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Polarization of Neutrons and Protons by Scattering*
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(Received January 23, 1950)

Neutrons and protons can be polarized by scattering provided there is a spin-orbit interaction between the
incident particle and the scattering nucleus. The polarization effect has been found for a nucleus of spin
zero allowing for the possibility of resonance scattering. Particular attention has been paid to the resonance
scattering of neutrons by He4 where almost full polarizations can be obtained, together with large cross
sections. The polarization can be detected by a double scattering experiment, since the second scattering
will be axially asymmetric with respect to the direction of the 6rst scattered neutron. The existence of this
effect and a preliminary treatment of it was 6rst pointed out by Schwinger.

The scattering of polarized neutrons by protons has been studied for potentials suggested by the sym-
metrical, charged and neutral meson theories. The polarization eBect on the differential cross section is neg-
ligible for the symmetrical theory, but is signi6cant for the other two.

L INTRODUCTION

HE scattering of neutrons by He4 has been studied
by various investigators' who have shown that

there is an anomaly in the scattering in the region
of 1 Mev (incident neutron energy). This anomaly has
been attributed to the existence of a P-resonance asso-
ciated with the formation of an unstable He' nucleus.
Recently, Koontz and HalP measured the difFerential
cross section for various neutron energies in the region
0.8 to 1,6 Mev and thus established the existence of
strong P-scattering. This confirmed the earlier conclu-
sions' that the anomaly is due to a P-resonance. Under
the assumption that P-resonant scattering but only
ordinary 5-scattering is involved' Koontz and Hall
were able to show that the P-resonance must be split
into 'P'3~2 and 'P~~2 components. This splitting must
therefore arise from some spin-orbit interaction. The
scattering can be qualitatively accounted for on the
basis of the following parameters.

El(2= 1.0 Mev sin'bo ——0.5
E3(~——1.3 Mev r =0.3 Mev, bo(O.

Here El~2, E3~2 are the relevant resonance energies, I' is
their common width, and 50 is the 5 phase shift.

In consequence of the large splitting between the
levels, the incident neutron is efFectively subjected to a
strong spin-orbit force which manifests itself in a
polarization of neutrons scattered through a definite
angle. The spin-orbit force can cause a neutron incident
with a given spin direction to reverse this direction
upon being scattered, The scattered wave will thus
consist of two parts which represent those particles
which have reversed their spin and those scattered with
spin direction unchanged. The amplitudes of these two

*The 6rst section of this paper constituted part of a thesis
submitted to Harvard University (May, 1948).' Williams, Shepherd, and Haxby, Phys. Rev. 52, 390 (1937);
H. Staub and W. E. Stephens, Phys. Rev. 54, 236 (1938) and 55,
131 (1939);H. Staub and H. Tatel, Phys. Rev. 58, 822 (1940).

2 P. G. Koontz and T. A. Hall, Phys. Rev. 72, 196 (1947).' I-. Kisenbud, Phys. Rev. 74, 1206 (1948) throws doubt on this
conclusion.' S. M. DancoG, Phys. Rev. 58„327 (1940).
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parts of the scattered wave will be difFerent in their
angular dependence so that for a given angle of scatter-
ing there will be some net spin direction.

The polarization efFect can be detected by a double
scattering experiment. Thus a beam polarized by
scattering can be scattered again by a second nucleus
and the polarization can be detected, since the difFeren-
tia1. cross section for the second scattering will now be
axially asymmetric with respect to the direction of the
first scattered neutron. This asymmetry arises since
the scattering is now dependent upon two space vectors
of the system, i.e., the beam direction and the polariza-
tion, so that the axial arbitrariness of the first scattering
is absent. This efFect and a preliminary treatment of it
was first given by Schwinger. ' Other discussions of
polarization efFects have been given by Wolfenstein'
and Hammermesh. '

II. THE POLARIZATION FORMULA

Although the foregoing remarks were directed toward
the case of helium scattered neutrons, it is clear that the
same type of polarization efFect can be expected for any
nucleus of spin zero which shows a resonance of arbitrary
angular momentum for the scattering of either neutrons
or protons.

The polarization resulting when charged particles
of spin —', are scattered by a nucleus with charge Z will
now be calculated. The difFerential cross section for this
process was first found by Bloch. s The method to be
used here is somewhat difFerent from his, however,
since the polarization efFect is of primary importance.
This can be most easily treated by representing the wave
functions describing the scattering directly in terms of
the vectors e, ko and k which are the Pauli spin vector
of the incident particle, and its direction of incidence
and scattering, respectively. This permits an elegant
derivation of the polarization formula. '

' J. S. Schwinger, Phys. Rev. 69, 681 (1946).' 1.. Wolfenstein, Phys. Rev. ?5, 1664 (1949).
M. Hammermesh, Phys. Rev. 75, 1281 (1949).

s F. Bloch, Phys. Rev. 58, 829 (1940).' This method was kindly pointed out to me by Professor
Schwinger.
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The constant n is

Pine= (Zinc~ irxinc) ~

u = (Ze'p)/(kk').

(2)

(3)

It is now necessary to And a solution of the Schroe-
dinger equation which satisfies the boundary condition
of asymptotically representing an incoming wave of the
form (1) together with a diverging spherical wave

expi[kr —a 1n2kr]
p~ /inc+ f(&)Xinc.

In virtue of the spin-orbit interaction which we wish
to include in the description the vector, L, of the orbital
angular momentum is no longer a constant of the mo-
tion so that the motion must be described in terms of
the tota1 angular momentum

The incident beam may be taken as

P;„.=expi[iro r—u1n2krf x;„,. (1)

Here x;„, is a spin function which represents the po1ar-
ization of the incident beam

It is now necessary to express this incident beam in
terms of the proper functions of the operators (6). This
resolution is most easily accomplished through the
medium of the following projection operators.

l+1+o.L
rr += rr

2l+ I

l—e L

2l+1

II~+ is so constructed that when app1ied to a function of
the type V&'x;„, it destroys all those states within this
function for which J=l——,

' and selects out only those
states with J=l+~. II& similarly destroys a11 states
with J= l——,'. These operators clearly satisfy the condi-
tion

Ii i++11;= 1. (9)

Ni (kr)
+A i IIi Viox;„,. (10)

We can now attempt to find a solution to the scatter-
ing problem by writing the wave function for the system
in the asymptotic form

00 ui+(kr)
Q (21+1)&i' Ai+IIi+
E=O kr

krThe required set of commuting constants of the motion
ls

ui~(kr) = sin(kr —l~/2 —u In2kr+ bi+), (11)
QQ sin(kr —hr/2 —u in2kr)

0 --2 (2l+ I)'i' where 8~+ is a phase shift which describes the eGect of
Coulomb, nonresonance, and resonance scattering and
may be written in this order asX I ) (CO+)&inc

kr

J2 J L~e2 Here Ai+ and Ai are constants to be determined by
the condition that P have the form (4). The radial

The incident beam (1) can now be decomposed, asymp- functions are
totically, into its constituent orbital angular momenta

~i al+Pl +Pl (12)
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tang i+ = p i+/(Ei+ —8). (14)

E is the energy of the incident particle, E~+ is the reso-
nance energy and I'~+ is its width.

After the coefficients A+ of Eq. (10) have been de-
termined the scattered wave

n~ is the ordinary phase shift due to the Coulomb field

ui ——argI'(l+ia). (13)

Pii- is the shift due to ordinary potential scattering
and y~+ is that due to the presence of the resonance
which may be taken into account by writing

-06'-

- 0.8-
is given by

acatt inc (iS)

-LO-

Fio. 1. The calculated degree of polarization, P(8), as a func-
tion of the incident neutron energy, for scattering angles. 8=30',
45, 60', 90'. Polarization at 8=90'; ——Polarization
at 8=60' ~ ~ ~ ~ ~ Polarization at 8=45', ————Polarization at
8=30'.

scat t
exp[i(kr a ln2kr)1—~ 1

i-o (2l+1)&

XI [(i+I) exp(ibi+) sinai++i exp(ibi ) siniii ]bio

+(exp(ihi+) sinai+ —exp(iiIi ) sinai )e LFioI x;„,. (16)
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If k is the direction in which the scattering is observed
it can easily be verihed that the term e I Y&' can be
written as

I.O

0.8-

0.6-
—~ sin8 I &0+'A

8 (cos8)
(17) P (8)

0.4-

The vector n is the normal to the plane in which the
scattering occurs defined by

k Xko ——nk' sin8.
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where
f(8) = A(8)+)r nB(8), (19)

00

-:l(8)=- 2
k i-o (2l+1)'*

X[(l+1)exp(i8)+) sin8)++iexp(i8& ) sin8& ]V))

i sin8 QO

k 8 (cos8) i-o (2l+1)&

X [exp(i8)+) sin8)+ —exp(i8) ) sinb) ]V)c. (20)

The angular function f(8) defined by (4) may now be
written as

FIG. 2. The calculated degree of polarization, P(8), as a func-
tion of the incident neutron energy, for scattering angles 8= 120',
135', 150'. ——Polarization at 8=120'; ————Polarization at
8= 135', Polarization at 8= 150'.

The second term within the bracket gives the effect
of a polarized incident beam.

The polarization of the scattered beam is given by

(f(8)x;,, ~f(8)x;.,)P=
(f(8)Xinc~ f(8)Xinc)

(22)

to be
A*8+8*A

o.(8)= (AA*+BB*) 1+ P;„, n (21)
AA *+88*

From (19) we determine the differential cross section Vsing (19) this becomes

AA*P;„,+(AB*+B*A*)n+i(A*B—B*A)P;„,Xn+BB*(2P;„.nn —P;„.)P=
AA*+BB*+(A*B+B*A)P;„,n

(23)

If the incident beam is unpolarized this reduces to for these two cases is

P= n= P(8)n.
A A *+BB* (24)

1+P(8i)P(8))
R=

1—P(8i)P(8))

Thus in this case the resulting polarization is directed
along the normal to the scattering plane and is de-
pendent upon the interference between the two parts
of the scattered wave. Large polarizations can come
about only when this interference term is comparable
to the cross section itself.

III. DOUBLE SCATTERING

The question of a double scattering experiment is
easily treated by comparing (24) and (21). If the first
scattering takes place at an angle 8& and in a plane
defined by nI and if 82, n2 are the corresponding quanti-
ties for the second scattering the difkrential cross sec-
tion becomes

~(8) = (AA*+BB*)[1+P(8,)P(8,)n, n,] (25)

for an originally unpolarized beam.
The asymmetry of the second scattered beam can be

clearly shown by considering the case when both scatter-
ings take place in the same plane. Then either I& ——n&

or n~= —n~ and the ratio R of the scattered intensities

Thus, if large polarizations can be obtained R can be
quite large.

IV. APPLICATION TO SCATTERING
OF NEUTRONS BY HELIUM

If we apply our results to helium scattered neutrons,
assuming resonant P scattering and ordinary non-
resonant S scattering, the functions A and Bof Eq. (20)
become

1.E (8)=—exp(i8)) sin8)
k

B(8)=
sin8 ( F I'

2ik EE3/2 —E—-'il E&f~—E—~zl')

If we substitute these expressions in (21) they yield the

r
+! +—

! cos8
EE„,—E—-,'ir 2 E„, E ', zri——-

(27)
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TAsLE I. P—phase shifts. The polarization to be expected for an initially un-

polarized beam can be obtained from (24). If we intro-
duce the abbreviations

Symmetric theory
Charged theory
Neutral theory

0.074
0.531—1.02

—0.054
—0.114

0.995

—0.017—0.046
0.073

ordinary Bloch formula' for the di8erential cross section
when the incident neutron beam is unpolarized.

(E3/2 El/2)/I &
xl/2= (El/8 E)/1 q

x8/8= (E3/8 —E)/I'
~l/2 ~l /22+ 4 d3/2 —+3/2 +4

the degree of polarization" P(t/) can be written as

(28)

P(e) =-

1 1 q sin263 (x3/8 xl/8) 3 x
[

sin'Bp ——
- Edl/2 d8/2) 4 (d3/8 dl/2) 4 dl/2d3/2

1 ) 1 t/'»/&»/2+4't (»/2
sinl bp+ —

I
-+ I+ I

4 ~dl/3 d8/2) 2 E. dl/pd3/2 ~ (d3/3 2 dl/8$

cos8 sin8

(29)

d 1/2d3/2

p 1 1 1 q 1 1 1(xl/8+x3/8+3)+-
~

sinpbp cose+3 — +-
(d3/2 2 dl/2 d3/2 2

cos28

1+(0.85)(0.8)

1—(0.85)(0.8)
=5.25.

V. SCATTERING OF POLARIZED NEUTRONS
BY PROTONS

The scattering of neutrons by protons at 15.3 Mev
has been discussed by Rarita and Schwinger" for
various types of meson theories. It is of some interest
to investigate the efFect on their results if the incident
neutrons were polarized. The results of their paper
can be taken over almost completely, except that in
performing averages over the spin we must average only

"This expression was originally found by Schwinger and was
applied to the case of 90' scattering (reference 5). I wish to thank
Professor Schwinger for letting me see his result in this case.

"W. Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941).

This expression has been used to calculate the polariza-
tion efFects due to helium scattering of neutrons for the
following parameters

sin'&3=0. 5, E,/, ——1.0, E„,=1.3 (Mev). (30)

The results are indicated in Figs 1 and 2. It is to be
noted that there are regions of almost full polarization
where the polarization does not vary too rapidly with

energy and angle.
The efFects of a double scattering experiment can be

estimated directly from the graphs provided that the

energy loss of the neutron at the 6rst encounter

Ei„,=[2m„m /(m„+m )'jE(1 cos0) — (31)

is taken into account. The result for the intensity ratio
E can be determined from Eq. (26). Thus, for the case
of neutron energy 1.2 Mev and scattering angle 8l ——90'
(c.g. system) P(8,)= —0.85. The energy loss at this
angle of scattering is E~...=0.385 Mev so that if the
neutron is scattered again through 88= 90', P(|/3) =0.8
the ratio R becomes

over the spin direction of the scattering nucleus. De-
termination of the polarization efFect can also be sim-
pli6ed by neglecting the states 'Dl and 3J"l and the
variation of the 'Sl phase shift with the magnetic quan-
tum number. Neglect of the 'Dl state is permissible for,
on averaging over the spin of the nucleus, all polariza-
tion efFects due to S—D interference vanish. Polariza-
tion efFects due to P—D interference are, of course,
very small compared with those arising from S—P
interference.

According to reference 11. the 'Po and 'Pl components
of the incident beam

gl(kr) kp r
3j- gl

kr kr
(33)

can be written as

1 gl(kr) 1 r kp
'Pp. 3 ——(el —ep). -(el —ep).—x, '"

2 kr 2 r k

3 gl(&r) 1 r kp
Pl 8 (331+&8) ' (&1+182) ' Xl

2 kr 2 r k

(34)

r1 ko 1 1
(&1 &8) ' —+Il—(&1+883).—

r2 k 2

1 &o Lo-r-
X—(831+338) —+C

2 k kr
x inc q (35)

The 3P2 component can be expressed as the difFerence
between (33) and the sum of these two expressions.

The result for the scattering amplitude is, after the
inclusion of 'Sl scattering,

1 1
f(e) = 5+2—(lrl —a3)—

k 2



POLAR I ZAT I ON OF NEUTRONS AN 0 PROTONS

where y, is the triplet part of the incident spin
functlOn

Thus the asymmetry is appreciable only for the two
latter cases.

xin0 = p(3+or' vp)xinc. (36) VI. CONCLUSION

The coe%cients S, A, J3, C depend on the phases
go, qI, , g2 due to 'I'0, 'P&, 'I'2 scattering respectively and
the S phase shift 5.

A = (e' "p singp —e""' sing. )
8= p(e'p' sing~ —e'"' sing&)
C= 3e'&' sinqp S=e" sinb.

(37)

The diRerential cross section for triplet scattering can
now be found from the relation

o(8) = (f(8)x .'. f(8)x-')
Insertion of f(8) in this expression yields:

Pine '11 sln8
(8)= .(8)+

4k~

X [[-,' sing. sing& sin(gp —
g&)

+sing, singp sin(gp —
gp)

+3 singq singp sin(gq —gp)] cos8

+sin8[ —5 singp sin(gp —8)

+3 sing~ sin(g& —8)

+2 singp sin(gp —8)]I. (39)

Symmetric Theory

o (8)d~ =0.606[(1—0.080 cos8+0.77 cos'8)
+P;, n sin8(0. 017+0.001 cos8)]dry/4pr.

Charged Theory

o (8)des=0.657[(1+0.126 cos8+0.042 cos'8)
+P;, n sin8( —0.183+0.030 cos8)]dpp/4pr. (40)

Peltry Theory

o(8)des=0.852[(1+0.932 cos8+0.457 cos'8)
+P; ..n sin8(0.047 —0.513 cos8)]des/4pr.

Here op(8) is the ordinary cross section for unpolarized
neutrons given in reference 11.The eRect of the polariza-
tion is represented by the term in (39) proportional to
the incident polarization, P;,.

The values for the I' phase shifts calculated in refer-
ence 11 are indicated in Table I. The value of the 'S&

phase shift 8 has been taken as the average of the real
parts of the 'S& phase shifts for magnetic quantum
numbers m=&1 and 0. This value is 8= —1.67.
The contribution of the polarization to the cross section
has been calculated from (39) and added to the ordi-
nary unpolarized cross section found in reference 11 for
'S&+'Dl, 'S, and 'P and 'S~, 'P interference. The re-
sults are:

Although the formulas derived in the first sections
of this paper have not been applied to the case of proton
scattering, a few general remarks can be made about
this eRect, since it is fully covered by our results. The
large background scattering provided by the Coulomb
field will tend to block the realization of full polarization.
This can be achieved for neutron scattering, since the
denominator of (24) (which is proportional to o(8))
can become comparable to its numerator. For charged
particles o(8) will contain the Rutherford scattering
term and its interference with the specifically nuclear
scattering so that full polarization may not be con-
veniently realized.

Polarization eRects can come about regardless of
whether a scattering resonance exists (e.g. , X I'—
scattering). One can expect such effects for He' scatter-
ing of neutrons in the region of 2.5 to 3.1 Mev since
Barschall and Wheeler" have shown that the scattering
at these energies can only be understood on the basis
of a spin-orbit interaction which splits the I' phases.
Of course, the presence of a resonance is desirable,
since it insures large cross sections.

The large intensity ratios which can be expected for
the case of scattered neutrons in a double scattering
experiment come about because in some of the cases
(e.g. , 90'), the polarization roughly reverses direction
as one passes from one resonance level to the next, so
that if the level splitting is comparable to the energy
loss at the first encounter large polarizations occur at
both scatterings and E. is large.

Finally, it may be remarked that similar results might
be expected for neutron scattering from carbon which
appears to exhibit a resonance" of the helium type at
energies of 3.6 and 4.1 Mev. For this nucleus, the energy
loss for 90' scattering is —,

' of the energy of the incident
neutron, so that for an incident neutron of energy 4.1
Mev the scattered neutron's energy is 3.4 Mev. Thus,
one might hope that carbon exhibits eRects similar to
that of helium.

In conclusion, I wish to acknowledge my indebted-
ness to Professor Schwinger for suggesting the general
problem of the production and detection of polarized
neutrons and protons by helium scattering, as well as
for showing me some of his earlier results and for his
kind advice.

Note:t The referee has kindly called to my attention recent
work'&'~ on helium scattered neutrons which casts serious doubt
on its interpretation in terms of a doublet resonance with splitting
comparable to the widths involved, and hence on the applicability

'~ J.A. Wheeler and H. H. Barschall, Phys. Rev. 58, 682 (1940)."Goldsmith, Ibser, and Peld, Rev. Mod. Phys. 19, 266 {1947).
t This note was added March 16„1950."T. A. Hall, Phys. Rev. ?7, 411 (1950).
"Bashkin, Petree, Mooring and Peterson, Phys. Rev. 77, 748

(1950).
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of the polarization curves herein presented. These results were
prepared, however, not only to exhibit the effects to be expected
in this case but were intended also to be illustrative of the general
behavior of the polarization in the neighborhood of such a
resonance.

The author does believe, however, that the situation in regard
to helium scattering is still Quid in spite of the careful work of
Bashkin et al. on the total cross section and will so remain until
crucial experiments on the differential cross section have been
performed.
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Electrical Resistance of Thoria

W. E. DANFQRTH AND F. H. MQRGAN

Bartot Research Foundation of The Frankbn Institute, Sd~arthmoret Pennsylvania

{Received March 6, 1950)

Measurements of the electrical conductivity of thoria were taken in vacuum at temperatures up to
2073'K. Activation by passage of current resulted in values of resistance as low as 1 ohm-cm at 1900'K
and 10 ohm-cm at 1000'K. Activation energies between 3.2 volts and 0.58 volt were found. The density of
impurity centers was computed as 10"per cc and was found to be independent of the degree of activation
by current, a result which is inconsistent with the hypothesis of the electrolytic origin of impurity centers,

I. INTRODUCTION

S TUDIES of the electrical conductivity of thoria
have obvious practical interest as regards cathode

design and performance. In addition, there are several
objectives of a theoretical nature. An understanding
of the conduction mechanism is a necessary step in the
understanding of the mechanism of thermionic emission
and also of the causes of the disintegration of cathode
material by passage of current. Previous investigations
have been made by Foex' whose values of resistance are
much higher than those we have found and by %right'
who briefly reported some data which have been found
to 6t satisfactorily into the general pattern of our
observations.

II. EXPERIMENTAL PROCEDURE

Our measurements have been taken on sintered
sleeves of thoria, mounted between molybdenum end
pieces as indicated in Fig. 1. The material was molded
to size and sintered. It was not pressed. The density was
approximately 7 g/cm'. Currents up to 7.6 amp. /cm'
were passed through the specimens and potentials were
were measured at the probe leads, by oscilloscope for
pulsed data, and high resistance voltmeter for the de
runs. Pyrometer readings were made on the inside of
the specimen through a hole in one of the end pieces.

The specimens were mounted in a small vacuum
furnace whose main features are shown in Fig. 2. The
thoria piece, mhose length was about 2 cm and outside
diameter 3 mm, was supported within a coil of 60 mil
tungsten.

The data to be presented were taken with this
furnace mounted in a water-cooled copper jacket which
was continuously pumped on a mercury system. Since

' M. Foex, Comptes Rendus 215, 534 {1942).
~ D. A. Wright, Proc. Phys. Soc. Loodoo 162, 188 (1949).

the system contained one soft-soldered joint, it could
not be baked at high temperature but was maintained
at 100'C for 24 hours. Pressures were below 10 ' mm
with a cold specimen but would rise to 5)& 10 ' mm at a
specimen temperature of 1800'C, the maximum used at
present.

III. RESULTS

Figure 3 shows the results of measurements taken on
a specimen prepared from C.P. thoria from Eimer and
Amend. Before any current was passed through the
thoria it was outgassed at 1800' for several hours. Then
runs of resistance vs. temperature were taken using
single pulses, produced by a simple condenser dis-
charge arrangement, and an oscilloscope.

For each one of these curves, several runs were taken,
a smooth curve was drawn through the data, and points
from this average curve were transferred to the loga-
rithmic plot. The probable error estimated from the
spread of the data is about 10 percent.

As shown in Fig. 3a, it was found that the data from
pulse measurements require two exponential compo-
nents, one with activation energy of 0.86 volt and the
other of 3.2 volts. Activation energy is here de6ned as
the quantity E in the Kq. r= croe ~'~ .

One must remember, of course, that we have a
porous, sintered, specimen and not a crystal. It is per-
haps appropriate, therefore, (following Loosjes and
Vink') to ascribe the low activation energy, the one
predominant at the low temperature, to conductance
through the solid particles, and the high temperature
portions of the curve with a work function of 3.2 to
thermionic emission across the interstices.

The pore-conduction hypothesis, however, is by no
means established in the present case. It would, in fact,

' R. Loosjes and H. J. Vink, J. App. Phys. 20, 884 (1949).


