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It is investigated whether suitable generalizations of the field equations of current field theories to equa-
tions of higher order may be of help in eliminating the divergent features of the present theory. It turns
out to be dificult, if feasible, to reconcile in this way the requirements of convergence, of positive definite-
ness of the free Geld energy, and of a strictly causal behavior of the state vector of a physical system. Progress
may perhaps be made by relinquishing the condition of unlimited localizability of any space time event.

L INTRODUCTIOH

ONS1DERABLK progress has been made during~ the last two years in our understanding of the
scope and limitations of the present picture of systems
of interacting particles and 6elds. Thus, noting that a
theoretical subdivision of the experimental mass and
experimental charge of the electron so far seems
unwarranted from any observational point of view, a
"renormalization program" has been worked out for
the interaction of electrons and electromagnetic 6elds.
This scheme has had great success in making such
effects as the Lamb-Retherford shift of lines in the
hydrogen atom and subtle anomalies in the magnetic
moment of the electron amenable to theoretical inter-
pretation. ' Nor is the applicability of this evaluation
technique limited to any power in a development in
terms of the 6ne structure constant. '

Much less satisfactory, however, has been the out-
come of investigations on the application of renormal-
ization ideas to other systems of particles and 6elds. '
In the domain of nuclear phenomena in particular one
still encounters many difhculties. Not only do calcula-
tions of certain so-called reactive effects still yield
divergent results, ' but even if finite, one often 6nds
results which are quantitatively inconsistent with
experimental data. A striking instance is, for example,
the ratio of the "extra" magnetic moment of the proton
to the difference between this moment and the magnetic
moment of the neutron. ' It is true that such results

' S. Tomonaga et a/. , Prog. Theor. Phys. 1, 27 (1946};2, 101
(1947); 4, 47, 121 (1949}.J. Schwinger, Phys. Rev. 74, 1439
(1948); '75, 651 (1949); 76, 790 (1949). R. Feynman, Phys. Rev.
74, 1430 (1948); 76, 749, 769 (1949).

~ F. J. Dyson, Phys. Rev. 75, 486, 1736 {1949).' See P. T. Matthews, Phys. Rev. 76, 1254 (1949)„.Phil. Mag.
41, 185 (1950};also D. Feldman, Phys. Rev. 76, 1369 (1949) for
electromagnetic properties of vector mesons.' As, e.g. , the nucleon magnetic moment calculated on the basis
of the vector meson theory I see K. Case, Phys. Rev. 75, 1440
(1949)j. In our present state of limited knowledge it seems
premature to conclude from the occurrence of such infinities to
the non-existence of certain particles or certain interactions
concerned.' K. Case, Phys. Rev. 76, 1 {1949);J. Luttinger, Helv. Phys.
Acta 21, 483 (1948) .„M.Slotnick and W. Heitler, Phys. Rev. 75.
1645 (1949);S. Borowitz and%, Kohn, Phys. Rev, 76, 818 {1949},

cannot be considered definitive in view of the dubious-
ness of the power series approximation underlying these
theoretical derivations. Yet the generally unsatisfactory
situation in the theory of nuclear interactions makes it
difhcult to escape the conclusion that the Maxwell-
Yukawa analogy, however suggestive in many of its
qualitative predictions, is inadequate and that in the
region of small distances (presumably starting at ranges
of the order of the nucleon Compton wave-length)
novel theoretical features must be anticipated.

It has often been suggested that the typical divergent
features of present theories may well be due to over-
looking intimate relations between elementary particles
of various kinds. ' However this may be, the apparent
lack of connections between such particles as well as
between the various dimensionless constants repre-
sentative of interaction strengths calls for more compact
methods of formulation, with the ultimate ideal of the
predictability of particles from deeper lying principles.

Now, whether or not the answer to such questions
will. eventually lead us outside the domain of concepts
embodied by relativity and complementarity, it seems
worth while at this stage to ask for models which lead
to convergent answers. An apparently appealing model
of this type can be obtained as follows.

The electromagnetic as well as the meson 6eld
equations are generally of the prototype

( —~')4= p,

where p is the source creating a Geld described by f.
Depending on the transformation properties of f and p
one has scalar, vector 6elds, etc. ; f~:=0 corresponds to
photon, and I~:/0 to meson 6elds. Finally, the reality
properties of P determine the charged or neutral char-
acter of the 6eld. Now consider instead of (1) an
equation of the prototype

F(D)0= p

' See attempts to eliminate divergences by compensation: A.
Pais, Phys. Rev. 6&, 227 (1945); Verh. Eon. Ac. Wetenschappen,
Amsterdam 19, 1 (1947); S. Sakata and 0, Hara, Prog. Theor,
Phys. 2, 30, 145 (1947).
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(3)

That this is a model of the type we want is clear. First,
(2) describes quanta of rest mass' ~, and thus in a
trivial way unites particles of various kinds. Second,
these particles are all bound with the same strength to
the source p. Third, an equation like (2) leads to a less
divergent behavior of f at points near the source p
than (I) does: takef, or example, for p a point source
with strength g: p=gb(x). Then the static potential
following from (2) and de6ned by

F(h)f =gb(x)
1S

sinkr
P(r) =

I kdk
g f

2' r~, F(—k')

I.= tpF(Q)gd4x,

the integration being extended over the whole four-
dimensional space-time (volume element d4x). Equiva-
lently (5) can be written as

I.= Zd4x, Z(x„)=
$

lP(x)e(x —x')iP(x')d4x' (6)

where r is the distance from the source. The strong
increase of F with increasing k leads to a decrease of P
for small r. In fact, taking in (3) X=2, ~i/~2, we have

P(r) = (g/4xr) [exp( —~ir) —exp( —~2r) j (4)

which is already singularity free at the origin.
It is the aim of this paper to develop the quantum

field theory of equations of the type (2). Clearly Eq.
(2) can, in the absence of sources, be derived from the
following action integral

tivistic invariance of L guarantees the existence of a
symmetric divergence free energy momentum tensor. "
Thus, energy and momentum densities can be con-
structed which, like 2, have non-localized character-
istics.

Various investigations have been made of theories of
this kind from a classical point of view. In particular,
the work of Bopp" should be noted; this author studied
especially the following generalization of the electro-
magnetic theory:"

(8)

and showed that it leads to a classical theory which is
not only singularity free and goes over into the con-
ventional theory for distances »~ ' (~ can be chosen
conveniently large), but also does not exhibit the
so-called runaway solutions which so often occur in
attempts to eliminate classical infinities. " Thus if one
considers, for instance, a harmonically bound particle
to be the source of the field 3„,the net radiation
reaction on the particle always leads to a damping,
notwithstanding the fact that the radiation field corre-
sponding to (8) consists of an electromagnetic 6eld and
of a mesonic field, the latter having the disagreeable
property of being negative definite. One would expect
that such negative energy radiation would somehow
lead to trouble and it has indeed been shown by
Feynman'4 that situations may arise in which this is
the case.

The quantum-mechanical radiation field (8) consists
of an assembly of photons of positive definite and of
neutral vector mesons with a negative definite energy.
The negative quanta lead to even graver difhculties in
quantum theory than in classical theory. " In Section
III-A-2 we will discuss this aspect for the general Eqs.
(2) and (3), and it will turn out that while formally
any such equation leads to a finite self-energy for the
electron in the hole theory as long as S&1, the non-defi-
niteness makes such equations inacceptable. The same

1
e(x„)= ~t d4k exp(ik„x„)F(k„')—

(2x) 4~

is essentially the Fourier transform of F. For a general
F containing arbitrarily high powers of —we will in
fact admit that X in (3) may tend to in6nity provided
the infinite product thus arising is mathematically we) I

defined —it is readily seen from (6) that the Lagrangian
density Z(x„)will generally depend on the field variables
at finite distances x„'—x„from the world point under
consideration. Following a terminology introduced by
Dirac' we can thus say that the present type of theory
is characterized by a non-localized action. The rela-

' Throughout this work we put h=c=1.
g P. A. M. Dirac, Phys. Rev. 73, 1092 (1948).

The function P(x) itself is, however, still perfectly localized.
The recent suggestion of Yukawa LPhys. Rev. 76, 300 {1949);

77, 219 (1950)) to consider non-localized fields, i.e., systems in
which P(x) itself is replaced by a non-localized entity, thus
constitutes a departure of a different nature from equations like
(1); see however M. Fierz, Phys. Rev. 78, 183 (1950).

"See F. Bopp, Zeits. f. Naturforschung 1, 237 {1946); T.
Chang, Proc. Camb. Phil. Soc. 42, 132 (1946); 44, 76 (1948);
J. de%et, Proc. Camb. Phil. Soc. 44, 546 (1948); Proc. Roy. Soc.
A195, 365 (1949); H. S. Green, Proc. Roy. Soc. A197, 73 {1949)."F. Bopp, Ann. d. Physik 38, 345 {1940);42, 572 (1943);
Zeits. f. Naturforschung 1, 53 (1946).

~ This equation has also been proposed by A. Landb and L.
Thomas, Phys. Rev. 60, 121, 514 (1940); 65, 175 (1944); by B.
Podolski et a/. , Phys. Rev. 62, 68 (1942); 65, 228 (1944); by D.
Montogomery, Phys. Rev. 69, 117 (1947); and by A. Green,
Phys. Rev. 72, 628 {1947).See also B. Podolski and P. Schwed,
Rev. Mod. Phys. 20, 40 {1948).Recently, a discussion along
similar lines has been given by L. deBroglie, Comptes Rendus
229, 157, 269, 401 {1949).

'3 See P. A. M. Dirac, Proc. Roy. Soc. A16?, 148 (1938); %.
%Vessel, Ann. d. Physik 43, 565 (1943)."R. P. Feynman, Phys. Rev. ?6, 939 {1948);see especially
p. 945.

'~See A. Pais, reference 6, Chapter II. )7; P. T. Matthews,
Proc. Camb. Phil. Soc. 45, 441 (1949).
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holds nsutatis mutandis for "multi-meson equations" of
the types (2) and (3) involving coupling with nucleons

(see III-A-2) .
The final results for self-energies on the basis of (2)

and (3) are essentially equivalent to those obtained by
Pauli and Villars" by means of the "regulator-pro-
cedure" with the single difference however that the
"regulator condition" for the self-energy here follows

automatically (see III-A-2).
It should also be noted that (see III-A-4) the negative

energy diSculties remain the same whether all a; in (3)
are diGerent or whether some of them are equal.
Thus, for example, the equation

recently discussed by Bhabha, " which leads to an
exponential instead of a Vukawa static potential, still
has the non-de6niteness as a stumbling block. Nor will

it turn out to lead to any improvement in this respect
to take some K; to be complex. In fact additional
complications now occur as will be explained in Section
III-A-3.

It may be pointed out here that the occurrence of
such energies can only constitute a difficulty in the case
of fields of the Bose-Einstein type (of any integer spin).
Generalizations of the Dirac equation to equations like

Q(y„B„+a,)P= 0, 8„=8/Bx„ (10)

"W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).
"H. Bhabha, Phys. Rev. 77, 665 (1950). We are indebted to

Professor Bhabha for communicating his results."See reference 16 and also D. Feldman, reference 3.

do not lead to such complications (III-A-5) because
here an appropriate de6nition of the vacuum, taking
into account the exclusion principle, can help out. %e
have investigated whether the use of (10) can be of
help in eliminating the divergences occurring in the
charge renormalization of the electron. Such an attempt
was suggested by the "regularization" of the charge
renormalization by means of auxiliary 6elds of the
Fermi-Dirac type. " It will be shown, however, that
the use of (10) sheds no new light on this problem. It
seems, in fact, that the construction of a model which

might conceivably correspond to reality and which

leads to a finite vacuum polarization is much more
difficult than 6nding a model yielding 6nite self-

energies (cf. also III-B-4).
As a next step in the discussion of "model theories, "

one might try to study equations like (2) where F is a
genera/ integral function of . On the basis of Weier-
strass' product theorem, this means that we now have
to envisage the presence of exponential functions of the
dalembertian. It will be shown in Section III-B-1 that
the new features we now have to consider are all
exhibited by an equation of the type

ef(o) ( —g&)1t,= p

A special case of this, with f( )=—,has been

proposed and investigated by Born and Green within
the framework of reciprocity theory. "Here one encoun-
ters problems of a new type; viz. , the lack of "propaga-
tion character. "By this the following is meant: consider
a space-time point J' and its light cone. Now, on the
basis of our present conceptions, physically meaningful
differential and integral equations must be such that
knowledge of any physical quantity in J' must be
obtainable from these equations by specifying sufficient
initial conditions inside the past light cone only. It will

be shown in Section III-B-2 that this condition is
satisfied if F( ) in (2) is a polynomial in with

arbitrary constant coefficients. On the other hand, we

shall see in III-B-3 that (11) does not have propagation
character whenever f( )&0. However, the situation
is radically diGerent for the cases that f is an odd or is
an even function of its argument. In the latter case
deviations from orthodox theory show the suggestive
feature that they seem to average out over space-time
regions of the order of a universal length X, the magni-

tude of which so far remains arbitrary. " Some aspects
of the situation in this case are discussed in III-B-4
and in the concluding Section IV.

As in conventional problems, we shall 6rst study
uncoupled systems. Now, in the same sense as the

equation ( —g')/=0 has the harmonic oscillator as
its mechanical model, knowledge of the properties of
the latter essentially determining all characteristics of
the former, so the general equation F( )/=0 will have

its mechanical model too. %e shall discuss these models

in the next section.

F(D)g=0, D=d/dt (12)

where g is a polynomial of degree 2.V. We shall deal
exclusively with reversible motions so that F is an
even function of its argument. In this case (12) is
derivable from an action principle with the Lagrangian

L= qF(D)tj. — (13)

"For a survey and references see M. Born, Rev. Mod. Phys.
21, 463 (1949). We have been greatly stimulated by this article
which we had an opportunity to see prior to publication. Also,
we are much indebted to Dr. H. S. Green for many useful dis-
cussions on this subject."'In this respect the theory shows relationships with the
modi6cations of classical electrodynamics as proposed by R.
Peierls and H. McManus, Proc. Roy. Soc. A195, 323 (1948); see
also J. Irving, Proc. Phys. Soc. London A62, 780 (1949).

II. THE MECHANICAL MODELS

A. Equations of Motion of Finite Order

1. Introductory Remarks

%e consider one-dimensional mechanical systems
(coordinate q) whose equation of motion, although
involving time derivatives higher than the second, is
still of finite order 2X so that it can be written as
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In conventional mechanical problems the transition
to the quantum theory is made by 6rst putting the
classical equations into Hamiltonian form. We shall
show in what follows that the quantization by means
of Hamiltonian methods is always possible in case F in

Eq. (12) is of finite degree. The first question thus is to
hamiltonize the system described by (13) and we must
ask especially how this can be done in a way most
suitable for subsequent quantization.

A procedure for deriving a Hamiltonian correspond-
ing to (13) was given long ago by Ostrogradski" in case
F is a polynomial: One defines quantities Q;, F; by the
relations

Q;=D' 'q,

F;= 81./5(D'q),

where D~q is the highest derivative of q occurring in
I.,

'-i 61./8x denotes a variational derivative:

6I. BJ BI. BJ—D +D'
bx Bx 8(Dx) B(D'x)

Then the Hamiltonian is

&=FiQ~+~~Qs+ +FN iQx+&x(DQx) —I., (15)

where DQ,v is to be expressed in terms of the F's and
Q's by means of" Eq. (14) for F~. The Hamiltonian
equations of motion derived from (15) reduce to (12)
and a number of identities.

It is now possible to qus. ntize (15) in the usual way,
but this method meets with two objections:

(1) Since the method works only for finite!V one can
at best hope to master the quantization problem for
transcendental F by approximating F by a finite number
of terms of a power series, the development of F around
the origin. In the methods to be discussed approxima-
tions of this kind can actually always be avoided.

(2) Even for finite X the method is clumsy as can be
seen, for example, from the non-separable character of
the Schrodinger equation in Ã variables corresponding
to (15).

One expects however that for 6nite polynomials the
problem should be separable since by writing'-'

F=II(1+D/-. ), (16)

the solution of (12) is a linear combination of oscillations
with frequencies co;. At least for the case that all +; are
real and distinct one would expect the Hamiltonian to
be some linear combination of oscillator Hamiltonians
which would make the quantization trivial. Actually
we will see that the restriction on the cv; just mentioned
is in no way necessary to achieve separability. Thus
instead of following the Ostrogradski method, which is
essentially based on a power series representation of F,
we shall use only product representations and then
have only to distinguish between the cases of real or
complex, single or multiple frequencies ~;.

Q.=II'(1+D/-;)~ (17)

where the prime on the product sign denotes that the
ith factor is missing. According to (12) and (16) the
Q; satisfy the equation

(D'+(a;2)Q, =0,

while there are clearly no constraints among the Q; as
their number just corresponds to the number of
independent solutions of (12).

Now instead of describing our system by the La-
grangian (13) we try to use another form:

I = Z~~Q(D'+~—-')Q (19)

We are entitled to do so if we can 6x the X constants
p; in such a way that I divers from I. by at most a
time-derivative of a function of q and its derivatives.
We shall show that this is possible, and that the g; are
uniquely determined.

Denoting by the symbol = an equality apart from
an additive time-derivative, and using (16) and (17),
we have in fact:

I=-Ãr, "(II (1+D/-;) I (~+-.-)j~

Z. Real and Dist&oct Frequencies

We start from the Lagrangian (13) where F is given
by (16) and the co, are real and distinct. It is natural
to define X coordinates Q; by

'DM. Ostrogradski, Memoires sur les equations dQ"erentielles
relatives au proMeme des isopdrimetres, Mem. Ac. St. Petersbourg,
VI 4, 385 (1850).See also Whittaker, Analytical Dynamics (1937),
{Cambridge University Press, London, 1937), fourth edition,
p. 265.

"When using Ostrogradski's method, it is most convenient to
perform partial time differentiations on L such that it contains
XPq as highest derivative instead of G~q, as is the case for (13).
In this alternative form for L, D q will occur quadratically which
ensures that DQ~ can be eliminated from the Hamiltonian {15),
while also there will then be no constraints between coordinates
and momenta, in contradistinction to what would happen if one
were to start from L in its form (13).

~ This is always possible apart from a trivial multiplicative
constant. We will never have to deal with any co; beins zero.

QMI= —qF'(D)Q —
q,

& 1+D'/cvi

which is equal to I.provided that

& 1+D'/cvi, 2 F(D)
(20)

As the roots of F(D) are simple we can perform a
partial fraction decomposition of ~' with constant
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q Z %—&6 Q'i' (22)

Second, there exist &'lt simple identities between the qj
which are easily obtained from (20):

The first of these follows from (20) by putting D=O,
while the others are proved by developing both sides
of (20) in a series in D . Next, putting L in the form

I =En I(DQ)' —~'O'I,

we can immediately write down the Hamiltonian

&=Eh(~P!4~,)+n,~Per j.

Performing the contact transformation

P'(2ln I)', Q Q" (2ln I) ' (2')

and remembering the sign properties of the q; mentioned
above, Eq. (25) becomes, in these new variables,

(D-independent) numerators. Hence it follows that

8i= 1/ice F (—&a ),

&'( ~'—) = (dF/d(D')) n'='.
Thus we have found the gI, and thereby have obtained
a Lagrangian I dynamically equivalent to L.

It is important to note that as F is a single-valued
function, the quantities F'( cubi,

'—), and therefore gati„

alternate in sign. Thus if we normalize F so that
F (—ieP) is positive, then all gati (k odd) are positive
and all gati, (k even) are negative.

For future reference we mention two further types of
relations involving the gl„.. In the first place one verifies
that q is connect. ed with the Q, by

problem by a linear contact transformation. This can
be shown in the usual way by verifying that the
difference QP,de; for the oscillator and for the Ostro-
gradski variables is a perfect differential.

Finally, it may be noted that whereas we can write
down an L as well as an H in terms of the oscillator
variables, we have only a Hamiltonian, Eq. (15), in
terms of the Ostrogradski variables. An ostrogradski
Lagrangian does not exist, since (15) is linear in the
momenta.

3. Real and/or Complex Distinct Frequertcies

U we admit some of the ce; in (16) to be complex,
the reality of quantities like L and IJ necessitates the
occurrence of complex conjugate pairs of frequencies.
Irrespective of reality properties the formal introduction
of the Q; by means of (17) is still possible with the Q,
satisfying (18). Likewise, one can define an L by (19)
with gati given by (21). As the problem is still separable
in the various Q;, it, will be real if ce, is real, while if cd„
and co„arecomplex conjugates the same is true for p
and it„.The Hamiltonian is again given by (25). We
will now pick from (25) a pair of terms corresponding
to a pair of "complex conjugate oscillators. " Clearly
then, if we know how to quantize the Hamiltonian
describing such a pair we will have solved the question
of quantizing the entire Hamiltonian (25).

Let j=1, 2 in (25) denote such a pair. We thus
consider the Hamiltonian

H = L(P '/4. )+~ -'e 'j+L(P"/4~ )+~ -*'Q 'j,
(29)

Ke consider erst some classical features of our system.
From (29) it follows that

(D'+-')e.= (D+-*)Q.=0

as expected. Further, the part of q corresponding to Qi
and Q2 is according to (22) given by

q= itic''Qi+ it2ie*'Q2, (D'+id') (D'+id*2) q= 0. (29b)

Consider a solution of (29b) of the form

q= Rie ' cos(vt+Hi)+Rie ' cos(vt+8~), (29c)

&=2K(—1)' '(Ps+~ses). (27) where we have put

This shows that our system consists of a linear combi-
nation of harmonic oscillators, some with positive-
definite energy (j odd) and some with negative definite
energy (j even). Quantization yields the eigenvalues

Clearly, the "oscillator coordinates" Q; given by (17)
and their conjugate momenta ought to be related to
the "Ostrogradski variables" (3) for the corresponding

In contrast to the case of two real roots the motion
(29c) is in general unbounded in time. Moreover,
considering the two terms on the right side of (29c) as
two rectangular coordinates in a plane, the orbit will
not densely cover a portion of the plane, as in the case
of the Lissajous motion with incommensurable real
frequencies, and therefore the motion is degenerate in
the classical sense.

With the help of (29a, b) we can express Qi and Q2 in
terms of the constants E~, E2, 8~, 82 and then calculate
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Q,t=Q„ (31a)

One can go over to Hermitian variables by the canonical
transformation"

Pi= ~2'i:(p+ qi)+i(P iQ)], —

P2=-,'oi*tLp —iq) —i(P+iQ)],

Q = — [(p iq)+i(P+—iQ)],
2i(o&

(32)

Q.= . L(p+'q)- (P- Q)].

In terms of these variables H becomes

(PQ+ pq—) (Pq pQ)—,
—

where the 6rst bracket has to be properly symmetrized
to make BHermitian. Thus the Schrodinger equation is

8 8) ( 8 8)
~i Q—+q—i+.i Q

—
q
—

i
e=(iF+~)e.

BQ Bq~ ( Bq BQi

Putting

we get
q=r cos8, Q= r sin8,

nr(B/Br) v(8/—88)]4 = (i—E+u)+
with eigenvalues

and wave functions
E„,y ——nv+Xo.

4'.
, i,= (1/2m)e

—'"' (1/r)e'"' " (33b)

2' This is not a real transformation, but that does not matter
as the dynamical variables in (29) are not real to begin with.

'4 This transformation is essentially a transition to Pock-like
variables I see P. Dirac, Quantum 3fechanics (Oxford University
Press, New York, 1949), third edition, Oxford, 1949, p. 136j
with a subsequent splitting in Hermitian and anti-Hermitian
parts.

the energy using (29).The result is (we put it&= rt exp&e)

H= (2E,Rg/il)i (v' —u') cos(8i —82—q)—2vn sin(8i —82—q)]. (30)

Again in contrast to the real frequencies the energy
depends on the phases and can thus have either sign.
In the quantum theory we will find the counterparts
of the unboundedness of the motion and the indefinite-
ness of the energy.

Performing the contact transformation"

Pl~Pl(2'll) 1 P2~P2(291 )
Qi~Q, /(2ni) 1, Q2~2/(2rt, *)1,

Eq. (29) becomes

&=k(Pi'+~'Qi')+ s(Ps'+~*'Q2')

For purposes of quantization it is important to note
that here the P's and Q's are non-Hermitian operators.
In fact, taking q in (29b) to be Hermitian, we must have

(m, X'i Qii n, X")= (n —1 iA)—6(m n+—1)
4m') &

ds exp[if. '—X)s—s]+8(m —n —1)
J

QO

)(Jt ds expLi(X' —X)s+s], (34)

where z= lnr. The z integrals are badly divergent. Thus,
corresponding to the classically observed unbounded
motion the representation for Qi (and likewise for the
other variables) is unbounded. This does not mean that
the matrix elements of all functions of p and q are
unbounded, as is already clear from the finite expression
(33) for the energy. Indeed, one verifies also that

(m, Vi-,'(P '+o~'QP) in, X")
,'oi(n —iY')8—(m —n) b(X' —X"),

(m, X'
i

-'(P'+io*'Q ')
i n, V')

= -', ~a*(n+ 9.")8(m —n) 8(X'—X"),

so that the energy of each of the complex oscillators
separately is also 6nite, although complex.

In conclusion, it may be pointed out that for the
reality of II the relations (3ia) are not strictly neces-
sary; one could also have taken

Qit= —Q2, Pit= —Ps, (31b)

corresponding to anti-Hermitian q. In the case of a real
oscillator, one chooses either a Hermitian or an anti-
Hermitian q in order to obtain a (positive or negative)
definite energy; the same holds for the case of the
distinct real frequencies discussed in the previous
section. For complex frequencies, however, each choice
leads to an energy which is indefinite to begin with, and
therefore (31a) and (31b) cannot be distinguished from
each other.

4. Presence of Multiple Frequencies

%e first consider the case that only a double real
frequency is present, so that I. is

L= q(D'+ o&02)'q. —
~~This is meant in the customary sense of the continuous

spectrum, i.e., one takes m=e and integrates over )" from X'—e
to X'+e where e is a small quantity.

Here n can be any positive or negative integer or zero,
while X is continuous and ranges from —~ to + ~.
The energy spectrum is therefore inde6nite, continuous,
and each level is infinitely degenerate. +„),has been
normalized in the X-scale. 25

Let us now consider the matrix elements for the
operators Qi, Q2, Pi, Pi occurring in (31). We have,
for example,

Q,%„,i ——(1/2rco'*) L(n —1—iX)4', i, i+r'4'„+i,i],
so
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The general solution of the equation of motion is

q=R1 COS(&sot+81)+Rot COS(ooot+82), (35)

which in general is again not bounded and degenerate.
For the energy one Gnds'6

4ooo R2[R1Mo sill(81 —82) R2]

which as in the complex case is inde6nite. For the
Hamiltonization process the partial fraction method of
the previous two sections is clearly inapplicable, while
the Ostrogradski method though feasible is again incon-
venient. It is natural, however, to try here to consider
the double frequency as the conQuence of two distinct
real frequencies. For the latter one has

L= q(D'+—o1') (D'+ooo') q
= [Q1(D'+~')Q1—Qo(D'+~o')Qoj/(~' —~o'), (36)

Q1= (D'+~o')q, Qo=(D'+~')q,
q=(Q.'-Q.)/(-' --:).

The OCCurrenCe Of a faCtOr (&ao—oooo) ' in (36) indiCateS
already that the transition +~coo has to be performed
with some care. %'e put

CO= Gdo+ C

where ~ is considered in6nitesimally small, and also

Qo= Q1+ oQ2.

Then L becomes in the limit e—+0

L= QP —(1/ohio)Q2(D'+o1o') Q1
=QP+ (1/~o) (DQ1 DQ2 —~o'Q1Q2),

and in the some limit

q = —Q2/2ooo.

One easily verifies that (37) leads to the same general
motion (35) for q, which justifies the procedure. From
(37) one finds for the Hamiltonian

o10(F1F2+Q1Q2) Ql

which, on performing the canonical transformation. ,

Q1~Q1, P P —Q/2 o,

Q2~ —F2+Q1/2~o, &2~F2,

becomes

&=~o(F1Q2—F2Q1) —2(Q1'+Q2')

Q1 = r cos8, Q2 ——r sin8,

then the Schrodinger equation is

—io&o81I /88 = (E+xar2) 4',
so that

with n a (positive, negative, or zero) integer while r'
ranges continuously from 0 to ~. Thus, as in the
complex case, the energy spectrum is continuous,
inde6nite and each level is in6nitely degenerate.

The general procedure for dealing with a mixture of
single and multiple frequencies of arbitrary multiplicity
is now clear: dissolve 6rst each n-fold root ~ into n
neighboring ones o1+2,, i =1, , n, with o,Wo;. Then
develop in L with respect to the e; and pass to the limit.
As for our further discussions a detailed analysis of
this procedure seems hardly necessary, we will not
pursue this question any further. However some addi-
tional comments regarding multiple frequencies will be
found in the Appendix.

To recapitulate the results of Section A: if L contains
more than one frequency the energy is always indefinite,
both classically and quantum mechanically. For the
case of real frequencies we saw that this follows immedi-
ately from the alternating signs of the p&. In the other
cases this simple argument cannot be taken over, but
from the analysis of the Schrodinger problems it was
found that the same conclusion holds. It is this inde6-
niteness which will constitute a grave difhculty in field
theoretical applications.

~t K(t—t')q(t')dt'=0,

where the time reversibility is now expressed by the
requirement of the evenness of E as function of its
argument. Corresponding to (38) L has the form

L= —q(t) ~l K(t—t')q(t') dt'.

The connection between (12) and (13) on the one hand
and (38) and (39) on the other is expressed by

K(t) = (1/22r) I dke'2'F(ok) (40)

%e will restrict ourselves to functions Ii which are
integral functions in the sense of complex function
theory. It is known that according to Weierstrass such
functions can be represented in the form

B. Equations of Motion of ln6nite Order

l. Introductory Remarks

If F(D) contains derivatives of infinite order we have
essentially to do with integral equations. It is therefore
often more convenient in this case to use instead of
(12) the following form for the equations of motion

E= 22o1—r"/2, 4'„,„(r,8) = b(r r') e'"'/(22rr') &, — F(D) = «&n(1+D/-. ), (41)

22 Ao can 2 bo shown f2012 go Ootrn ra1foi2f fn11n of the provided go1; converges. Equation (41) expresses F
Hannltonian. in terms of its zeros and of an exponential factor; f(D)
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is again an (even) integral function determining the
behavior of Ii at the point at in6nity. The motivation
for the choice of functions of the type (41) is that in

corresponding 6eM problems the zeros will each corre-
spond to quanta of a certain mass whereas the expo-
nential is suggestive of a cut-oG factor.

Again the question arises of the quantization. It is
clear that if no exponential is present (i.e., f=0), the
methods of the previous chapter can be applied immedi-

ately. %'e illustrate this with a simple example: If
F(D) = coshaD we have the product representation

F(D) =g(1+D'/oi, s), io; =s (2i 1)/2—a.
1

Thus in our terminology we have an infinite number of
distinct real frequencies. Now we can define an infinite
number of Q; by using (17) (for X= ~) and an I as in
(19).From (20) one sees that the rtq are to be determined
from the relation

Q rt~l, '/(1+ D'/coI, 2) = 1/coshaD.

The partial-fraction series for cosh 'aD is well known
to be"

[E, y(q, q, q, . . .)7= ij— (43)

for any function p. From these three requirements the
eigenvalues of the energy must be determined and the
representation of q must be found.

Ke will now apply Heisenberg's method to the
system (42). First of all, we need an expression for the

energy, to the derivation of which we now turn.

Z. Classical Theory General E—xpressionfor the Ene, rgy

tonian becomes awkward since one would always have
to approximate the exponential either by a power series
of finite order (in the Ostrogradski method) or by a
finite product representation (in the oscillator method),
and then in some way have to pass to the limit. How-

ever, one can circumvent the use of the Hamiltonian
for quantization by following a method advocated
especially by Heisenberg. " The idea here is to start
from (1) the equations of motion, (2) the expression of
the energy E in terms of q and its time derivatives,
(3) the quantum-mechanical definition of time deriva-
tion which follows from attributing to E the role of
time-displacement operator, thus

so

4 ( 1)i—1

sechaD=
ir ' 2k —1 1+D'/(uP

4 ( 1)k—1 1(ja2 ( l )k—I

gk
s (2k —1)(oi' m' (2k —1)'

From the general definition of E as the integral of
the motion for a time displacement, one readily 6nds
that

E= g D"q fbL/b(D"q)7 L—
n=l

One notes again the sign alternation of the qI„-. The
identity (23) is easily verified. "

If there is an exponential present in F, the problem
can still be reduced greatly by the above method of
decomposition. In fact it is readily verified that for the
Lagrangian (13) with F given by (41) we can introduce
an I =I, where

with the same Q~ and rti as before. Therefore the
quantization problem will be mastered if we can deal
with a system whose Lagrangian is

L= —qF i(D)q, Fi(D) =geI'o'(D'+ra'), (42)

i.e., for a system with only one frequency and an
exponential factor.

For a system of this kind the generalization of the
various methods described above for finding a Hamil-

~7 See VVhittaker-Watson, Modern Aea/ysis (Cambridge Uni-
versity Press, London, 1940), fourth edition, p. 136. Quite gen-
erally the possibility of decomposing F '(D), Ii given by (41)
with f=0, and Zco;~ convergent, in a partial fraction series is a
consequence of the Mittag-LefBer theorem of complex function
theory.

"The identities corresponding to (24) now are

Kg~I,'"=0, n&2
1

which are divergent series but by the known methods can be
summed to zero.

= P D"q P (—1)~D~[M/g(D~+"q)7 —L.
n=l sss 0

F(D)=+X D",
0

q(t) = (1/2s) R(k) e '«'dk,

one finds

E(t) = (1/2ir) )I 8(s)e '"ds,

2gn 1m 0

dk ( ik)" { i—(s k) I
"—R(k)—R(s—k).

"W. Heisenberg, Zeits. f. Physik 123, 93 (1944).

%'e will consider the Lagrangian to be of the general
form (13). Its value then is zero in virtue of the equa-
tions of motion (which are supposed to be given and
thus may be used freely in contradistinction to the
situation in the Hamiltonian method). It is convenient
to introduce the Fourier transforms of the various
quantities. Writing
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Putting m+n=p and retaining rrt, one can carry out
the summation over m. The subsequent summation
over p can be expressed in terms of F. The result is

$(s) = (1/2prs) dk(k s—)R(k)R(s k—)

X[F{i(k —s) } F(pk—)j (44)

and we note that as the equation of motion in
Fourier form is F(—fk)R(k) =0 and as F is an even
function of its argument, s8(s) clearly is zero as a
consequence of the equation of motion; this expresses
the energy conservation. For the L given by (42) we
have

q= A cosset, R=prA[b(k+p~)+ b(k-p&)j.

One finds that $(s) is proportional to b(s) and eventually
that

where 8(s) is given by (44) with F=Fi. From (44) and
(49) one readily finds

"""'II(E'IRoIE'+~) I'
16n'

+ I
(E'I Ro

I

E'—~) I
'I (50)

This equation should determine both the spectrum
of E and the explicit form of the matrix elements
(E'

~
Rp~ E'&&p). In the case of an ordinary oscillator

(f= 0) a solution clearly is"
E'= (n'+-,')co,

(E'~ Rp
~

E")= 2prV2[(n'co) lb(n' —n" —1)
+ (n"(o) &b(n'- n "+1)].

For our system with the exponential factor one therefore
must have

E= -'A'(o'e«'")
2 (45) E'= (n'+-', )(pe~&' &

F(D) = px(D)II(1+D'/~'), (46)

where the itp are the constants given by (20) for +=1.
One then finds

E pE=npx(f p)~p'A p' (47)

This additivity of the energy follows immediately from
the corresponding additivity of the Lagrangian as found
in the previous section.

3. QNanturtp Theory Dpagortatiz—ation of the Energy

Ke will discuss now the quantization of the system
described by (42), making use of Fourier transforms
throughout. Then (43) is clearly satisfied if

[R(k), Ej=kR(k).

In the representation in which E is diagonal this means
that the matrix elements of E must be of the form

where x is any function without zeros one may con-
veniently write

q=P i„tA„cosco.t, R=prgrt„A„[b(k+pi„)+b(k pi.)j, —

where ) has the dimensions of an inverse frequency.
The equations of motion are

exp[A'"(D'+co')" j (Ds+ pp') q = pqp, (D'+a p') qp
——pq

Now solve in the usual way by putting

q~gsvt q
~gtPg

while (E'~Rp~E") is the same as for the ordinary
oscillator. Thus q „,the matrix element of q in the
energy representation is the same as in the case f=0.

It should be noted that if f is of the form (D'+ pp')",

both the eigenvalues of the energy and the matrix
elements of q are exactly the same as for an ordinary
oscillator. Hence in this case the exponential factor has
no eGect whatsoever, both classically and quantum
mechanically, as long as one con6nes one's attention to
the homogeneous problem, i.e., to the case that no
outside forces act.

As soon as such forces are present the exponential
factor has a profound e6'ect, however. Consider, for
example, the problem of an "exponential oscillator"
coupled to an ordinary one as described by a Lagrangian

i
q exp P 2k (D2+~2) Pj(D2+~2) q

pqp(D +ppp)q—p+ pqpq,

As the equation of motion is Fi(ik)R(k) =0, it follows
that R(k) is zero except for k=&co so that we may
write for (48)

exp[ypp(pp2 v2) p]. (~2 v2)(pppp v2) = p .

In contrast to the conventional problem with ) =0 one
does not find two solutions for v, one near co and one

(E'
i R(k) i

E")
= b(k' —co') b(E' —E"—k) (E'i Rp

i
E"). (49) "The uniqueness of the solution for the harmonic oscillator

has been studied by E. P. Wigner, Phys. Rev. 77, 711 (1950).
Wigner finds that for this case the results of the present method
are not necessarily the same as those obtained by the Hamiltonian
method. It has kindly been pointed out to us by Professor Pauli
that uniqueness can be obtained by requiring the commutator of
q and g to be independent of the particular choice of E (a result
already implicit in the last paragraph of Wigner's paper). We
are indebted to Professors Wigner and Pauli for interesting
discussions on this topic.

With this form of R all requirements are ful61led apart
from the diagonahzation of the energy, the condition
for which is

~oo

ds(E'
~
8(s)

~

E")e '"=E'b(E' E")—
2x (g

(E'~ R(k)
~

E")= b(E' —E"—k)(E'~ R~ E") (4g) where v must satisfy the condition
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near auo, but rather an in6nity of solutions, "so that as
soon as e/0 the motion becomes a great deal more
complicated. In 6eld theoretical applications this dis-
tinction between the homogeneous and the inhomo-
geneous problem will turn out to be of great importance.

III. FIELD THEORETICAL APPLICATIONS

A. Absence of Exyonentials

1. Introductory Remarks

Vfith the help of the methods developed in Section II
we are now in a position to discuss a number of questions
concerning 6eld equations of the general type (2). For
the function Ii we 6rst limit our choice to expressions
like (3) (with a 6nite or an infinite number of factors)
and defer until Section III-8 the discussion of more
general types of integral functions P which include
exponential functions of the dalembertian

We begin with the case that f in (2) is the electro-
magnetic 6eld and the p is the current vector due to the
presence of electrons, thus

where j„is the conventional Dirac current operator.
It is thereafter pretty straightforward to see what will

happen for other choices of &l and p in (2). Some
comments on the application to the coupling of mesons
with nucleons are made in the following subsection.

In an analogous manner to the developments in
Section II we shall make increasingly general assump-
tions about the p, . at 6rst that they are real and
distinct and later that there are also pairs of complex
conjugate p; and multiple occurring p, ;. In subsection 5
we discuss generalized equations of the Dirac-type (10).

We now start with the discussion of (51) for real t&,.

Z. Real Masses The Self Energy a—f the El-eetron

The Lagrangian density from which the generalized
electromagnetic Eqs. (51) as well as the wave equation
for the electron can be derived is

1 cIA„BA„
fCI) i ~A 0'(r &t +—&&)4—

2 „&&x„&&x(52)
2y = ~e&l'vA'.

Here &k is the wave function of the electron, P its
adjoint; ff: is the electron mass, e its charge. %'e impose
on A), the supplementary condition

(53)

introducing the following set of 6eld variables

%ith the convention @0=0and using partial space-time
di8erentiations we can replace (52) by

1 (BA„(»8A„&»
+t&'A "&'

I

2 ~ E. ax„ax„

In particular one 6nds t 0= 1 by multiplying by and
then putting =0. The identities which are the
counterpart of (24) now turn out to be

i=o
(55)

Also the sign alternation of the constants pl, is of
course found here again as in II-A-2. Ke have normal-
ized our definitions of the A„&@so that $0=1 which
means that the part of (54a) which contains A„&'& has
precisely the structure of the standard electromagnetic
field Lagrangian with interaction, so that we now
identify A„(') with the electromagnetic potential.
Similarly, for k/0, A, (~' is now a neutral vector meson
6eld with meson mass p, I,. Following the reasoning
which led up to (28) one sees that for even (odd) k the
field energy is positive (negative) definite.

From (54) it follows that, for all k,

which means that each 6eld is coupled to the electron
with the same strength e. Further it follows from (53)
and from the independence of the 6elds that"

with

go= 1, f g= 1/tipoff'(t&i~); k= 1, 2, . (54b)

The transformation from (52) to (54a, b) has been made
by following step by step the derivation of (19) from
(13).The coupling term in (54a) is obtained from that
in (52) by using the analog of (22); i.e.,

A„=Qt" &A„&'&

As to the derivation of the values (54b) for the f'i, one
readily verifies that the determining equation (which
here plays the same role as (20) for the mechanical
model) now is

Following the procedure of II-A-2, Z can be split by 8A„&~&/&&x„=0, all k. (56)

"This is an immediate consequence of the Picard theorem.
Roughly speaking, one raight say that for a =0 an infinity of roots
have collapsed to the point in infinity but are "drawn back" from
there as soon as e differs from zero. Clearly, the transition e 0
is highly non-uniform.

~ It is well known that the essential role of relations of the
type {56) is to insure the definiteness of the energy for the field
concerned. In view of the fact that (56) is still insufhcient for
obtaining a positive definite energy for the assembly of fields
under consideration, one may ask whether the supplementary
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For the quantization of the 6elds it is important to
note that the momentum conjugate to A„&&(x, t) is
&&A„&'&(x,t). Consequently the covariant commutation
relations are

LA „&'&(x),A „~"&(x')]=i b„„b&, (1/g&)D&, (x x—'), (57)

where A&, (x) is the well-known four-dimensional "b-
function" involving the mass IM, I,.33 To each h~ we can
adjoin functions bI, and A~") in the manner indicated
by Schwinger. "In addition, we will assume in parallel
with (57) that the vacuum expectation value of the
anticommutator of A„'~&(x)and A„&"&(x')is given by

(IA„&'&(x),A„& &(x') I)
=by„by„(1/f)&6 "&(&x—x'). (58)

To the interpretation of (58) we will return presently
and will now 6rst consider the self-energy of the electron
in the order e' as it can be calculated by means of the
formal relations (57) and (58).

%e note first that it will consist of a sum of terms
each being the contribution of a separate 6eld A„&~'.
Evidently such a term contains a factor f&,

2 since we
deal with an eBect of the second order in the interaction
energy which according to (54a) is weighted with f'&„..
Furthermore it follows directly from (57) and (58) that
the term we consider contains another factor fj, '.
Hence the total self-energy will be of the form:

(59)

where W(u&,) is the standard expression for the self-
energy of an electron coupled to a neutral vector meson
field with meson mass py, therefore

e K

bm = — — du(1+ u)P f'„L(C—ln»)
8x'~ o —ln(u'~'+ p„'(1—u) )j,

mhere C=0.577 ., and q is a cut-oG which ultimately
tends to zero. Now according to the 6rst of our identities
(55) we have

(60)

and we see therefore that this relation guarantees the
6niteness of Bm.

Thus theories of this type automatically lead to the
finiteness of the self-energy but this result has been
obtained at the cost of an unreasonable assumption.
In fact the use of (58) for the vacuum expectation value

condition (53) is the most appropriate one for the problem on
hand. It wouM seem most unlikely, however, that the indefinite-
ness can be avoided in such a way that the ultimate aim of
obtaining convergent self-energies can still be reached.

~ The conventions followed in the dednition of Aq, as well as
AI, and dk(') to be introduced below are those of J. Schwinger,
Phys. Rev. 75, 651 (1949), Kqs. {A.29), (A.21), and (A.37).

For k&0 one has strictly speaking to add to the right of (5'7)
terms involving second derivatives of h. As those terms can
effectively be transformed away (see P. T. Matthews, Phys. Rev.
?6, 1254 (1949)) we have not bothered writing them down here.

of functions of the A„&» implies that for all 6elds one
has chosen as vacuum de6nition

A„+&»~=0, (61)

where + is the vacuum state vector and A„+(»denotes
the positive frequency part of A „~~&.For even k, (f'z) 0),
this means that no annihilation of quanta of positive
energy is possible. For odd k, f&, is negative so that the
role of creation and annihilation is interchanged. Hence
for odd k (61) means that no creation of quanta of
negative energy is possible. This condition formally
ensures that the vacuum is a state of minimum energy.
However, a definition of the vacuum which forbids
creation processes is certainly completely unphysical
and, since the quanta obey Bose-statistics, a reinterpre-
tation by means of a filling-up of the negative energy
states is impossible. Alternative interpretations with
the help of an indefinite metric in Hilbert space are
equally unsuccessful (see Matthews" ). Theories of this
kind therefore are physically inconsistent.

The procedure here described for obtaining 6nite
self-energies is closely connected with the regularization
procedures developed by Pauli and Villars" and others.
As has been emphasized by these authors, the use of
"regulators" is a computational device which amounts
to making certain divergent expressions 6nite. An
essential step in this procedure is the introduction of
certain parameters, called c, and M; in the cited paper.
Between these, certain relations must be postulated to
achieve the desired convergence. On closer comparison
of the above results with the regulators one readily sees
that the c, and M; just correspond to our t, and p;.
Thus there are two differences between the regulator
procedure and the models of the present section.
First, the "auxiliary masses" M; formally introduced
in an advanced stage of the calculation, here correspond
to actual masses p; introduced from the outset and
linked with 6elds. Second, the regularization condition
Pc,=0 which has to be postulated in reference 16 is
equivalent to the identity (60) which here follows
automatically. Thus the formalism in this section may
be said to be a realization of the regulator type of
theory, but as we have just seen, it is not an acceptable
scheme.

Actually (60) is only one of the many identities which
are given by (55) (for suitably large S). In the present
case only the first of the relations (60) is needed for con-
vergence (which amounts to saying that the self-energy
is finite for any S&1), but in related problems further
similar relations come into play. Thus it is clear that
the formalism here developed is immediately adaptable
to the case where P in (2) is some meson field and p the
corresponding nucleon source. Also in this case one will
have identities closely analogous to (60). Now it is
well known that for all couplings involving derivatives
of the meson field potential (like the tensor coupling in
the vector theory) the self-energy of the nucleon in the
first non-vanishing order exhibits a quadratic and a



A. PAIS AN 0 G. E. UHLENBECK

logarithmic divergence. We leave it to the reader to
verify that in such a situation the first two identities of
the type (60) suffice to obtain convergence. "

where
~„o uo+. ~ir(o (62)

with complex u. According to (33) the eigenvalues for
the 4th mode are

nvo+Xao,

where, as in (29c), we put coo=vo+ino Accordi. ng to
(62) the dispersion law of the modes of the fields is of
an inherently complex nature so that no particle
attributes can be ascribed to these modes in the manner
used for real p.

When dealing with the problem of interaction we
must be prepared for a queer situation. For the inter-
action energy is according to (54a) linear in the A„
and hence, as far as the contribution from complex p,;
is concerned, linear in field amplitudes which according
to (62) are unbounded as a function of time. It is
therefore clear that a coupling like j„A„&',where A„&'

3' In this case p in (2) is proportional to a coupling constant of
the dimensions charge g length. This length should be considered
to be independent of the ft; occurring on the left-hand side of (2).

Added in Proof. See also %.Thirring, Phys. Rev. 77, 570 (1950).

3. Corlpfex u, U—nbounded Interactions

In the previous section we have seen how the occur-
rence of negative energy states for the uncoupled
system prohibits a logical physical interpretation of a
formalism based on (52) and (51) with real masses u;.
These negative energy states were encountered already
in the corresponding real frequency model of II-A-2.
In II-A-3 it was shown that for complex frequencies
such negative energies also occur. Now the latter model
will play the same role for the case of complex p as the
real frequency model did for real p, . It is therefore
clear that we will run into the same negative energy
trouble whether or not we admit complex conjugate
pairs of u„. to occur in (51). In certain respects the
situation gets even worse, however, when complex p, ;
are present. It is this qualitative difFerence between the
cases of real and of complex p; which we want to com-
ment on now.

Also if there are some pairs of complex conjugate p, ,
in (51) we can still write down the Lagrangian density
(52) and can again perform the decompositions leading
to (54a, b). Let us first consider the case of the absence
of interactions (o=0). The field quantization does not
difFer in any essential from that of more conventional
situations. By performing a spatial Fourier development
one can show by standard methods that the total
Hamiltonian referring to a pair of complex conjugated
p, ; is a linear superposition of pairs of complex conju-
gated oscillators of the type (31):

stands for the contribution to A„ofthe complex p;,
cannot be treated as a time dependent perturbation
notwithstanding the fact that it is proportional to a
small parameter, because the coupling is not periodic
in t. If the coupling had only exponentially decreasing
modes, one might try to use much the same methods
as are employed in problems of line-breadth and reso-
nance fluorescence. However the modes which increase
exponentially with time and which are of course the
real source of complication, make this impossible.

Rather than discuss in detail the field theoretical
applications we shall exemplify with the help of a simple
model what may happen under such circumstances.

Consider a pair of complex conjugated oscillators
(31) coupled to an ordinary oscillator in the following
manner:

1(P o+~oQ o)+ 1(P 2+~ooQ 2)

+o(Po+ooo Qo)+g(Q&+Qo)Qo, (63)

where all quantities with the subscript 0 refer to the
real oscillator; the coupling is proportional to a constant

g which we may take as small as we like. Hence it
must be possible to transform away the coupling in H
by means of a point-transformation in such a way that,
in terms of the new variables, H represents an uncoupled
system, again consisting of one real oscillator and a
pair of complex conjugated oscillators, where the real
as well as the complex frequencies have undergone a
small shift from their original values. By expressing Po
and Qo in the new variables one can calculate the
expectation value of the "old" real oscillator energy
for a given state of the new system. It is then readily
seen that part of this expectation value comes from the
diagonal elements of

Coilst. (Pl po +Ql Qo ) (64)

where the primed quantities are the new variables in
the sense just explained. Using the eigenfunctions (33a),
one easily shows that the diagonal elements of (64) are
infinite. "

Infinities of this type have, of course, nothing to do
with the divergences of present field theories which are
due to the infinite number of degrees of freedom of the
fields. They rather remind one of the pathological
runaway solutions in electron theory which are well
known to occur if we attribute to the electron an
infinite sink of mechanical energy.

Thus the introduction of complex p,; has brought us
farther from, rather than nearer to, an acceptable field
theoretical model. We will not pursue this line of attack
further.

3. MN/tip/e Eea/ Masses

From the results of II-A-4 we infer that again the
negative energy difBculty prevails. We also met in the

' All other contributions to the expectation value of the energy
of the old real oscillator are fInite and thus of no interest for the
argument.
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corresponding mechanical model with the feature of
unbounded motion, although the increase of the motion
with t is not so rapid as in the complex case. The
multiple masses thus will occupy a position somewhat
intermediate between the real and the complex case.
We have not investigated this category in any further
detail.

Recapitulating the results of the last three sections
we may state that any generalization of the electro-
magnetic or mesonic field equations of the kind (2)
where F is an arbitrary polynomial in may lead to
an elimination of divergences but only at the cost of
other unnatural features.

The constant factor F( «0) has b—een introduced for
reasons of convenience which will presently be clear.
De6ne now

+o=F(v,~.)A
4', = (1+y„8„/«0)g'(1+y„8„/««)P,j= 1, , A,

and the adjoint quantities accordingly. Now replace
by

ZEi'pi(&~~~+ «i)+i
0

(66)

The (, are to be determined from

(67)

Hence, putting y= —ff:0.

$0= 1,

while, after developing F '(y) in partial fractions, one
readily 6nds that

«O' F(—«0) j)0.
«P («, «p)F'( «,)— —

One also verifies that

p = L1/«OF (—«0) jap«««%'«.

(68b)

From (68a, b) it follows again that g«)0 for even k
and &0 for odd k. Here of course the occurrence of
negative f«does not lead to the negative energy

4. Multi-Mass Dirac Equations

The partial fraction method can also be applied to
equations of the type (10). Let us start from a
Lagrangian

P'( «0—)F(v.~—.) (v.~,+«0)A
with

complications of the previous sections, as we have now
to do with Fermions. Hence by interchanging the roles
of particle and antiparticle for the fields with odd k as
compared with the even ones one has obtained a
reasonable formulation for an assembly of X+1 fields
of the Fermi-Dirac type. The normalization of (65)
with a factor F( «&) —led to to ——1 and we can therefore
directly identify the term of (66) with j=0 with the
Lagrangian for free electrons (mass «,).

The quantization can now be performed by putting'"

I 4 „(x),4'i(x') I
=i ( 1)—"+'$,—'b„iS«(x—x')

where the index k on 5 indicates that this quantity
refers to the mass ««. A factor (—1)" has to be intro-
duced to obtain positive probabilities for such quantities
as the number of particles in a given volume. The
main formula for computing vacuum expectation values
becomes

where the factor (—1)«expresses the effect of the
interchange of particles and antiparticles for odd k on
the de6nition of the vacuum.

In introducing the electromagnetic interaction one
will first of all try to replace 8„in (65) by

D„=B„—i&A„

and add the Lagrangian Z, ~ of the electromagnetic
6eld. We express this by

Next one may also in the de6nition of OI, replace B„by
D„sothat the matter fields would depend implicitly
on A„.It is not difFicult to see, however that then

i=i (a„~D„)+z„ (70)

is not equivalent to Z because it leads to difI'erent
electromagnetic 6eld equations than does Z. Therefore
the decomposition method (which in the case of multi-
mass equations of the Bose-Einstein type also works
when an interaction is present) here breaks down. This
arises from the fact that according to (69) the coupling
would no longer be linear in A„.It is an open question
whether a theory based on (69) leads to an improved
situation with regard to such questions as the vacuum
polarization.

Alternatively, one might try to use (70) itself as a
starting point for the description of a system of spin
~-fields coupled with the electromagnetic field, i.e., one
might, so to say, forget the way (66) was obtained
from (65). There is no objection to this, but no ad-
vantage either. For it is readily seen that in the compu-
tation of the charge renormalization the g«drop out
entirely; therefore the vacuum polarization is essentially
unaffected.

'6%'e define $(x) and $")(x) in the same way as J. Schwinger,
see esp. Phys. Rev. 74, 1439 (1948), Eq. (2.29) and Phys. Rev.
75, 651 (1949), Eq. (1.68).
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From the remarks made at the beginning of II-B-1,
it follows that the problem is separable up to the stage
at which one has to deal with

gf(o)( —g2)|i,——p (71)

In view of applications to electromagnetic phenomena
we put a=0; none of the essential. new features we shall
meet presently are affected by this specialization.

Equations of type (71) go so far beyond the partial
differential equations usually encountered in field
theory that it seems necessary to investigate first
whether the basic mathematical problems and results
pertaining to differential equations of the wave equation
(hyperbolic) type have their counterpart in the present
case. It may therefore be well to recapitulate briefiy
what the two fundamental problems and the two
principal results are for the ordinary wave equation

(72)

(u) The initial value or Cagchy problem Asolu-. —
tion of the homogeneous wave equation is sought
when rP and its normal derivative are given on
some space-like surface.
(p) The source problem Aso.l—ution of the in-
homogeneous equation is asked for, such that P
and +/Bt are zero at i= —~. These initial
conditions correspond to the requirement that the
source p exerts a retarded action.

It is well known that (a) and (P) have a unique solution
and that they are intimately related to each other.
This relation can, in the language of present day 6eld
theory, be stated in terms of the connection between
the D- and the D-function"

D(x) = —-,'sign(t) D(x)

with sign(i) =~ 1 for t~~0 The solutio. n of (a) is:

(73)

8
P(x) = I do D(x—x')——f(x')—D(x—x'), (74)

Bn Bn

where 8/Bn denotes di8erentiation normal to the
surface on which the initial values are specihed and
over which the integral (74) is extended. The solution
of (p) is

y(x) = "d4*D„,(x *')o(x')—
"See e.g., J. Schwinger, Phys. Rev. 75, 651 (1949), Eq. {A.1).

The explicit representations for D and 8 given in reference 33,
Eq. (A.29} (with ao=o} and (A.23},are also used here.

B. Field Equations of the Exponenttal Type

/. Introductory Remarks

%e now turn to a discussion of the main features of
equations of the type

e'"'IICI —~*')0 = —u.

Here D„t,is the Green function for the retarded type
of solution. It is given by

1 p p expLi(kx —s&t)j
jI dkjl ~

(2x) 4 k' —s)'

1
b(t —r), (r=

~ x() (76)
4n-r

with the specification that in the complex u-plane one
shall integrate over a path parallel to and above the
real axis. By integrating below the real axis one gets
the Green function D~ for the advanced solution.
%e have

D(x) =-', (D...+D~ );
all three functions in (77) satisfy

D = —b(x).

(77)

(78)

D(x„)=0,
D(xF) =0 (79)

i.e.; both D and D vanish outside the light cone.
The suitable generalization of the problems (n) and

(p) to linear partial equations of higher order and with
constant coefficients and the characteristic features of
their solutions have been extensively treated in the
mathematical literature. %e mention especially the
work by Herglotz" and a recent investigation by
Girding. 39 It seemed worth while to us to present a
short account of some of Gardings results, since from
these it follows that for all equations studied in III-A
we have the same kind of relations between the initial
value problem and the source problem as for (72), while
moreover all these equations have propagation char-
acter. In subsection 3 we will see that for equations of
the exponential type (71) the situation is radically
diGerent.

' G. Herglotz, ger. Sachs. Akad. Kiss, Math. -Phys. Klasse
78, 41, 287 (1926);80, 69 (1928).

'9 L. GA,rding, "Linear partial hyperbolic differential equations
with constant coefBcients, " Acta Math. (to be published). See
also Comptes Rendus 228, 731 {1949}.It is a pleasure to thank
Dr. Garchng for making available to us a copy of his manuscript
and for many instructive discussions on these topics.

After this connection between (a) and (P) a second
fundamental aspect may be recalled; vis. , that for both
problems the solutions do not depend on a/l initial
values or values of the source but only on the values
in a Pnite domain of dePendence LIn f.act for (P) this
domain is the past light cone, and for (u) the part of
the space-like surface bounded by that cone.] This is
the mathematical expression for the propagation char-
acter of hyperbolic equations. For the wave equation
(72) the propagation character is physically obvious
and can also be stated as
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Z. On the Propctgcttiort Clcctrocter of Eqgcttiorcs

of Fircite Order

Girding considers polynomials q($r, , $ ) in rc

variables $, and with complex coefficients and associates
with them partial diBerential equations of the form

q(d/»t) ' ' ', d/». )0 = —p (80)

The 6rst question is whether it is possible to determine
solely from the structure of the polynomial the main
characteristics of the solutions of (80). Especially one
would like to know for what polynomials the equation
is of hyperbolic character. Here it should be pointed
out that an equation is of hyperbolic type only with
respect to certain directions in the space $c,
That is to say, only for surfaces perpendicular to these
directions are the problems (cr) and (8) correctly set
and only with respect to these directions do the solutions
have propagation character. " Thus for the wave
equation these directions are the time-like vectors and
correspondingly the surfaces on which initial conditions
are speci6ed are space-like surfaces.

More precisely, one has therefore to 6nd a criterion
for a polynomial q($c, , P„)to be hyperbolic with
respect to a fixed direction (gr, , $ ). Girding's
criterion is: Put q= p+r, where p is the principal part
of q, i.e., the homogeneous part of q of highest degree.
Then if for a direction $; we have

P(h) &0, q(rh+iv') &0, (81)

for all v which are larger than a real number ro and for
any real vector rt, , then the polynomial q($;) is said to
be hyperbolic with respect to $;. Gkrdings main theorem
is: a necessary and sufhcient condition for the solutions
of (80) to have propagation character with respect, to
$, is that q($~) is hyperbolic with respect to $,.4'

"The other main property mentioned above, vis. , the existence
of a relation between the solutions of (a) and (P), is well known

C
see e.g., Courant-Hilbert, Mdhoden der muthematischen I'hysik

{Dover Publications, New York), Vol. II, p. j.65j and is of a
much more elementary nature. Suppose {80}to be of m, th order
in 8/Bt where the t axis is the hyperbolic direction. Con-
sider then the initial value problem pe=0 with initial con-
ditions that for t= —~ all y and all its time derivatives,
up to the (ns —2)nd one are zero, while 8~ 'q/at I=p(z, x)
where s has to be considered as a parameter. Let the solution be
y(t, x; s). Then the solution of the source problem for (80) is
p{t, x) =J~'y{t—s, x; s}ds.

4'This is stated very loosely. More explicitly we mean by
propagation character of (80) in the direction $; the fact that for
planes perpendicular to this direction one can suitably generalize
the problems (a.) and (P) and that the solutions have again a

-finite domain of dependence. Garding defines propagation char-
acter still more rigorously as follows: Take a sequence pq(g1. ~ x„)
of solutions of (80) which is such that for k ~, Pq(x;) tends

strongly to zero in a plane $czc+ .+f~z~=0 (By "strong. ly"
is meant that P& as well as all its derivatives tend uniformly to
zero on every finite domain in the plane). If from the fact that
P~ tends strongly to zero in this plane it follows that Pp tends
strongly to zero everywhere, then (80) is said to have propagation
character with respect to $;. It is intuitively clear that if the
solution of (80} has a finite domain of dependence the above-
mentioned limit property is true. The converse is not so obvious
and is shown by Girding by explicitly constructing the domain
of dependence, to which question we will return presently.

for real a. If rr is complex the time axis is again a
hyperbolic direction, but for ~0 we now have to take

re= I-'((cr'+P')i —cr) I
& cc'=cr+iP

The signilcance of 7-0 will become clear presently when
we will deal with the source problem (see reference 43).

It may be remarked finally that also the polynomial
to which we can adjoin

is a hyperbolic polynomial for real or complex, single
or multiple occurring cc;. This is true because (for
suitably chosen rs) each factor of the product is
hyperbolic with respect to the time-axis.

Consider now the source problem for (80). It is clear
that a solution in terms of Fourier integrals can be
given in the form

1 p t dicta
P(t, x) =

I
~ expLi(kx cdt)7—

(2z)' ~ q( —ice, ik)

X dt'dx'p(t', x') exp) —i(kx' —cot')7 (83)

I dt'dx'p(t', x')E(t—t', x—x'), (84)

&(t, x)=
~

~' exp[i(kx —cot)7,
(2z)4~ ~ q(—ice, ik)

where in view of the physical applications, we consider
from now on polynomials q in the four variables~ x, t,
which are hyperbolic with respect to the time direction,
i.e. g;= (0, 0, 0, 1). It is also well known how to take
care of the retarded action of the source by taking the
path of the co-integration above the real axis in the
co-plane such that all the zeros of q(—ice, ik), the latter
considered as a polynomial in co, lie below this path.
This recipe can also be expressed otherwise; ei2. , by

~We have followed the customary physical convention of
taking opposite signs in the Fourier development in x and t.
This is contrary to what is done in reference 39, and as a result
certain differences in sign between our account and Garding's
paper appear.

Ke have also with the usual lack of qualms interchanged
orders of integration in going from (83) to (84). X(t, x) js 'the
solution corresponding to a source b(x) =B(t}.b(x). The careful
justification of the result (84}is dealt with extensively in reference
39.

It is easy to apply (81) to the wave equation (72).
In fact (72) can be considered as the equation adjoined
to the polynomial

$1 +42 +$3 $4 ~

taking $,=(0, 0, 0, 1); i.e., the direction of the time
axis, one verifies (81) with r,=0. The same is true for
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where r is an arbitrary quantity larger than some 6xed
real number 70 and where we now integrate along the
real oo-axis. oo Since K(f, x) is independent of the value
of r, one sees from this form immediately that K(f, x) =0
if (&0 by letting w~~.

The essential step in the derivation by Girding of
the domain of dependence lies in a generalization of the
form (85«) to

1
K(f, x) = dk

(2or)'~

exp[(r fr+ ik)x+ (rgo
—iro) t]

X (85«)
q(rgo is), r(—+ik)

where again r&70 and where moreover a four-vector
($o, fr) has been introduced which satisfies the require-
ment that the zeros of q sHl/ lie below the real co-axis
and all paths of integration are now taken along the
real axis. From Cauchy's theorem it is then clear that
(85s) is equivalent to (85o) and that therefore the
integral in (85s) is independent of the vector $, and of
the magnitude of v.. By letting again 7~~ one now
sees that in all points t, x for which

(of+ gx& 0 (86)

we shaH have K(t, x) =0. To find therefore the doma, in
of dependence of the solution of (80) one only has to
determine the set of directions $; which satisfy the
condition stated above. For the equation ( —x')lk= p
one readily 6nds, whether x is real or complex, that
the $;-domain is

$o& o, ko' —P& 0,

i.e., the inner part of the future light cone. Then it
follows from (86) that the domain of dependence is

t~&0, P—x'&&0.

Clearly the same is true for a product of factors ([]—«,s)

so that we may state: The equation F~)P= p, where
Ii is an arbitrary polynomial with complex coefficients,
is a hyperbolic equation with respect to the time
direction. Its domain of dependence is the past light
cone and its interior.

Girding has succeeded in expressing these results in a much more
general way. He associates with the polynomial q which is hyper-
bolic with regard to the direction $; a cone F($;) generated by the
direction $;. p($) is defined as follows. Consider the principal

"Clearly, the meaning of this transformation is that since the
number of zeros of q is finite we can push them all below the real
ou-axis by adding an imaginary part to co, the quantity v0 which
we have encountered in Eq. (81) and in the examples discussed
above is simply the imaginary part of that root of g(-ice, ih) =0
which lies highest above the real co-axis.

putting

1 t» {
" exp[ikx+ (r i—oo)I]

K(t, x) = ~ dk ' d(o, (85«)
(2or)4& &

„ q(r-ito, ik)

part p of q and put

p( $+k) =p(f)II( +«'($, $)) (87)
i

For real $, the roots «;($, $) can be shown to be real if q is hyper-
bolic. From the homogeneity of p one easily sees that

«, ($, o$) =a«;(6 5); «(o$, h) = (It o)«'(P. , 5) (88)

«;($, $) = 1. (89)

The cone I'($) is defined by the assembly of all directions $ for
which the smallest of the roots I; is still &0. From (88) it follows
that we really have to do with a cone determined by the direction
of ( only, while from {89)and the continuity of «;($, $) one infers
that such a cone must exist and that the direction $ belongs to it.
The importance of the cone F{$) lies in its following two main
properties: (1) If q is hyperbolic with respect to $ then it is also
hyperbolic with respect to any direction $ in I'{$); and any
direction in F($) generates the same cone. (2) The cone I'($)
contains all vectors for which (858) is identical with (85~) and
therefore according to (86), I'($) determines the domain of
dependence.

3. Remarks on the Propagation Problem for Equations
of Infinite Order

Little is known about equations of the type (71).
However, it can readily be seen that there are essential
differences from the hyperbolic differential equations
discussed above.

In the first place it is clear that in the homogeneous
equation the exponential factor does not play any role
so that the initial value problem is the same as for f=0.
Thus with regard to the Cauchy problem the equation
has propagation character. Another way of expressing
this is to say that the D-function in (74) and (79) is
unaffected by the introduction of an exponential.

Just as for the exponential case in the mechanical
problems (see II-B-3) the situation is quite different
for the inhomogeneous problem. The solution of

et (o)[]1k—
p (90)

can still be written down in a form analogous to (83):

p dkCko

lk(t, x) = ' exp[ —f(too —k')+i(kx —oof)]
(2or)4~ & k' —ro'

X
~

dt'dx'p(t', x') exp[ —i(kx' —rot')] (91)

where one would be inclined, as in subsection 2, to
perform the co-integration along a path parallel to
and above the real axis. However, the- argument that
this choice will give a retarded action breaks down since
one clearly may never close the path by a big half
circle, so that one cannot conclude that /=0 for f(0

Nevertheless it is of interest to discuss the formal
solution (91) for this choice of path. For the case that
f( ) is a polynomial one still must make an important
distinction, vis. , that between odd and even functions

f This will be clea. r enough from the two cases we will

now discuss separately:

(a) fCl) = —~', (b) f([])=)tel'
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where X is a quantity with the dimensions of a length.
The signs have been chosen such that for the static
point source problem, (90) always gives a P finite at
the origin.

Case a.—If p is the b-function b(t)5(x), the oo-integral

is divergent so that the analog to D„t(x)does not exist.
This does not mean that (91) ahvays leads to a divergent

P, but it implies a severe restriction on the admissible
source functions p. This can also be illustrated as fol-
lows. For the case considered (90) becomes

Now divide the (k, oo)-domain in two regions and make
the following substitutions:

k')u'. k=8 cosh', ~=R sinhp. , —00 &E&+~
k'&co'. k=R sinhp, a&=R cosh'; —oo &oo&+ oo.

One then obtains after some calculation

~to

I= ———
~~ dR exp( —)i4R4) di1

4m p» „R 4p

exp( —)i' ) ~(t, x, )i') = —p(t, x), (92)
X{sinh8 sin(p'R sinh6) —cosh' sin(p1R cosh@) }

where the dependence of f on the parameter X has been
written down explicitly. Hence differentiating with
respect to X' and omitting the plane wave solutions for

P which do not interest us at the moment, we get

1 ot
I

dR
exp( —li4R4) ~' dpi

Bp" o

X {cos(p&R sinhi1) —cos(p&R coshot) },

%/~() ') —M= o. (93) or finally"

—(1/Sxr) {b(t+r) —b(t —r) }. (94)

The principal value integral I becomes, after some
angular in tegrations,

1 1 t" t" exp[ —lj,4(k' —oP)']
I= --~ kdk P ( de

16' 3 k' —aP

X [exp[o(kr —cot)j—exp[ —t'(kr+oot) jj.

Equation (93) has to be solved with the initial value

P(t, x, 0) satisfying the ordinary wave equation

P(t, x, 0) = p(t, x). —

Equation (93) is of the heat conduction type in the
variables X-' and x but with respect to X' and t it is the
a,nalog of the equation of heat conduction toward
negative time. Now it is well known that for the
ordinary heat conduction equation

itu/Bt = 8'u/Bx'

the solution is an analytic function of x for any t&0,
whatever function the given initial value u(x, 0) is.
Clearly therefore, in order to get a solution for an
equation of the type

au/Bt = 8'u/Bx', -
one can only allow initial values which are analytic
functions of x, and even this may not be enough.

Case b.—Here (91) exists even for a b-function source.
To evaluate it further one conveniently cuts up the
path of the io-integration into: (1) two small half-circles
over the poles ro= &

~ k~, (2) a principal-value integral
along the real a,xis; One easily sees that, as in the case
'A=O, the contribution of the half-circles is

—exp( —l 'y'p ') Ro(y)+-I'o(y)
vr' Bp~p y 2

One proceeds likewise in the other parts of the r, t-plane.
Adding the contribution (94), the final result for iP is:

1
[b(t+r) —b(t —r)3+o.(p)

Sxr

8 f
ooi, (p) =——sign(p) ~

—exp( —Vy'p —')
Bp Jp y

X Ro(y)+ —&o(y) (97)
2

For X=O, q can be written as~

1 (8 ) "dy x
4 o(p) =

{
—»gn(p—) }

' R'o(y)+-I'o(y)
x'Eap i o yi 2

2
I dy I' dQ

b(p)
~

—,——sinu sin-"y"- 4-

1 f dQ f t& 8 1=—b(p) ~'
—sinu —sin —=—b(p).

~p Q ~p V Q 4Ã'

Therefore, remembering the definition (95) of p, we
have verified that for X=O, P becomes the function
D„oof (76).

For X&0, q», (p) is zero for p=O and has two peaks
symmetrically around p=0 at a distance X', with
height X ' and width 'A'. For decreasing ) the peaks
will move nearer together and become higher, but will
remain separated by the zero value of p at the origin,

To evaluate this further, one has to distinguish several
cases. Consider 6rst t&0, P&r2 and put

t= p~ cosha, r= p~ sing, p=t2 —r2.

"EO and FO are dehned as in Watson, Theory of Bessel Functions
(1944), second edition, Eq. (4), p. 78, and Eq. (2), p. 64, respec-
tively; see also Eq. (14), p. 183, Eq. (13), p. 180, and Eq. (3),

('N) p. 184.
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or

4=v«(p)+-
4n2 r2—P'

lp= D«(x)+ —'iD'"(x)

where D&"(x) is the same function as occurs in the
customary formulation of quantum electrodynamics. 4'

Mathematically speaking, the reason that D'" comes
out unchanged is that it is a contribution from the
poles at co=&

~
lr

~
and is not a6'ected by the behavior

of f at the point at in6nity in the ao-plane.

"See reference 37, Eq. (A.40).

however small X may be. Therefore the ~i~it at which
the two peaks coalesce to the b-function is reached in a
highly non-uniform manner.

Thus according to (96) the P corresponding to a pulse
(8-source) at the time t=0 is for t&0 not strictly zero
outside the sphere r= f, although for p& X the excitation
function P drops rapidly to zero. Moreover it follows
from (96) that for times prior to the occurrence of the
pulse there is already an excitation. For all these
reasons the notion of propagation therefore now loses
its meaning.

If, however, we average f over a region of the order
X around the light cone this average value is vanishingly
small for t&0, while for 1&0 one approaches rapidly
the same value D„tfor P as in the conventional theory.
In this sense we can therefore say that the equation

exp(74 ') CV= —o (9g)

exhibits a propagation character in the mean
From the examples discussed it is clear that for the

exponential type of Eqs. (90)—or, for that matter, for
Eq. (71)—the propagation character in the sense dis-
cussed in subsection 2 does not seem to exist. On our
request Dr. Girding has kindly investigated this prob-
lem along the lines mentioned in reference 41 and has
given a mathematically rigorous proof of the non-
existence of the propagation character for the Eqs. (71).

For the purposes of the next section we note that it
is still possible to de6ne a function D« for Eq. (98) in
much the way that was done in (77) for X=O. One can,
in fact, determine the solution of the equation

exp(X4 ') ~=—b(x) (99)

which corresponds to the advanced solution for P =0
by integrating below instead of above the poles on the
real co-axis. De6ning then D«(x) as half the sum of this
solution and of (96), one obtains

(100)

Finally one can integrate (99) below the pole at
a&= —

~
lr~ and above the pole a&=+

~ ir ~. This mode of
integration has been used extensively by Feynman in
his version of quantum electrodynamics. For this
integration the result is

4. On Exponential 3fodifications of Quantum,
E/ectrodynam~cs

In this section we shall discuss some of the novel
features which arise if we modify the electromagnetic
field equations in the manner indicated by Eq. (90),
so that we start from a Lagrangian density

1 BA„BA„
e«~' j„A„—tP(y„—8„+«)P, (102)

2 8Ãp 8$p

where all quantities are de6ned as in Eq. (52). We will

again impose the supplementary condition (53) on A„.
As 2 exhibits all conventional invariance properties it
is clear that an energy-momentum tensor density must
exist which satisfies the usual conservation laws. (The
most suitable way to 6nd this tensor is by means of an
elegant method recently developed by Green. ")

We consider first the case in which there is no
interaction. It follows directly from the results in
subsection 3 on the initial value problem that classically
the situation is unchanged; i.e., it is the same as for
f=O This is .true also quantum mechanically.

First of all we can make a spatial Fourier decompo-
sition of the electromagnetic 6eld quantities, as a result
of which the electromagnetic held Lagrangian becomes
a superposition of harmonic oscillator Lagrangians
each modified by an extra exponential factor
exp'( —D' —&o') j, where cu is the frequency of the wave
considered and D again stands for d/dt From t.he
argument given in II-B-3 it then follows that the result
of quantizing each Fourier component is in all respects
identical with that of an oscillator without exponential
factor. Hence it follows also that the commutation
relations between two 6eld quantities taken at the
same time but at diferent points in space remain
unchanged. But, as according to subsection 3 the
propagation character for the homogeneous problem is
unaffected by the presence of exponentials, the commu-
tation relations are also unchanged if we take the Geld
variables at diferent times, so that we may state that

t A„(x),A, (x')]=id„„D(xx'), —

where D is the D-function of ordinary quantum
electrodynamics.

As further consequences of the absence of any
inQuence of the exponential on problems in which no
interactions are involved, we mention that Planck's
radiation law is unaGected and also that the vacuum
expectation value of any function of the A„remains
unchanged. In particular,

(IA„(x),A.(x') J),= h„„D"&(x—x')

in which the conventional D&')-function occurs. This is
in harmony with the result quoted in Eq. (101) where
in other context we met an unmodi6ed D&0.

4' H. S. Green, Proc. Roy. Soc. 197, 73 (1949), Section 4.
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Turning now to problems of interaction, a remark on
the classical theory is in order. Calling y the modified
Coulomb potential, it is seen from (102) that for a
point electron at rest

t."dk
y(r) =

~

—sinkr expt f(—k') j.
2g2r" 0 k

Kallen and by Yang and Feldman. 4' Their idea is to stay
in the Heisenberg representation throughout the calcu-
lations and in this representation to solve by iteration
the equations describing the behavior of sources and
Gelds.

We consider 6rst the electron self-energy integral
which in the notation of Schwinger is given by"

For both cases u and b discussed in subsection 3, the
k-integral is convergent and y is Gnite for r=0. There-
fore the classical self-energy of a point charge is 6nite,
and this is true in any Lorentz frame of reference. For
f= —'A' this has been discussed by Born."Thus for
such static and quasi-static effects there is no essential
difference between the cases u and 5 On the other hand,
the truly dynamical features have been shown there
to be quite different, and for the reasons given in
that section we will from now on con6ne our atten-
tion to the case of even functions f and will choose
again especially f=X'

For this case we have given in subsection 3 the
formal solution of the pulse problem, i.e., the excitation
which is generated by a 8-function source acting at
t=0, x=0 has been computed. It was found that such
pulses act in such a peculiar way, ms, , "before
they start", and giving an excitation which partly
moves with velocities greater than that of light, that it
is out of the question to consider without further ado
the application to actual physical situations. In partic-
ular the integrability conditions of the Tomonaga-
Schwinger theory which express the unambiguous
causal development with time of the state vector of a
system can no longer be expected to be satisGed.

Qn the other hand, me have been stimulated by the
reasonable behavior in an average sense explained in
the previous section to make some conjectures as to the
possible use of such exponential equations in a situation
where one no longer insists on the unlimited localiza-

bility of space-time events. The tentative and incom-

plete nature of the remarks made hereafter need, of
course, hardly be stressed.

First of all, it is clear that the effect of the modi6ca-
tions may be quite different for virtual as compared to
real processes. In the latter case the lack of propagation
character is such a drastic change of our fundamental
physical notions that one can only hope to obtain an
interpretable scheme by renouncing a strictly causal
description. This mill be the subject of further investi-
gation.

On the other hand, one may expect that the effect on
virtual processes will simply be the replacement of the
ordinary D- and 6-functions by the corresponding
exponential modifications of these propagation func-
tions, while the a&0- and 6&'&-functions remain un-
changed. In fact, this procedure can be justified by
means of the 5-matrix methods recently developed by

d4$ & L~'"(k)D(k)
J

+8(k)D"'(()7y. exp( ~PA.)

In keeping with the foregoing, one will retain the
D&'&-function but must now xeplace D by Dq given by
(97) and (100). This would make the 6rst term in the
square brackets finite, but mould not alter the second
which still diverges. Thus, exponential modiGcations of
the electromagnetic field do not yield a 6nite self-energy
in contrast to the polynomial modi6cations studied in
previous sections. This is essentially because the expo-
nentials do not affect the vacuum fluctuations, whereas
in the polynomial case new Quctuations occur due to
the presence of new types of quanta.

It would seem plausible, however, that once one gives
up the localizability of the electromagnetic Geld quan-
tities, the same should. be done with the electron 6eld.
Thus, one will keep again the expression for 2&o but
may let 6 satisfy

exp@,4(P—a ) j (P—a )g(g) = —8(~), (103)

where the exponent has been so chosen that according
to a similar argument as given above the free electron
states are unaffected. This implies a modification of
the last term of (102) by the exponential factor
exp''~ —~')'. Thus, the matter equations now are

exp@.'( —~')'] (y„8„+~)&=icy„A„&(104.)

Doing this, one obtains an absolutely convergent
integral for bm which can be readily seen to be

1 2—(1+y')&
$2dp

-(1+y')' —1+(1+y')'

2+(1+y')'
XexpL —4X z (1—(1+y )&) )—

1+(1+y')&

2
XexpL —Q,'~'(1+ (1+y')&)'g +—exp( —4X'~Q) .

Once the Q-function has been modified according to
(103) the question arises as to how this will affect the

47 G. Kallhn, "Mass and charge renormalizations in quantum
electrodynamics without use of the interaction representation
Arkiv. f. Mat. Astr. o. Fys. (to be published); C. N. Yang and
D. Feldman (to be published). Ke are indebted to Professor
Pauli for making Dr. Kal16n's manuscript available to us as well
as for instructive discussions on this point."See reference 37, Eq. (3.78).
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vacuum polarization. The integral representing the
current B(is+„f)induced by an external field A„'is,
according to Schwinger, 4'

b(ieger„g) =—4e', d4x'E„„(x—x')A. '(x'), (105)

BB Bh("
E„.(x) = +-

BXfs BXP BXP BXg

t'BE Bh"&
+~'Zh'" (.

(Bxg Bxg

%'e note the following main properties of y.'First it is
=1 when integrated over a space-time domain X4

around the origin and in this sense behaves approxi-
mately like a 8-function. Second it vanishes very
strongly for k= 0, x=0. In fact, the product of x(x) and
the derivative of h~'& occurring in (106) is zero at this

point, notwithstanding the singular behavior of 6(" for
p=0. Thus one can give an unambiguous meaning to
the right-hand side of (106), in contradistinction to the
case that X=O. As x(x) is an even function of its
argument while Bh&'&/Bx„ is odd, it follows that the
average of (106) over a small space-time domain around
the origin vanishes. In this sense we can speak of a
conservation of the induced charge in the mean.

"See reference 37, Kq. (2.20).

If instead of the ordinary G,-function one again employs
the expression following from (103) it is not surprising
that the charge renormalization will be finite. The more

interesting question is what will now happen with gauge
invariance and charge conservation. The decisive quan-

tity here is the divergence of E„„for which one has

BE /Bx =(Bh~'&/Bx) ( —~')Z

= —(Bh'"/Bx ) exp[ —X'( —K')']B(x) (106)

This is not equal to zero as one would like it to be.
Nor could this be expected since (104) is not gauge
invariant. This of course makes it questionable to call

ieger„P a current and the quantity (105) an induced
current. It can be asked, however, whether (106)
could be zero "in the mean"; i.e., in some way similar

to the manner in which we obtained an average propa-
gation of an electromagnetic excitation with light
velocity. For this purpose we study

X(x)=exp[ —X'( —~')']b(x).

By the same methods used to derive Eq. (97) one finds

1 B 1 &" (y
x(x) =——.— ydy exp —

M~
—+»'

~
Eo(y)

x'Bp p~o 5 p

(y2 i 2

+exp —X'( —~'
~

-Fo(y) .
E p ) 2

The preceding remarks would seem to indicate that
the assumption of non-localizability should be made for
all kinds of fields once it is made for one kind, and that
"macroscopic" conservation laws may perhaps have to
be considered as valid only in some average sense.

IV. OUTLOOK

From the investigations described in this paper we
have seen that it is very dificult, if it is at all feasible,
to reconcile the three requirements of convergence,
positive-definiteness and strict causality in dealing with
field equations which are partial differential equations
of high order or are integral equations. It may be asked
whether the restriction to integral functions made in
this paper has been unduly narrow and whether more
general functions might be better suited for the purposes
outlined in the introduction. We have not made a
systematic exploration of such possibilities. A further
study may be of interest, but it seems to us that the
main physical consequences of the use of finite distance
operators have been laid bare by the present investi-
gation. However one point which we still wish to
mention is that by using meromorphic functions or
rational fractions for F in (2) it is possible to obtain
multi-mass equations without having negative-energy
troubles. From Eq. (47) the reader will in fact verify
that if between each two zeros of F there lies a simple
pole, one gets an assembly of fields with quanta of
various masses and all with positive-definite energy.
On the other hand, the introduction of fractions leads
again to loss of convergence. "

The multi-mass equations studied in this paper are,
generally speaking, connected with the idea of compen-
sation (see Introduction). As we have seen, the various
fields whose contribution to the self-energy etc. tend
to balance each other are all of the same relativistic
transformation type. Other compensation schemes (see
reference 6), are not covered by the present work. On
the whole it seems however that all attempts made so
far to achieve convergence by compensation are inade-
quate. This is in our opinion not so much a criticism of
the underlying idea as well an indication that one should
look for still more intimate connections between fields
of various types.

All in all, it seems to us that the most hopeful
approach which the present investigation possibly indi-
cates is one, where, as for example in the case of the
exponentials studied here, the possibility of an ordering
of space-time events is no longer a strict requirement.
But it should again be emphasized that here we have

"To quote an example: consider

Q & tanX Q & Af, =—F(Q}A„=—Xj„.
For )~ (or for low frequencies in the Fourier development)
F(Q)—XQ. F has zeros ~„~,where ft„=no-X ', n=o, 1, 2,
are quantum rest masses. Also P has singularities at Q=a.„2,
a (e—$)7' . Thus, all quanta have positive definite energies.
Convergence is lost as is already clear from the singular nature
of the modified Coulomb potential which is (err) ' cothxr/2X and
is ~r~ for r~.
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come to the limits of the foundations of our present
picture of the physical world. An attempt at loosening

up these foundations by relinquishing the "causality
in the small" might throw more light on the situation.
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of the authors (G.E.U.) at the Institute for Advanced
Study. He wishes to express his appreciation for this
stimulating experience and for the hospitality shown to
him. He is also indebted to the Institute for having
supported his research in part by a grant of AEC funds.
Both authors also wish to thank the staB of the Brook-
haven National Laboratory for working facilities pro-
vided them last summer.

APPENDIX

Some Further Comments on Multiple Frequencies

We wish to indicate here briefly the treatment of a mixture of
single and multiple frequencies, and that of frequencies with
multiplicity higher than two. For this purpose we consider first
the situation in which three distinct real frequencies are present:

L= —q II (D'+a) 2)q, (A1)
i 0

2

=&~&Ql(D'+~0) Ql'
0

Q; =II'(D'+cog) q,

go= I(a)P —a)02)(co22 —ao02) I ',
pl= f (a)22 —arP)(o)P —ouo') I ',
q2 = I (O)2' —auP) (CO2' —eO0') I '.

(A2)

From this we get the case of one single plus one double root by
p~tti~g ~2=~l+~, QI=Q2+eQ3 and going to the limit e 0 in the
same way as described in II-A-4. Obviously the Qo-dependent

part of (A2) remains unaffected apart from y~(cop —zoo') '. The
generalization to the case of more than one simple frequency plus
multiple frequencies is obvious. We can also get from (A2) the
case of a triple frequency by putting

I =&0+f1, (42=600+42)
Qo=R0+(~I+~2)RI+y(~l+~ )'R )

Ql =Ro+ e2RI+ ge22R2,

Q2=R0+6IKI+yfl R2.

(A3)

1
Po~coo& Po- Pl

coo{2coo)&

1
Pl H Pl+ R2,

(2~0)&

P2 ~o P2+
1

(2~0) &

H becomes

1
Ro —Ro

~o~

1 1Kl~— Rl+ Ro
coo(2auo) ~

1
R2= R2

cvo~

1 1Ii=oro(PoR2 —P2Ro)+—(Ro'+R2')+-(PP+coo Rl ).
2

Comparison with (37) shows that a triple frequency is equivalent
to a double one plus a single oscillator with the same frequency
which of course introduces a new degeneracy.

The generalization of relations like (A3) to the case of n-fold
multiplicity is straightforward. We have not investigated this
further but conjecture that a 2n-fold root is equivalent to a
degenerate system of n double roots and that a (2n+1)-fold root
is equivalent to a 2n-fold root degenerate with a single oscillator.

The transformed L then becomes (after multiplication with a
trivial constant factor —4o02)

~ ~L=R0R2 —~02RoR2 —Ro +RP —mo RP+4ooRoRI,

which can be shown to give the same equations of motion in
terms of q as {A1) does. The Hamiltonian is

II=P0P2+~o RoR2+ gPP+uo RP+Ro —~oRoRI.

Performing the contact transformation


