where $\bar{I} = \langle I(t) \rangle_{\text{Av}} =$ average electron current, $\omega = 2\pi f =$ angular frequency of observation, $G(\omega) = a.c.$ conduction of gas discharge plasma, N = total number of electrons in the plasma.

The available noise power P_{ω} from a gas discharge plasma placed in the transverse plane of a rectangular wave guide propagating only in its lowest mode is

$$
P_{\omega} = |I_E|^2 / 4G(\omega). \tag{6}
$$

Here $I_E=a.c.$ electron current in the direction of the E vector of the wave guide. Hence in this case,

$$
P_{\omega} = \left\{ kT_{e} + \frac{P_{0}}{NZ} \cos^{2}\theta \left[2 + \frac{Z^{2} - \omega^{2}}{Z^{2} + \omega^{2}} \right] \right\} df, \tag{7}
$$

where θ = angle between E vector and axis of gas tube, and P_0 = d.c. power dissipated in tube. For ordinary gas tubes that are used as microwave noise standards, the contribution of the frequency sensitive term is of the order of a few percent of the total noise power output. This calculation does not account for noise power due to other fluctuations.

* This development was sponsored by the Signal Corps Engineerin
Laboratories, Fort Monmouth, New Jersey.
1. Goldstein and N. Cohen, Phys. Rev. 73, 83 (1948).
² W. W. Mumford, Bell Sys. Tech. J. 28, 608 (1949).
³ S. O.

Nuclear Magnetic Resonance of Sb¹²¹ and Sb^{123*}

V. W. COHEN, W. D. KNIGHT,** AND T. WENTINK, JR. Brookhaven National Laboratory, Upton, Long Island, New York

AND

W. S. KOSKI Johns Hopkins University, Baltimore, Maryland May 11, 1950

 \mathbf{W} E have made attempts to find the nuclear resonance of Sb that this failure was due to a large interaction between the electric in $\mathrm{Sb}_2\mathrm{O}_3$ and SbCl_3 without success. On the suppositio quadrupole moment of the Sb nucleus and the non-uniform electric field of the above molecules a search was made in an ion in which the electric field would be symmetrical. This requirement is fulfilled in the SbCl₆ ion in which the Cl atoms are believed to be arranged in a regular octahedral configuration about the Sb.

A search was made in a solution of HSbCls in HCl guided roughly by the spectroscopic values of the magnetic moments as given by Crawford and Bateson' using a radiofrequency magnetic resonance spectrometer.² Distinct resonances were observed in the vicinity of 9800 kc and 5300 kc which from the spectroscopic information would presumably be associated with Sb^{121} and Sb^{123} respectively. Repeated series of readings were taken comparing the Sb¹²¹ resonance to that of Na in solid NaCl, and the Sb¹²³ resonance to that of D in D_2O . The frequencies of resonance were measured by means of a U. S. Signal Corps frequency meter type EC $221 - Q$, calibrated at 100 kc intervals against harmonics generated by a General Radio crystal controlled oscillator operating at 100 kc and in turn standardized against Station WWV. The magnetic field was electronically controlled to a constancy of about one part in 50,000.

The average values of the ratios of the observed frequencies are:

 $\left[\nu(\text{Sb}^{121})/\nu(\text{Na}^{23})\right]=0.90469\pm0.00004$

and

$$
\big[\nu({\rm Sb^{123}})/\nu({\rm D}^2)\big]{=}0.8442{\pm}0.0001.
$$

If we take Bitter's³ value of the observed ratio of $\nu \text{Na}/\nu\text{H}$ $=0.26450\pm0.01$ percent, and used a first-order atomic diamagnetic correction for Sb of 1.00517 as calculated from the Hartree-Fock functions⁴ and the value⁵ for H^2 of 1.000027, we get for the ratio $g(Sb^{121})/g(H^1) = 0.24052 \pm 0.00003$. Taking the spectroscopic value of $5/2$ for the spin of Sb¹²¹ and the value for μ ^H as measured by Taub and Kusch,⁶ we get

 $\mu(Sb^{121})=3.3595\pm0.0004.$

One must note that this value of the magnetic moment may possibly be in error as a result of second-order molecular effects which we are unable to evaluate at this time.

Similarly, taking Bloch's⁷ value of

$$
\mu(P)/\mu(D) = 3.257195 \pm 0.00002,
$$

we get $[g(Sb^{123})/g(H)]=0.13025\pm0.00002$, and taking the value 7/2 for the spin, we get for the magnetic moment

μ = 2.5470 \pm 0.0003 nuclear magnetons.

It is of interest to compare the ratio of the g-values of the two Sb isotopes as obtained spectroscopically by Crawford and Bateson,

 $[g(5b^{121})/g(5b^{123})] = 1.82 \pm 0.02$ to our 1.8466.

* Work performed under contract with AEC.
** Present address Trinity College, Hartford, Connecticut.
** Present address Trinity College, Hartford, Connecticut.
2 Pound and Knight, Rev. Sci. Inst. 21, 219 (1950).
*F. Bitter

Effect of Magnetic Fields on Conduction— "Tube Integrals"

W. SHOCKLEY

Bell Telephone Laboratories, Murray Hill, New Jersey May 18, 1950

 H E effect of a magnetic field H on electrical conduction can be reduced to integrals by using "tubes." Choose parallel to H an axis P_H in the $P = \hbar k$ space of the Brillouin zone. Then the region lying between planes P_H and P_H+dP_H and energy surfaces $E(\mathbf{P})=E$ and $E+dE$ is a "tube." For spherical energy surfaces the tube is a torus with a parallelogram cross section. For more complex surfaces and for energies for which the surfaces reach the boundary of the Brillouin zone the tube may possibly take a helical path and eventually fill most of the space between E and $E+dE$. We shall discuss only simple closed tubes of interest for semiconductors.

For any tube α an angle variable θ and a tube mass m_{α} are defined by equations

$$
m_{\alpha}\theta = \int_{0}^{P_l} dP_l/v_t, \quad 2\pi m_{\alpha} = \oint dP_l/v_{\alpha}, \tag{1}
$$

where P_l is the distance in the P-space along the tube from an arbitrarily selected fixed point and v_{α} is the scalar magnitude of the component perpendicular to H of the group velocity $\bar{v} = \nabla E(P)$. H produces incompressible flow along the tube α with

$$
dP/dt = (-e/c)v \times H, \quad \dot{P}_l = (-e/c)v_{\alpha}H
$$

\n
$$
\dot{\theta} = \dot{P}_l/v_{\alpha}m_{\alpha} = -eH/m_{\alpha}c = \omega_{\alpha},
$$
\n(2)

so that $\hat{\theta}$ is constant and the period is given by the classical formula with a mass m_t .

If we assume that after one transition, due to thermal vibration for example, an electron will have average velocity zero, then the current produced by a given tube can be reduced to closed form as follows. When an electric field E is applied each element dV_P of volume in P-space becomes a source of electrons of strength

$$
(-eV/kTh^3)f(1-f)\mathbf{E}\cdot\mathbf{v}dV_P,
$$
\n(3)

where V is the volume of the crystal, f the Fermi-Dirac distribution function and e, k, T, h are as usual. If $v(\varphi) = 1/\tau(\varphi)$ is the probability of being scattered per unit time at tube position φ , the total current density $d\mathbf{I}_{\alpha} = (-e/V)\epsilon \mathbf{v}(\varphi)$ due to electrons brought into tube α by **E** is

$$
dI_{\alpha} = (e^2/kTh^3)f(1-f)dEdP_H(m_{\alpha}/\omega_{\alpha}).
$$

$$
\int_{\theta}^{2\pi} d\theta \int_{0}^{\infty} d\varphi \mathbf{E} \cdot \mathbf{v}(\theta) \mathbf{v}(\varphi) \exp\bigg[-\int_{\theta}^{\varphi} v(\varphi')d\varphi'/\omega_{\alpha}\bigg].
$$
 (4)