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Of Terrestrial Magnetism. The protons scattered from a thin
carbon target on a silver leaf backing were counted with an argon-
filled proportional counter biased to count only those protons
near the end of their range. The ratio of the number scattered by
carbon to the number scattered by silver determined the ratio of
the cross sections except for a constant multiplying factor due to
the difference in the number of carbon nuclei and silver nuclei.
Since the ratio of cross sections was determined the target thick-
nesses were not determined, but both targets were thin; and since
both targets were bombarded at the same time the geometrical
factors cancel. The protons scattered from the two diRerent,
nuclei can be resolved because of the diRerence of the recoil energ .
of the nuclei.

oi energy

Number vs. range curves were determined at 55' 90' 132 5'
and 160' in the laboratory system for bombarding energies of 2.5
and 2.75 Mev and at 90', 132.5', and 160' for energies of 2.0 and
2.25 Mev {Fig. 1). The area under a peak minus a fixed area
determined by the channel width of the detecting system, which
is a function of the eRective counter and depth and the bias of
the system, is proportional to the intensity. The channel width
is defined here as the intercept of the curve of widths of fhe proton
peaks at' half-maximum vs. range in air at zero range. The slope
of this curve is very nearly the slope of the range straggling curve
computed for widths at half-maximum. ' The area under the
peaks was measured with a planimeter; several independent.
measurements were made for each area and the ratio of the
average values was used.

The half-widths due to straggling and channel width were
assumed to add as the sum of the squares then the ratio of areas
was corrected for channel width by multiplying by

L(&obs o'ch /&obs )c {&obs /oobs 0'ch }kg j
where o,b. is the observed width at half-maximum and o-,h is the
channel width. The ratio of the areas was also transformed to the
carbon center-of-mass system, assuming that the silver scattering
is classical.

The corrected area ratios vs. angle in the carbon center-of-mass
system are shov n in Fig. 2. The dotted line is' R(p) at 2.5 Mev
for 5-wave scattering, with bo at 125' as determined by Heitler'
et a/. , normalized to 0.1 at 60'. The error of +10 percent consists
principally of the statistical counting errors, errors in area meas-
urement, and errors in measuring the widths at half-maximum.
Except for the 2.0-Mev curve the curves all show a definite
tendency tn decrease at the larger angles and this probably
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Ftc. 1. Famil of numiumber vs. range curves for different angles for a thin
car n target on a silver leaf backing at 2.75 Mev. The long-range group
is ue to silver and the large scale has been shifted so that this group has
t e same range at all angles. The number scales are different for each
angle so that the curves can be plotted on the same graph.
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F&&. 2. The ratio S of the areas under the peaks vs. angle in the carbon
center-of-mass system. Dotted line is R(qt) for 80 =125' at 2.5 Mev. See
reference 2.
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~ P T seems that no formula has been given yet for the Hall
- ~ potential as a function of the positional coordinates within a
conductor of given shape. This can easily be done, however, with
the help of potential theory, in the following case (which also
may be of interest with respect to inhomogeneous conductors).

Let us consider a thin plate of homogeneous conducting material,
perpendicular to B, the magnetic induction in the y direction.
The relations between the components of E and i are:

E»/p=(AH B/p)i. +i, and E,/p=i. —(AH B/p)i,

where p is the resistivity of the material and A H its Hall coefficient.
The y-components of E and i are ignored. We know E to be the
negative gradient of a potential function cp, which must obey the
Laplace equation Ay=0. We assume that the solution of this
equation can be written as a power series in .il&B/p, the zero-
order term of course being the potential for 8=0. The first-order
term, which we shall call yn, n is obtained as a solution of the
Laplace equation under the following conditions.

We suppose the plate to have the usual rectangular form, with
current electrodes along two opposite sides (x=0 and x=l) and
Hall probes facing each other somewhere along the other two
sides (z= —qb and z=+qb). Furthermore, we suppose the elec-
trodes to be made of fairly well-conducting material, as is generally
used, and we ignore the Hall eRect in it. Then yH, n must be
approximately zero along x=0 and x=l, respectively, and there-
fore the current must have a z-component there. We further
assume, however, that in our sample the ratio A~B/p is very
small and hence that the current still flows sufFiciently homo-
geneously in the x direction, so that along z= —$b and z=+$b
we have ByH, II/ctz=A~JB/bd, in which J is the total current
through the sample, d its thickness in the y direction. Bpa,n/Bz,
abruptly becoming zero at the edges, can he developed in a
Fourier series in the usual way.

means that the P wave is becoming eRective. More precise curves
are necessary if the P-wave and S-wave components are to be
determined accurately.

*XVork done as AEC Predoctoral Fellow, 1948-49.
t Now at Bartol Research Foundation, Swarthmore, Pennsylvania.
' M. S. Livingston and H. Bethe, Rev. Mod. Phys. 9, 285 (1937).
'- Heitler, May, and Powell, Proc. Roy. Soc. 190, 180 (1947).
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I'~& . l. f-values as a function of the position of the Hall sondes for sonIe
diferent shapes of the sample ("ideal" current electrodes).

The potential function satisfying these conditions is readily
found to be

BJ 4" 1 sinhf(2k —1)xz/l j sin f(2k —1)~x/l j
d x, (2k —1) coshf(2k —1)mb/2l j f(2k —1)~b/l j

The Hall potential between the probes A and 8 (on z=+~b and
z= —'qb, respectively) is:

(A) (B)
q H,n —

q H,11=VH, 11=AIt(BJ/d)f(b/l, x/b),

in which f depends on the ratio of the length to the width of the
sample and of the position of the probes along its sides. Some
values of f are given in Table I. These results, which include

have in each grain, a Hall voltage of about A~&I&lIi~B and in each
longitudinal layer likewise A~&"l2i28, but in each perpendicular
layer the Hall voltage cannot be higher than 0.75(l2/lI)A~q&'&lIiIB.
Ãe have used here the value of f for the middle of the layer and
in the limit for small l2, assuming that the conducting grains may
be considered as electrodes for the layer, as was done above.
We suppose A~&@&AII&I&.

For the sample as a whole we obtain approximately (with c
being of the order of magnitude unity):

Q~ ——A ~&'&+c($2/$I)

Generally Azz will not be very different from AH"&; p on the
other hand can be much great, er than pI. This means that, if the
Hall effect and the resistivity of such an inhomogeneous conductor
is to be explained in terms of electron density and mobility, no
conclusion as to the mobility either in the highly conducting
grains or in the badly conducting layers may be drawn.

We have in fact found in some samples' of semiconducting
materials very low values of the mobility, which, however, could
be explained in the manner given.

' Isenberg, Russell, and Greene, Rev. Sci. Inst. 19, 685 (1948).
'- A. Perrier, Helv. Phys. Acta 19, 410 (1946}.

TABLE I. Values of the function f(b/l, x/b).

'~ l/b

x/l

00
0.125
0.250
0.500

0.1

0
0.04
0.06
0.075

0,5

0
0.20
0.30
0.37

1.0

0
0.39
0.56
0.68

2.0

0
0.62
0,82
0.94

4.0

0
0.83
0.98
1.00

0
1.00
1.00
1.00
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those of Isenberg et al. I are plotted in Fig. 1. We determined
experimentally the values of f for x/l=0. 5, using samples with
l/b values of about 0.5, 1, 2, and 8, We found them to be in
agreement with the theory. When the problem of the Hall potential
is treated in this way, no so-called "einge-pragte Krafte" nor
electrostatic charges are introduced, as was done by Isenberg.
It is sufficient to consider the resistivity of the material as a
tensor.

Thus no appreciable Hall potential can be built up in the sample
if the current e1ectrodes are placed close to each other. Ferrier, ~

in suggesting such an arrangement, has not taken into account
this fact and therefore his suggestion pointing to very high Hall
voltages is incorrect.

This point of view may be of some importance for the study of
inhomogeneous conductors. Let us consider a material consisting of
highly conducting grains separated by thin layers of lower
conductivity, and let the picture in Fig. 2 be a consistent model
of this situation, The macroscopic resistivity is to a good approxi-
mation: p= pI+(l2/lI) p2. The most interesting case occurs if the
third term dominates the second. I.et this be so. Then approxi-
mately iI. t'~=lI.'4, where iI and ~'~ are the mean values of the
components of the current densities in the direction of J. Now we

'HE thermodynamics of liquid helium on the basis of the
two-fluid theory of He II has been considered independently

hy Gorter' and the writer. ' Though using different methods
these treatments are in many respects similar. We differ, however,
in one rather fundamental point. I assumed zero enthalpy of
mixing of normal and superfluid, which allowed me to set the
partial molal enthalpy of superfluid' II4, equal to zero. I then
obtained an approximate expression for the partial molal entropy
84„which arises from an entropy of mixing of normal and super-
fluid, to be expected from the picture I developed in which the
superfluid is separated from the normal fluid in ordinary space
as well as momentum space.

On the other hand, Gorter based all his applications on Tisza's'
assumption that the total molal entropy is equal to the molal
entropy of normal fluid times its mole fraction. This is equivalent
to 84, =0, or no entropy of mixing. On this basis H4, must be
finite; in fact, —H4, /T will be given by an expression very
similar to that found by me for 84„and it plays much the same
role in the theory, namely that of stabilizing the mixtures of
normal and superfluid below the P-point.

Either assumption is thermodynamically possible, We wish
here to consider the possibility of distinguishing between them
experimentally by means of the change of the X-temperature Tp,

with pressure or with mole fraction x~ of He' in a mixture of the
isotopes.

If S4,=0, we obtain instead of Eq. {25) of reference 2 (1949)

dp jdT& =S& j(V&,—V, & } (1)
which differs from Eq. {25) only by lacking the factor rj(r+1)
{roughly 0.85) on the right-hand side fV4, , p, —= V2 &, of Eq. (25)j.
This e ould upset the previously found good agreement with
experiment somewhat, but hardly enough to be conclusive in
view of the uncertainties involved. It offers, however, a possibility
for future investigation.

The effect of He' on the )-point of He4 has recently been
investigated theoretically' ' and experimentally. s' Assuming
84,=0, and assuming that He' and normal He' form an ideal
solution, with He' insoluble in superfluid, "Engel and Rice showed
that

FIG. 2. A model for an inhomogeneous conductor. d T&,/dx3 = —R T&,2/04„, &,(1—x3) {2)


