' seem to be in general agreement with
the theoretically predicted values.
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