
LETTE RS TO TH E E D I TOR 1019

the contribution of Li', the scattering length of lithium at zero
energy equals $(a —y'/E, ), or -0.7.10 "cm which is numerically
of only qualitative significance because of the uncertainty in
estimating the parameters y' and E, and the approximation
involved in using the single level resonance theory.
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ESONANCES recently observed by several authors' in

(y, x} processes at y-energies @v=20 Mev have been inter-
preted by Goldhaber and Teller' as dipole vibrations due to
collective motion of all protons relative to all neutrons inside the
nucleus, Goldhaber and Teller treated in detail a very simplified
model assuming periodic displacement of a rigid proton sphere
relative to a rigid neutron sphere. However it seemed worth
while to discuss the more plausible model, mentioned only shortly

by these authors, of an interpenetrating motion of the proton
Quid with density p~(r, t), and neutron Auid with density p„{r,t),
under the condition of constant total density po=p„+p, and
fixed nuclear radius R=roA&. This model, besides representing a
'case of a peculiar hydrodynamics, does not require any arbitrary
parameters.

The "symmetry-energy term" in the expression for the nuclear
binding energy' per nucleon: E.(Z —E)'/A~, with E=20 Mev,
can be interpreted as E.(p„—p, )'/po' because of the short range
of nuclear forces. By multiplication with po we obtain an energy
density:

«(PJ —pn} = po &(p.—pi~)'/po'=&' (2PI —po)' jpo~ (&)

which is a function only of the local density-difference. This term
is to be inserted into the Lagrangian L of hydrodynamics,

1.=f«l ~~LuA. +c.4» j kzIP. (g«d4.)'-
+Pn(g«d4 ~)'j—~(Pu Pa) I

with N the nucleonic mass. From 8J LCk=0 follows Euler's
equation for the relative velocity v = (v„—v ) = —(grad&„
—grad@„):

Mdv jdt = —(cue /Bpp') gradp~= —(8Kjpo) gradpp

together with the continuity equation

p = —p =d»I{p.p-jpo}vI. (4)

In the customary way we have linearized the equations by
omitting quadratic terms in v, gradp~, and p~. The velocity of
propagation of relative density disturbances turns out to be

I= p(zx /A2) 8E/.vg~~c/5. (~)

Combined with the boundary condition v, =—0, implying Bp„/Br —=0,
at r=R, Eqs. {3) and (4) have been solved by Lord Rayleigh. '
Dipole vibrations of type p&=(Z/A) po+y(r) cos8 exp{icot) exist
with lowest eigenfrequency

kuo=2, 08 AN/R=(4'/A'}& 60 A& (in Mev). (6)

For comparison with experimental data see Fig. 1.
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FIG. 1. Abscissa: atomic number; ordinate: resonance frequency for

(y, x). Upper curve; absolute values kcoo (in Mev); crosses experimental
values. Lower curve: relative values, zoo . coo(Ta).
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VERY simple estimate of the variation of proton density

p~ inside the nucleus is afforded by the assumption that the
"symmetry-energy term" in the expression for the nuclear binding
energy per nucleon:

K (Z—X)'/A', with E=20 Mev,

should be understood as resulting from an energy density

(p p ) =& (p —p.)'/po=&(2p po)'jpo, (&)

as proposed by Steinwedel, Jensen, and Jensen in the preceding
letter. This assumption should be a good approximation at least

It is easy to include in the formalism the effects of radiative
damping and of damping by dissipation of collective motion into
disordered motion (heating by friction'} followed by nucleon
emission, We introduce the radiation width I'„

AI', /2mc'= (2$Zm/3A~M'}(8/hc)(ku/2mc')' (7}

(m=electronic mass), the total width I' which must be taken
from experiments, and the phase angle y between incident field

strength and induced nuclear dipole moment, defined by tgcp

=Fey/(aP —~o'). In this motion the total cross section o is

cr =4m-(e'/2mc')~(XZm/A M}(e /hc) (2mc2/kI') sinsy, (8)

and the scattering cross section is o,=tyF, /I'. For the integrated
total cross section we obtain:

(It/2mc') J'o.Ao =2x'(e' /2mc')' (SZm/A M) (Ac/e ) {9)

which is one-half of the corresponding value given by Goldhaber
and Teller for the rigid sphere model.
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