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The magnetic shielding constant for the He atom (i.e., the value of (—AH /H) at the nucleus), has been
calculated to a high degree of accuracy by comparison of values obtained from a number of known first and
higher approximations to the wave function. Its value is 5.9938X10 ~.

Next, the shielding constant for the H2 molecule with respect to either of the nuclei has been found in the
first approximation to be 2.6614X10 '. The corresponding value derived from the Lamb formula is 3.1648
X10 '. The difference is due to the combined effect of both the center of mass and the center of the elec-
tronic charge lying outside either of the two nuclei. The numerical value 0.5034X10 ' of the difference fits
well with the value 0,53X10 ' reported by N. F. Ramsav as derived from measurements of the spin-rota-
tional interaction constant of the H2 molecule.

However, there is also a second-order perturbation effect due to the perturbation of the ground state of
the molecule by the magnetic field. By a special method its upper limit has been estimated to be 0.2864X10 '
and with a sign such as to weaken the magnetic field. Hence, the upper limit of the total shielding constant
of H should be 2.9478X10 '.

I. INTRODUCTION

IGH precision measurements of nuclear magnetic
- ~ - ~ moments of light nuclei such as H an'd He' by
the Rabi resonance method" have proved it necessary
to take into account the faint shielding of the magnetic
field in the nuclear region by the Larmor precession of the
outer electronic shells. %e are indebted to Dr. H. L.
Anderson, for calling our attention to the importance
of the problem.

As is well. known, ' the calculation of the magnetic
shielding constant for an atom (with closed electronic
shells) is easy in principle. If one knows the atomic
wave function to some degree of accuracy, the rest of
the work is to sum up the mean reciprocal values of the
electronic distances from nuclei.

In the case of the He atom our interest was first con-
centrated on the rapidity of convergence of values ob-
tained from the series of approximate wave functions
used in our energy calculations. 4 To begin with, we
were puzzled by the apparent lack of true convergence
and a considerable spread among the values obtained
from various kinds of wave functions. This indefinite-
ness, however, soon turned out to be caused by in-
accurate determinations of the "flexibility" parameter,
k, frequently used in energy calculations, which en-
sures that at the energy minimum the kinetic energy
of the electrons is exactly ha, lf of the numerical value
of the potential energy (virial theorem). It is not neces-
sary that the rest of the va, riation parameters or expan-
sion coefFicients be very accurately chosen if only at
the end the parameter k is carefully adjusted to the other
given parameters so as to satisfy the virial theorem.

Following this principle, it turned out that for the
He atom the shielding constant depends but very little

* The investigation concerning H2 is mainly due to Hylleraas.
' H. L. Anderson, Phys. Rev. 76, 1460 {1949).' E. M. Purcell, Phys. Rev. 76, 1262 (1949).' W. Lamb, Phys. Rev. 60, 817 (1941).
4 E. Hylleraas, Zeits. f. Physik 54, 347 (1929).

on the accuracy of the wave function. The order of
magnitude of improvement from the first to the sixth
approximation is about 0.04 percent. This explains
why by less accurate calculations the spread of the
approximate values was more pronounced than was the
real convergence of the true values. The small variations
from the poor to the accurate approximation eigen-
functions make the repeated accurate calculations to
some extent less important. On the other hand, we
learn from this particular case of the He atom that for
more complicated atomic configurations, as for instance
the H2 molecule, where accurate wave functions are not
so easily obtained, we can rely rather safely even on the
poorest first approximation.

mv= p+(e/c)A (3)

and averaging over a stationary state of the atom,
usually the ground state.

If the angular momentum r)&p is zero, there remains
from (2)

—AH = (e'/mc') (rX A)/r'
= (e'/2mc') Lr X (H X r)]/r'.

On averaging over a spherically symmetric state the
result is

( AH/H) = —',n'(a~/r), „—
where a~ is the Bohr radius and n the fine structure
constant.

II. GENERAL THEORY OF MAGNETIC SHIELDING

For a one-electron atom the diminution of a homoge-
neous magnetic field,

H= curl A, A=-', H)& r,

a.t the center of the atom can be obtained from the
Biot-Savart law

AH = —(e/c) (rXv)/r', (2)

expressing v by the aid of the equation
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TABLE I.Various approximations for the magnetic shielding in He. Finally, in the sixth approximation,

e
—e/2

e '~'(1+cd)
c2 =0.01235
e 'I' coshctt /2
c~=0.295
e '~'(1+c u)
c1=0.0988, k =0.92480
exp( —s/2+c1u/2)
c1=0.137, k =0.92898

—F/4Rh

1.423828

1.438338

1.437831

1.445560

1.444809

( —/bbH/H) j)n'

3.375 =4k

3.37112=4k

3.37172=4k

3.377830

3.37836
(—hH/H) n, ———',n'(3.3764&0.0002).

IV. MAGNETIC SHIELDING IN THE
HYDROGEN MOLECULE

(10)

y= e '~'(1+cqu+cbP+cbs+cbsb+cbu'),

using the values of c& to c5 found earlier by energy
calculations, 4 and together with the corresponding best
value of k, we get the figure 3.37628. As a final value
we therefore choose

TABLE II. Improved approximations for the
magnetic shielding in He.

—8/4Rh ( —aH/H))/$~&

e "~'(1+c1u+c2P)
c1=0.0803, c~=0.0099

k =0.90803'1

exp( —s/2+c1u/2) coshLc2(1 —c1)t/2 j
ci =0.11375, cq =0.237

k =0.911817

1.451216

1.449767

3.37606

3.37657

For many-electron atoms one should rather use the
Hamiltonian

e2

K= V++ pb+ —(A;+a,) p,+ A,'a;,
28$ mc

saic

(6)

where a; is the vector potential of the nuclear magnetic
moment. %riting

&' p'=2H (r'&&p'),

and considering states with zero total angular momen-
tum, the sum of terms in (7) is zero as well as the sum
of the mean values of (a,"p,). Hence, from the last sum
in the Hamiltonian (6), we obtain for spherically sym-
metric states in conformity with (5)

IIL APPLICATION TO THE He ATOM

Putting f=bb(kryo, krb), s=rg+rb, t=rb —rg, u=r~b,
and taking a~/4 for the unit of length, the result for
various approximations of the He atom is given in
Table I.

So far there is no indication of convergence, the de-
pendence of the coordinate t tending to lower and that
of I to raise the value of the magnetic shielding. Con-
sidering, however, both kinds of variations simul-
taneously, in the third-order approximation, we al-
ready get the rather definite results of Table II.

A second-order perturbation energy arising from the
term g;a; p; in (6) is quadratic in p, and hence is
insignificant in our problem.

For a molecular problem a more elaborate theory is
needed. There is, for instance, the diBerence that the
total angular momentum of the whole molecule includ-
ing the nuclei is no longer a constant of the motion as
soon as a magnetic field is applied, even though it may
be quantized and can, for instance, be taken equal to
zero in the absence of the field.

Denoting the electrons of H2 by 1, 2, and the nuclei
by u, b, and considering, for instance, the function

$(rla& rib& r2a& rbb& r12& r»b) &

which is independent of the coordinates of the center
of mass, and hence corresponds to zero total linear mo-
mentum, it is easily seen that it also represents states
with zero total angular momentum.

If now we let the nuclear distance r,~ be "frozen"
(i.e., disregard the nuclear oscillations), there still
remains the freedom of rotation of the nuclear axis.
Since the wave function (11) is independent of the
angles of the axis with respect to a fixed coordinate
system, we shall have to average over all possible
orientations of the molecular axis. This being accepted,
we can also disregard all e6ects of nuclear motion to the
degree of accuracy m/M, and can transform the prob-
lem into an ordinary two-electron problem depending
on an additional parameter r, q ——2R.

In contrast to many-electron atomic problems this
procedure of disregarding the nuclear motion does not
lead to a problem in which the total angular momentum
of the electrons is a constant of the motion. To see the
difference we need only compare the electronic wave
function f(r&, rb, r~b) of the He ground state with the
function (11) in which by given r,b the center of mass
is now considered to be at the rniddle point of the
internuclear axis.

For this reason, as has been pointed out to us by
Dr. Fermi and Dr. Anderson of the University of
Chicago, there will be a second-order effect in the
magnetic shielding due to the perturbation of the
ground state of the molecule by the magnetic field.
In this section, however, we shall disregard this second-
order effect, since there is a much more important first-
order effect to be evaluated. This effect, or perhaps
rather the sum of the first and second-order eGects, is
closely connected with the measured spin-rotational
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L= T V j (Vl+Va) 'Ala+(V2+Vb) A26

+ Via ' ala+ V lb'$15+ V2a' $2a+V26' $25} (13)

from which we obtain the Hamiltonian

constant~ as demonstrated by Ramsey. ' To calculate
the efI'ect, we adopt the formal method suggested to us
by Fermi and Anderson in which as in Eq. (6) the
magnetic energy of the nuclei is included in the Hamil-
tonian of the system, since by a less rigorous method
the term itself or at least its definiteness may easily be
overlooked.

Denoting the magnetic moments of the nuclei by p,
and pb, writing for the corresponding vector potentials

al, = (tb, X rl, )/rl, ', $16= (tbbX rib)/Tlb', etc. , (12)

the Lagrangian for the whole H2 molecule including the
nuclei has been found to be

e
x=xp+ —{(Al.+$1.+$16) pl+(A26+$16+$25) p2}

mc

e2

+ {Al ' ($1 +$16)+A26' (a'la+$26) }
mc

(15)

=BCP+Xl+K2)

where Xo is the Hamiltonian for zero magnetic field.
The mean value for the ground state of the molecule

of the first perturbing term Xl which contains pl and y2
in the first power is zero. From the last term, considering
that rib ——rl —2R and x2 = x2b+2R Ala g 8X xla,
A2b ———,'HX x2b, where 2R= xb„we obtain the first-
order perturbation energy with respect to the magnetic
moment p, of the nucleus a

orientation of nuclear axis), i.e., disregarding terms of
the order of magnitude m/M, the Hamiltonian (14)
simplifies to

1 1~=—(pl'+p2')+ (p'+ pb')+ 1'
2m 2M

e2 i x '—2R x2.
AE= -(H 12.) —+

3mc p'l~2
~263

Av

(16)

+ {(Al +$1 +$16) 'Pl+ (A26+$2o+$26) ' p2}
corresponding to a mean diminution of the magnetic
field at x, of amount

e
+ {(Alo $1o $2.o) ' Po+ (A26 $16 $26) ' Pb}

Mc

1 Rs,
(—AH/H) H2 ——-22u2aH 2

~a Av
3

(17)

e
+ {Al. (». +$51) +A 52($2.+$6)}

mc

r, denoting either of the electronic distances from the
nucleus a, since the wave function is symmetric in the
two electrons.

j Al ' ($1 +$2a)+A25' ($16+$26) }
3fc'

(14) V. NUMERICAL VALUES OF THE MAGNETIC
SHIELDING IN HYDROGEN

in which quadratic terms in the vector potentials are
omitted. '

Due to the appearance of purely relative vector po-
tentials, the total linear momentum commutes with
3C and is a constant of the motion. The total angular
momentum, however, ceases to be a constant of the
motion when the magnetic field is diGerent from zero,
and the wave function (11) is perturbed into a more
general function of relative coordinates.

Disregarding nuclear motion (except for the free

~ Kellog, Rabi, Ramsey, and Zacharias, Phys. Rev. 57, 691
(1940).

6 N. F. Ramsay, Phys. Rev. 78, 699 (1950).' Since the Lorentz term of the applied field in L, might as well
have been written (v1+vb) A1b+(v2+v ) A2„ there is an in-
definiteness in the Lagrangian corresponding to the function
v12 Ab —vf, A1, times an aribtrary constant. As the calculation
has been made such a term contributes neither to the first nor to
the second-order perturbation energy. There are also two other
linearly independent expressions which could be added to the
Lagrangian without altering the equations of motion. The corre-
sponding additional terms in the Hamiltonian do not, however,
contribute to the resulting energy, as can easily be seen from the
symmetry of the terms.

dT = br ' sfn27adrad8a= rlR'(P g')d$dg, —

N=e $S(R), S(R) =1+R+12R2, (20)

where p, 21 are elliptic coordinates. Equation (17) is then

Let the unit of length be ua/2k and consider a wave
function

A= (2) '{4+ 4} (18)

P being a normalized function and P being obtained
from P by an interchange of the electronic coordinates.
Then the normalization integral will be S=1+%
where X is the product integral. If we take the normal-
ization factor for p into the volume element dT we may
write in the first approximation

P= expL —
—2, (rl.+r25)], tt = expL —-'2 (rib+ r2,)]. (19)

Squaring (18) and considering (17) we are lead to the
integral

p 1 Rz.qI= J{ {exp(—T.)+2Ne '+exp( —Tb) }{
— }dT,

E T. T.' )
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replaced by —AH/H = -', n' 2kI/N.

It is found that

1qI=
~

-+—~(1-.--)+.— (1+R)S(R)
E2 2R)

1——[1—e '~(1+R+-,'R')']
4R

—6 [e 'sS'(R) (C+ln2R)
2E.

For these values the ratio of nuclear gyromagnetic
(21) constants pn, s/&„=0.7617866 as obtained by Anderson

by direct measurement must be corrected to

yn, ~/y„= 0.7617866
X[1+(5.9931—2.6614)X10 ']=0.7618120 (28)

instead of 0.7618081 by the Lamb formula.
The first-order correction 0.28359(-', n') =0.5034X 10 '

to the Lamb formula is very near to the correction
0.53X10 found by Ramsey' on the basis of measure-
ments' of the spin-rotational interaction constant.
Hence, if the latter value is to be identified with the
sum of erst- and second-order effects, the second-order
eQ'ect should be small.

S(R)S—( R)Ei(—2R)]——e 'sS(R)(1+~~R) ~ (22)

On the other hand, the energy minimum is obtained
from

VL SECOND-ORDER CORRECTION TO THE
MAGNETIC SHIELDING IN HYDROGEN

Denoting by K& the second term of Eq. (15), the
second-order perturbation energy can be written as

E= —(L L' iV/R—)o/iVcV, (23)
aE= —P (Kg)o.'/(E —Eo), (29)

where

3I= 2+2e-»S(R)(1+R R'),——

I.=
~

2+—~(1—e 'e)+4e 'sS(R)(1+R),
R)

1
[1 e

—2B(1+R)] e 2B(o+ o—R+LR2)
R

Q (Ki)o„'——j~ 4oKiVodr (30)

(23a) where E„ is the energy of the nth excited state and
(K&)o„a matrix element of the operator K, the ground

(23b) state being denoted by 0. As is well known,

1 6
+——[e '~S'(R) (C+ InR)

5 R

—2S(R)S(—R)Ei(—2R)

+e'~S'( R)Ei (—4R)]—

25 23 1
+ R+3R+ R—' e—'" —(23c)—

8 4 3

The energy minimum is found to be

E= —2.278387 for R= 1.65, k= 1.166176. (24)

corresponding to the dissociation energy

En=3 769 ev and .R,=R/k= 1.415 (25)

as the internuclear distance in units of a~.
The last two terms with negative signs in Eq. (22)

represent the deviation from the Lamb formula. For the
values of R and k in (24) we get

2kI/N = 1.78279—0.28359= 1.49920. (26)

Putting ~~no=1.7752X10, Eqs. (8) and (26) lead to
the shielding constants

(—AH/H)n, =3.3764 (xn') =5 9938X10 .',
( ~H/H)Ho=149920(—sa')=2.6614X10 '. (27)

for a normalized ground-state wave function. Hence,
replacing all E„ in (29) by a single one, say, E& the
series can be summed and yields an approximate. value
or, eventually, a lower limit to the negative perturba-
tion energy. If we take E~—Eo——Eh as a reasonable
value for the energy difference between the ground
state and the bulk of higher energy states, we get the
approximate perturbation energy

1
AE= ——,PoKPPodr. (31)

8 D. H. Weinstein, Proc. Nat. Acad. Sci. 20, 529 (1934).
~ A. F. Stevenson, Phys. Rev. 53, 199 (1938).' A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 374

(1938'j.
» W. Koh, Phys. Rev. 71, 902 (1947).
~ J. H. van Vleck, and A. Frank, Proc. Nat. Acad. Sci. 15, 539

(1929); J. H. van Vleck, Electric and Magnetic Susceptibilities
(Oxford University Press, London, 1932).

This procedure of estimating a second-order perturba-
tion energy or its lower limit is much better than the
original method devised by %einstein. However, his
method has been improved by Stevenson and Craw-
fordo 'o and lately by Kohnu so as to correspond to (29)
with E —+Ej for the lower limit. A similar simpli6cation
has been made use of by van Vleck" in the theory of
atomic and molecular diamagnetism.
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Squaring the second term X| of Eq. (15) we need
consider only product terms in H and p, and p~. Also
product terms in yl and y~ disappear on integration
according to (30). Putting Rk=e'/2uH and replacing
p by (k/2ni)V' and considering arr/2k as unit of length,
the second-order energy afI'ecting our problem is
approximately

bE=32a'k' $0 PH. (rg, XV'g)]

the volume element being of the same form as in (20).
The integrals are elementary except for the exponen-

tial integral. Ke obtain

843

(—hH/H)2 ———,'a' e "(1—+R+-,'R') (1+-,'R)e

1
-[(1+R)e—s(C+ In2R) —Ei(—2R)]

2R

t
rla ) f rib

X po'( X~ I+p '(
Er,.' j &r„' ) .

1———[1—e '"(1+2R+2R')]
3 4R

R'Ei( —2R) —(35)

For the values of R and k in (25) the difference of
the two integrals in (35) corresponding to fp and P
is 0.0591139—0.0404615=0.0186524. Multiplied with
Sk'/X this yields

+pb
~

-X%2
I hodr. (32)

&r„'

( DH//H) 2= 1 6—1343.(~pa') =0 2864X . 10 '. (36)

To obtain a reasonably good value of this expression
we use the former approximate wave function (18) and
(19). To avoid an incorrect sign of the effect we must
keep in mind that for first-order differential operators Hence the result of the whole calculation is
A and8 we have

$0A Bgodr = — (A fp) (Bfo)dr

In this way we get, taking account only of the nucleus a

AE= —(2a'k'/S) I [H. (r&.Xr»)]

Lamb formula
First-order correction

Second-order correction

Total ( hH/H) H2—

3.1648X 10-5
—0.5034X10 '

2.6614X10 '
0.2864X10 '

2.9478X10 '.

X[po'(rz Xr»)]
rla rib

—[H (r~,Xr»)][p, (r2bXr»)] dr (33).
r2~ rgb4

In the second term we can replace 2 by 1 and carry
out the integration over the coordinates of one of the
electrons. Further, by rotation of the nuclear axis the
vector factor transforms into -', (Hp, times the square
of the vector product which is equal to 4R'(x'+y'),
x and y being electron coordinates perpendicular to the
molecular axis. The net result is an energy correspond-
ing to a diminution of the magnetic field of

Sk' r (x'+y')R'
(—AH/H) 2

——-'a'
3 J rQ rb3

xpE —k(r.+rb)] exp( —r~)
X X—— — dr, (34)

The above figures with four decimals presented as they
result from well-defined calculations must not be taken
too seriously. VVe do not expect the two first figures to
change very much by introduction of a more accurate
wave function. Nevertheless, even though the diGerence
(3.24—3.16)X10 ~ is appreciable, it is practically not
so important that on this stage we should try to decide
whether the Anderson-Nordsieck v'alue 3.24X10 ' from
the Lamb formula is too high or not.

Much less confidence, however, must be put in the
figure for the second-order correction, which is merely a
rough estimation and essentially an upper limit. It may
be smaller and our decision to perform the rather in-
tricate calculation was partly based on the hope that it
would turn out to be comparatively negligible. It is,
however, on this stage of the calculations diKcult to
understand how it could be small enough as to agree
with the Ramsay value 2.71X10 5 of the shielding con-
stant.

The application of a more accurate ground-state wave
function of H2 will probably not alter the above figures
very much, Since a more handy accurate wave function
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than that used by James and Coolidge" in their funda-
mental investigation of the H2 molecule often is needed,
the authors intend to repeat the energy calculations
(eventually the magnetic shielding) for the H2 molecule

by the aid of the wave function

$0 tt'I 1+ Cir12+ C2(rl r2b) I

+/I 1+&iri2+c2(rib r~ )'I (37)

"H. M. James and A. S. Coolidge, J. Chem. Phys. 12, 825
(1933).

which should be at least as good as the corresponding
third-order wave function of the He atom.
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On the Energy-Momentum Tensor of the Electron

F. UILLARs
Institute for .Cdmnced Study, Princeton, Nm& Jersey

(Received March 8, 1950)

The first-order radiative correction to the energy-momentum tensor of the electron is investigated. In
order to avoid the ambiguities connected with the occurrence of divergent integrals a regulization with
auxiliary masses is introduced. It is shown that a procedure which is in accordance with the conservation
laws necessarily has some of the features of an auxiliary field theory. The method of the present calculation
corresponds to an introduction of an auxiliary neutral vector-meson field which is coupled to the electron-
positron field with an imaginary coupling constant.

I. INTRODUCTION

~)N investigating the effects of the vacuum field
fluctuations on the field source, difficulties arise

due to ambiguities in the interpretation of divergent
integrals. The possibility of obtaining a non-vanishing
photon self-energy, in contradiction to the gauge in-
variance of the underlying theory, illustrates this situ-
ation. Since these ambiguities occur within the frame-
work of a covariant formalism, there is some hope that
on insisting on the formal properties of the theory:
covariance, gauge invariance, and the validity of con-
servation laws, we might find a way to get rid of these
difhculties.

On the other hand, one can argue that since these
ambiguities are connected with the occurrence of di-
vergent expressions, an invariant limiting process that
makes these expressions finite should resolve these
ambiguities. The first point of view, supported especially
by Schwinger, ~' furnishes a set of rules of interpreta-
tion; thus, for instance, gauge invariance implies the
invariance of a certain integral in momentum space
under translations of the integration variable. (For
further detail we refer to a forthcoming paper by
S. Borowitz and W. Kohn. )

An investigation along the lines of the second point
of view' exhibits the remarkable fact that the postulates
of gauge invariance and conservation laws strongly
reduce the possible number of diferent regularization
procedures. A common feature of all of the admissible
regularization methods seems to be their "realistic"

' G. Wentzel, Phys. Rev. 74, 1070 (1948).' J. Schwinger, Phys. Rev. 76, 790 (1949), Appendix.' Borowitz, Kohn, and Schwinger, Phys. Rev. 78, 345 (1950}.
4 W, Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).

aspect; this means, more precisely, that apart from the
condition of a hermitian interaction, which in general
is violated, " these methods can be interpreted as
auxiliary field theories in the sense of Pais' f-field. '

In the present paper the second point of view is
applied to the problem of the radiative corrections to
the energy-momentum tensor of the electron. A straight-
forward calculation may lead to results in contradiction
to the conservation laws, which require that

(3T„„(x)/8x„=0.

An equivalent expression of this fact is the result of
Pais and Epstein. ' The difhculty of this special problem
was first resolved by Rohrlich. ' His results are contained
in the present calculation as a special case.

Section II will be concerned with the establishment
of the expression for the first-order radiative correction
to the one-particle part of T„„. In Section III the
regularization will be discussed, and finally in Section
IV the actual form of T„„(p'p) will be determined.

II. CALCULATION OF THE FIRST-ORDER
RADIATIVE CORRECTION

The symmetrized gauge-invariant energy-momentum
tensor of the interacting photon and electron-positron
fields can be written as

+k(A''"~.4 (~& *0)v"4) (1)—
' D. Feldman, Phys. Rev. 76, 1369 (1949).
%. Jost and J. Rayski, Helv. Phys. Acta 22, 457 (1949).

~ A. Pais, Uerh. Ned. Akad. Amsterdam XIX, No. 1 (1947).
s A. Pais and S. Epstein, Rev. Mod. Phys. 21, 445 (1949).' F. Rohrlich, Phys. Rev. 77, 357 (1950).


