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energy

30.5
33.9
43.9
47.0
48.2
53.6
55.3

57.2
62.5

64.7

66,7
72.1

74.0

81.7

Pro-
posed
inter-
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tion

K7
L1'
K8
L1,22

L1,22

L8
L1,2
M2

L18
M8
L85
M4

(L1')
(K~)

¹

M8
L1,28

L88
(M')
(Ke)
M8

Energy
sum

99,8
46,0

113.2
58.4
58.4
65.1
65.4
66.9
58,3
67.4
74.6
65.3
74.9
67.5

(76.8)
{133.8)

67.3
74.9
84.2
84.4

(76.8)
(143.2)

84.5

Gamma-
energy

46.0{1)

ss.4(2)

65.3 (3)

67.2 (4)

74.8(5)

76.8 (a)
133.S(b)

84.4(6)

143,2 (c)

Elec-
tron

energy

81.7
88.3
89.6
97.0
99.1

101.2
102.8
109.2
110.3
128.2
139 9
151.8
158.7
166.2
175.3

185.5
193.0
209.5
216.1
225.1
250.6
259.5

Pro-
posed
inter-
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tion

8

L1,27

I 27

Mr
¹

Li, 28

L88
K10
M8
K11
L18
K»
K»
I 110
M10
Kd
L111
K'&
L1 212

I 1 218

M 18

L1 214

M14

Energy
sum

151.0
99.8
99.8
99.8
99.7

113.3
113.0
178.5
113.1
197.5
152.0
221.1
228.0
178.3
178.1
244.6
197.6
262.3
221,2
228.1
227.9
262.4
262.3

Gamma-
energy

99.8(7)

113.2 (8)

lsl. s(9)

178.4 (10)

244.6(d)
197.5 (11)

221.1 (12)
228.0(13)

262.3 (14)

TAM.E III. The electron energies (kev) from radioactive tan-
talum 182. (Superscripts are arbitrary numbers assigned to the
gamma-rays in the order of increasing energy. )

probably exist, but since they cannot be evaluated with
the same certainty, they are omitted in this report.

All fourteen of the strong gamma-rays indicated by
this interpretation 6t well a proposed level scheme as
shown in Fig. 6. Among other possible transitions,
gamma-rays of energy 76.8, 133.8, 143.2, and 243.9 kev
would also be expected. On critically examining the
electron energies, it may be noted that a double in-

terpretation of certain electron lines would in fact yield
these gamma-rays. These four gamma-values are shown

by arbitrary letters a, b, c, and d instead of numbers in
Table III and are indicated as dotted lines in Fig. 6.

Additional high energy gamma-rays are known4 to
exist in tantalum with energies of about 1 ~ 12, 1.19, and
1.234 Mev.

This investigation was made possible by the support
of the ONR and the AEC.

4 C. H. Goddard and C. S. Cook, Phys. Rev. 76, 1419 (1949);
W. Rail and R. G. Wilkinson, Phys. Rev. 71, 321 (1947).
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In this paper it will be shown that the limiting processes by means of which the integrals of the Hamil-
tonian of the interacting electron-positron field with the electromagnetic field are defined, may be carried
out so that the self-energies of the electrons and photons are zero.

I. INTRODUCTIOIW

IELD theories have been plagued by the appear-
ance of divergent expressions for the self-energies

of the elementary particles. The purpose of this paper
is to show that by the use of appropriate limiting
processes for the integrals which dehne the Hamiltonian
of the interacting fields, one can in fact obtain the value
zero for the self-energy integrals. Although we will work

here only with the electron-positron 6eld in interaction
with the electromagnetic field, I believe that the
technique used here will also enable one to eliminate
the self-energy problem in other cases as well.

This work will be carried out in a momentum space
representation. In this representation the Hamiltonian
for the interacting electron-positron field and the
electromagnetic 6eld, may be written

b(y-p'-k)
II= J~dpdy'8(p —y')e~, (n~,+as,)+ ~tdkdk'8(k —k')katy+a& ~ ——

~l dpdy'dk
27'~ (k)&

fdp~p dp dp
X I (~&,+~& .)a~a(ysl a~a ~l p's')+(~&, +~s,)a~~+(y's'I e&~ al ys) I+ ~(y —p'+ p"—p"')

I p p'I'—
X( '+ '")( .-"+ .- "-)(psl 1

I
p"')(p'""I 1

I

p"'s'") (1)

At this point remarks concerning the notation used
in (1) are appropriate. I am using units such that
h=c=1, e'~1/137. Symbols printed in bold face type

*Work performed at the Brookhaven National Laboratory,
under the auspices of the AEC.

are vectors, dp is a small volume of momentum space.
0, is the Dirac vector with 4)&4 matrix components
Qtl, a2, 0.3, which satisfy the relation 0.;n;+0.;n;=28;;.
The other Dirac matrix p satisfied pa;+a/I=0, p'=1,
with 1 the 4X 4 unit matrix. By the symbol (ps I

A
I
p's')
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is understood Q p U *(ps)A sUs(y's') in which Us(y's')
is the Pth component of the Dirac spin function corre-
sponding to an electron of momentum y' and spin state
s'. The spin function U(ys) satisfies H~U(ys) = e~,U(p, s)
with E4= a y+mP, with m the mass of the electron.
The spin functions are normalized so that (ps~1~ps')

U *(ys) is the complex conjugate of U, (ps).
a),~ is the annihilation operator and a),~+ is the creation
operator for a photon of momentum k and direction of
polarization r),~. ) takes on the values 1 and 2, and
e~~ k=r2~. %=ad~. e2~=0. The commutation relations
satisfied by the uz& and uz&+ are

[au„ax g ]=0, [a&,)„a),g+j= b),), 8(k k—') .(2)

By 8(p—y') is meant the three-dimensional Dirac
8-function, and 6M, is the Kronecker 8. O.p, is the
annihilation operator for an electron of momentum p if
s refers to a positive energy state; if s refers to a negative
energy state then np, is the creation operator of a
positron of momentum —p. O.p,+ either creates an
electron or destroys a positron according as s refers to
positive or negative energy states. The commutation
relations satisfied by the O.y,+ and ny, are

L ... ."3 =o [ ... , "+3+=~- ~(p —y') (3)

The plus sign is placed on the bracket to indicate an
anticommutator. Whenever a parenthesis is placed
around a combination of a- and n+-operators, it is
understood that all creation operators are to be written
on the left of the annihilation operators whenever this
makes a difference. For example, (n~,+a~, ) =as,+a~,
if either or both s or s' refer to positive energy states
but (ns,+a~, )= —as, a~,+ when both s and s' refer to
negative energy states. Due care must be taken as to
sign so as to be consistent with the anticommutation
relations (3) as in the above example. The above con-
vention as to the meaning of (a~,+a~, ) then insures
that the Hamiltonian (1) is the Hamiltonian of electron-
positron theory.

II. THE COULOMB SELF-ENERGY

The last term of (1) gives the Coulomb interaction
of the electrons and positrons with themselves and each
other, and includes also the Coulomb self-energy eGects
to order e'. We now observe that

dk ep+Hy e~g+Hp g ey+Hy
-&-(p)= '

~ I(p) k2 2' 2'
ep —Hp ey g—Hp g ep —Hp

2ep 2' 28p

dk e~—Hs er ~+H~& e~ —H~

J+
II(p) k 2ey 2ep

~p+Hp ~p Q Hp Q 8p+Hp

2ep 2e~q 28p

dk er+Hs e~g+Hs pep Hy-
+J

$$T(p) k' 2ep 2ep 2'
8p

—Hp 8y g+Hy g ey+Hy
+

2ep 2ep ~ 2ep

ep —Hy ep ),—Hy f, ep+Hp

2ep 2'

considering the last term of (1) we shall suppose that
the integrals over p, p', y", and p'" are to be integrated
over a finite region. However, for different values of
the spin indices s, s', s", and s"' these regions will in
general be diGerent. Actually, of course, because of the
presence of 5(y—p'+p" —y"') in the integrand these
integrals are electively over a nine-dimensional space.
One condition which we impose on these regions is that
the resulting operator must be Hermitian. Another
condition which we impose is that the operator shall be
symmetric under the interchange of positive and nega-
tive energy states. We may now abstract from (1) the
self-energy of the electrons and positrons which may
be written by using projection operators for positive
and negative energy states as

g2

~dpdp'b(p —y')
(2s)'~

X (a,.+a, , ) (ps I ~„(p) I
y's') (4)

in which

may be written as

ey+Hy ey k H, ~ep —Hy]—
(5)

2e~ 2e~ & 2ep

plus additional terms. It is the additional terms which
give rise to the positron and electron self-energy. We
also wish to point out that the integrals which define
Coulomb energy are in fact divergent and that the value
of the self-energy parts of the Coulomb energy depends
strongly on the limiting process by means of which such
integrals over infinite domains are always defined. In

In (5) the three different integrals carry the sub-
scripts I(p), II(p), and III(y) which indicates the
finite regions in the k space over which the integrals are
to be evaluated. These three regions depend on p and
are not necessarily the same, as one can readily see
that each term is Hermitian and invarient under the
interchange of positive and negative energy states.
The expression (5) for the Coulomb self-energy may
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be simpli6ed to the following form Ar(p) —Arr(p)+Br(p)+Brr(p) —Cr(p) —Crr(p) =0, be-
cause the terms Ar(p) and Arr(p) diverge linearly while

Br(p) and Brr(p) diverge only logarithmically. This
shows that the Coulomb self-energy of order e' may be
made zero when a suitable limiting process is used to
de6ne Coulomb interaction terms of the Hamiltonian.

Hy ~ dk( ep' —p k)~.,(p) =—'
2ep4r(p) O' 4 epep k

HP t dk( eP' —p k)

2eP&„(P)u2( ePe~k & III. THE ELECTROMAGNETIC SELF-ENERGY OF
THE ELECTRON

dk (pk
H, —«k!. (6)

~ ar(p) &'e j, 0 ey'
The interaction between the electron-positron current

and the transverse electromagnetic 6eld, as given by
the third term of Eqs. (1), gives rise to an electro-
magnetic electron self-energy. An easy way to exhibit
this self-energy is to elimina, te the third terms of (1)
by means of a unitary transformation.

We now transform H by means of a unitary transfor-
mation of the form e'~' in which S~ is Hermitian,
5~+= S~. The transformed Hamiltonian, H', is given by

De6ne the following integrals

dk
Arr(p) = t-

IT(y) ~ ep

dk
A.(p) =- I'

2 g(p) P ep

dk
B»(p)=- '

2~/)(p) k ey

1} dk
Br(p) =-

2 g(p) k ep

1
J

dk(p. k)
Crr(p) =

2~gg(p) k'ey gey'

1
{

dk(y. k)
Cr(y) =-

2 a g (p) k ey fey
The second term of (9) is of order e and will be taken
to be zero by an appropriate choice of S&. The third
term of (9) is then of order e' and contains the electro-
dynamic self-energy to order e'. We now obtain

1 r dk(p k)
Cr»(p) =—

2~ TTI(p) ~2e~kep2

(&)
H'=e s (H,+H +H )e s

=Ho+ Hr —i[S), Ho]}
+ {H2—s[S), H)]——,'[Sr, [S),Ho]]}+ . . . (9)

Then if the integral with respect to k is carried out
with azimuthal symmetry with respect to y we obtain

~-(p) =Hp{ Ar(p) —A»(p)+Br(p)+B»(p) —Cr(p)
Crr(P)+2Cr—rr(P)} —2«peP'Crrr(p)/P' (g)

then

[Sr, Hp]= iH), —

O'=Ho+H2 —(i/2)[S)) H)]+

(10)

By inspection of (7) one can see that Ar(y) and
Arr(y) are positive and diverge linearly with respect to
the integration on k. Br(p) and Brr(y) are positive and
diverge logarithmically with respect to integration on k.
The integrals Cr(p), Crr(p), and Crrr(p) may be made
positive or negative or zero and in general diverge
linearly with the size of the region of k integration. In
particular we may take region III(y) so that Crrr(p) =0.
Further, the relative shape and size of regions I(p) and
II(p) may be taken arbitrarily many ways so that

A solution of (10) for S) is

ie
t

dpdp'dkb(p —p' —k)5=——
27r~ (k) &(eP, —eP, —k)

X {(«p+«p ")o»(ysle» «lp s)
—(«p "+«p )o»+(y"

I
e» «I ps) } (12)

Using this value of S& we compute the electrodynamic
part of H' of order e'

e'
{

dpdy'dp"dy"'dkdk'5(p —p' —k) 5(p"—p"'—k')
H, , r ————[S„H)]=

se& (kk')&(eP, —eP, —k)

X [(«p,+«p, )akk(ps I
e». «I y's') —(«p, +«p, )akk+(y's

I
e»' «I ps),

(«p" " «p'" -)& k (y"s"
I sk" «I p"'s'")+ («p- ""+«p"")ok '+(p'"s"'I ek'k' «I p"s")] (13)

Evaluating the commutator in (13) we obtain

~dydy'dy"d p'"&(y p'+ p" p'"—), —
(prt +y/at) (+plralr Ofpllls)lll

I
p-p'I(ep. -ep "-

I
p- p'I)

X(ysl.k,' I
p"')(y'""

I ~,' «I p"""')+C.C.

e'
t dpdy'dkdk'

+ b(p p k k )«ps «p's'okkok'k'
s~ ~ y~')~
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exk
' a(ep-k+Hp-k)ex'k' ' 'I ekk ' a(ep-k Hp —k)ek'k' ' a

X( ys +
2ey k(ep, —ey k —k) 2ep k(ep, +ey k

—k)

ex k ' c(ep +k+Hy +k)exk' cK ek k ~ lK(ep +k Hp +k)elk ~ +

2ep+k(ep'+k ey, —k) 2ep+k( —ey+k —ey. , —k) )
e' ~dpdp'dkdk'

+ b(y —y'+k' —k)np, +ap, ak k+axk
g~~ & (kk'):

( elk' c(ep-k+Hp —k)ex'k' ' ik exk' a(ep —k Hp —k)ex'k' ' ir

Xi ys +
2e, k(ey, +ey k

—k)2ey k(ey, —ey k
—k)

ek k G(ep yk+Hp +k)elk ' ir ex'k' ' a(ey'+k Hp'+k)elk
y's' i+C.C. . (14)

ey +k(ep +k ey ——k) 2ey'yk( ey'+k ep'I' )

As was the case in my earlier discussion of the
Coulomb self-energy, we consider the integral. defining
Hi to be integrated over a certain 6nite region in (y, y')
space which region will ultimately be taken in the limit
to include all the (y, y') space. The particular wav in
which this limit is taken, strongly influences the value
which H~ ~ approaches. There is no loss in supposing
that if the point (y, y') is in this finite region then the
point (—y, —y') is also in this region. To preserve the

charge symmetry of the theory we may now take the
region for (ey,)0; ey, &0) to be the same as the region

(ey, (0; ey . &0) and label this region, I(y, y'); we must

also take the region for (ey, &0; ey, &0) to be the same

as the region for (ey,)0; ey, (0) and label this region,

II(y, y').
The electromagnetic self-energy may now be obtained

from (14) and is

in which

"dykey'(~ '~yy ")(ysI ~-*(y) I
y's')~(y —y'),

2(2~)'~

dp' ey+H~,(p)= t
"~&pi I y —y I 2ep

ey +Hy
~Ay —p' ' +

2ey p

ep+H p

2ep

—e —Hp y ep —Hyp p e —Hy y
~)~y—y' ' 0' F)l,y pe

0',

2ey ey —ey —
~ y—y (2epe2ep

dy' ey —H
+

~eiyi Iy —y I 2ep

y epp+Hpp ep Hp
R)p p& C R)ty pp ' C

2ep p 2ep

dp' ep+Hp ey~+Hye ep Hp

j+ Fyp pr 0.' &)~p—p' '

eipi (y —y ( 2ey 2ep 2ey

ep+Hy ey Hy ey+Hp t— 1
C)tp pe ' 0,' +p pp' C

2ep 2epI 2ey I —ey —ey —
( y —y'(

2ep 2ep

ey+Hy ey. —Hy. ey —Hy
Ryy pp' C &Xp-p' ' +

ep ep' ly y ~

2ep

ep —Hp ep —Hp ep+H
Cgp pe'6 cd py

' G
2 2ep p

dp ep —Hp ep~+Hy p ep+Hp
+ i egg y' ' C c)tp pe R

"ii&y& Iy —y I 2ey

+C.C. (16)
ep ep'

I y y I
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In (16) the region A(p) over which p' is integrated is
the region common to I(y, y') and I(y', y) for fixed p.
The integration region, B(p) for y' is the region common
to II(y, y') and II(y', y) with fixed p. The integration
region, C(y), for y' is the region common to I(y, p') and
II(y', y) with fixed y. The integration region, D(y), for
p' is the region common to II(y, p') and I(y', p) with
fixed p, As was the case for the Coulomb self-energy
we may write here

~-(y) =~(y)II&+$(y) u (17)

Here A (p) is composed of the sum of two logarithmically
divergent integrals plus the diQ'erence between two
linearly divergent integrals, plus some indefinite linearly
divergent integrals. The vector $(y) of (17) is an
indefinite linearly divergent integral. Thus, we see that

by an appropriate choice of the regions I(p, p') and

II(p, p') both A (p) and $(p) may be made to vanish.

IV. THE PHOTON SELF-ENERGY

We have already computed the expression (14) from
which the self-energy of the photon may be obtained.
To make the self-energy vanish it is not necessary to
have the two regions I(p, p') and II(p, p') different.
Since making these two regions the same results in
considerable simplification in the expression for the
photon self-energy, and does not alter the character of
divergent integrals in terms of which it is expressed,
we make this simpli6cation even though it is not
consistent with (16). The self-energy of the photons
may now be written:

e' t dkdk'
II„k.=

~

akkak k 8(k+k') ~ dp spur ekk n
&{&)

ep —Hp
&X'k '0'—ep —Hp g

—k 2ep

ep —Hp e' pdkdk'
dp spul' cg~k~' c skk (k +C.C. +—I ak k+akks(k' —k)

&) (k) II~k+eq k—2', 8n'~ k

ep —Hp ep —Hp 1
dp spur aqua, e — aq ~"n + s), k'n--

-"e(k) —ep —Hp ~—k 2ep 2ep —ep —Hp ~—k

ep —Hp ep —Hp 1
dp spur sk~kl (k + ek k' n . (18)

8{k) II~k+ e~ —k 2e~ 2e~ IIs+k+ e)) k—
In (18) the region E(k) is composed of those values of p for which the points p and p —k lie in I(p, y —k) for
fixed k. The F(k) is comprised of those values of p for which the points y and p+k lie in I(p, p+k) for fixed k.
The spurs in (18) are readily evaluated and we obtain

e'
I

dkdk'
, I

I- dy( 2Pk' ) ( dpi 2pk'
IIyk Gxkux'k'ekk'ek'k 8(k+k')' —,~

—
~

1+
~

—
~~

—
(

1—
~

+C.C.
Sm 4«» ep E e~k+p k) &«» e, (. e~k+p k)

e' pdkdk' ( dp r 2pk' ') (' dP ( 2pk'
+ ()k k+akkekk ek k ()(k—k') —

~l
—

] 1+ (
—

~'

~

1
) . (19)

(2s)'~ k ~g(k) e~ E esk+p k) "F(» e~ 4 epk+p'k)

In (19), g is the component of p in the direction of
the polarization vector ekk. The expression in (14)
determining the photon self-energy is the sum of two
negative quadratically diverging integrals, one positive
cubically diverging integral and one negative cubically
diverging integral. This combination can be made to
vanish by an appropriate choice of the region I(p, p').

Is it possible to choose the regions I(y, p') and
II(p, y') so that both the photon and electron self-

energy vanish simultaneously' This question can be
answered with certainty in the afhrmative provided
each of the regions I(y, p') and II(p, y') are split into
two parts which may be di8erent depending on whether
the plane of polarization of the photon lies in the plane
of the two vectors, p and p', or is perpendicular to this
plane. If we had made this separation of I(y, p') and
II(p, p') then (16) would have been composed of the

sum of eight integrals. The vanishing of the coeKcient
A(p) of (17) depends essentially on making the two
regions I(p, p') and II(p, y') of different total volume.
The vector coefficient $(y) of (17) is shape dependent
and depends essentially on the component of p' which
is perpendicular to the polarization vectors of the
photons. On the other hand, the cubically divergent
terms of (19) depend on the component of p which is

parallel to the polarization. If we had properly treated
the photon self-energy, the expression for the photon
self-energy would then have been the sum of eight
integrals. The leading divergences in these integrals
are the same as those in (19).It is this correct expression
for the photon self-energy which one must make zero
rather than (19). We now see that the photon and
electron self-energies can both be made to vanish.
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[P„P„]=0,etc.
[H, P,]=0, etc.
[I... I„]=[M„,M.]=iI... etc.
[M„I,„)=[I„M,]=iM„etc.
[I.„M,]=0, etc.
[I. , P,]=0, etc.
[I.„H]=0,etc.
[I...P„]=iP., etc.
[M„H]=iP„etc.
[M„P,)=iH, etc.
[M„P„]=0,etc.

(20)

In these equations H is the energy of the system and
P, is the x-component of the momentum, I, is the
s-component of the angular momentum, and the
M„M„,M, are the generators of infinitesimal Lorentz
transformations. If we use for H the expression as given
by Eq. (1) omitting the Coulomb self-energy parts, and
if we use for the P, P„,P, the sum of the momenta of
the photons, electrons and positrons, we may then solve
equations [M, P,]=iH, [M„P„]=0,and [M„P,]
=0 for M,. We can also solve for M„and M, . The
structure of the terms M„M„and M, is similar to that
of H. Simple forms for I.„L„and I, are obtainable
which are similar to those of P, P„and P,. One can
then show that, provided certain indefinite divergent
integrals are taken to be zero, all the commutation rules

' P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

V. COMMENTS ON RELATIVISTIC INVARIANCE

The condition that a theory be relativistically
invariant& may be based on the system of commutation
relations

relating to (20) are satisfied. These integrals arise, for
example, when one computes [M„H] and must be
taken to be zero if we s.re to have [M„H]=iP,. This
means, of course, that the limiting processes by means
of which B is defined must be carried out so as to
satisfy (20).

In Eq. (9) we introduced a unitary transformation to
eliminate the interaction between the positron-electron
current and the transverse electromagnetic field. We
may look upon this transformation in a manner which
is different from the way we have used it thus far. We
may suppose that the Coulomb self-energy of the
electron has been eliminated from (1) and that the
integrals defining B~ have been carried out in such a
manner as to insure the satisfying of relations (20).
S~, a finite Hermitian operator, is then taken to elimi-
nate those parts of H~ contained in the regions I(p, p'),
II(p, p'). Since S~ is now a finite Hermitian operator,
eis1 is in fact a unitary operator 3nd g e $8$+e%8&

M, '=e 's'M&'s', etc. will also satisfy relations (20).
We now note that all the matrix elements of e'8&

approach zero as the regions I(y, p') and II(p, p')
become infinitely large. In view of this behavior of e' &

it is not surprising that differing limiting processes can
lead to very different results for the first few terms of
the expansion of H' as given by (9). We wish to note
here that if this above procedure is adopted, then
i[S&, H&] is no longer the same as —[S» [S» H0]] so
that (9) can no longer be reduced to (11). It suffices
to say that this modification does not alter the possi-
bility of obtaining a vanishing photon and electron
self-energy to the order e'.


