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A theory of secondary electron emission from metals is formu-
lated on the basis of the Sommerfeld free-electron model, mo-
mentum transfer between electrons and lattice being included by
introducing a finite mean free path for elastic scattering. The
approach to the problem is similar to that of Kadyschewitsch, but
the development is simpler and comparison with experiment is
made in more detail. An understanding is reached of the influence
of work function and the width of the conduction band, making it
clear why, on the average, metals with large work function might
be expected to be the best emitters. The observed effect of chang-
ing the work function of a given metal by surface layers of foreign

atoms is interpreted, an inverse relationship between emission
and work function being obtained which is in qualitative agree-
ment with experiment. The theory also accounts for the velocity
distribution of the secondaries, giving the general shape of the
curve and determining the approximate position of the maximum,
and is consistent with the observed angular distribution of the
secondaries. The investigation is not carried far enough to give
new theoretical information concerning the variation of secondary
emission with primary energy. However, the relation of the present
theory to some work of Bruining is indicated, and attention di-
rected to an important empirical relationship.

1. INTRODUCTION

T is well appreciated that a tremendous clarification
of phenomena occurring in metals followed Sommer-
feld’s application of Fermi-Dirac statistics to the free
electrons. The simplicity of the Sommerfeld model
gave it lasting value, even in cases where more com-
plicated models were employed with considerable suc-
cess in later work. It is therefore remarkable that until
a few years ago almost no effort was made to provide
a simple treatment of secondary electron emission in
terms of this model.

The theoretical papers most often quoted in this
field are those of Frohlich! and Wooldridge,? in which the
problem is handled quantum mechanically, the elec-
trons of the metal being described by wave functions
of the Bloch type. In a way, this degree of complexity
is necessary since, as was emphasized by Frohlich,
momentum transfer between electrons and lattice plays
an essential part in secondary emission. In particular,
without such transfer no secondaries could leave a
surface bombarded by normally incident primaries.
When Bloch wave functions are used in the manner of
Frohlich and Wooldridge, this transfer enters auto-
matically, since the conservation of momentum equa-
tion for the interaction producing a secondary includes
a term representing momentum change of the lattice.
This type of treatment also brings to light certain in-
teresting quantum effects associated with the discrete
momentum changes which are permitted the lattice.

There would seem to be qualitative value, however,
in a much simpler theory in which the primary is con-
sidered to interact in a classical manner with a free
electron gas, the possibility of momentum transfer
to the lattice being introduced by assuming a finite
mean free path for elastic collision. Several years ago
such a theory was developed by Kadyschewitsch in a
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series of three papers.® In the first of the papers, the
author formulates a theory and applies it to metals,
giving some attention to most secondary emission
phenomena which have been studied experimentally.
In the later papers he extends the theory to insulators
and semiconductors. The calculations are almost en-
tirely classical and are intended to give insight into the
mechanism of emission and to emphasize properly the
influence of electron scattering and absorption. Al-
though the use of classical principles greatly simplifies
the calculations, the problem remains complex and it is
not clear that all the mathematical difficulties have
been adequately met. The final results are therefore
probably more limited in significance than would have
been judged from the starting assumptions. It is partly
because of this circumstance, and partly because it is
felt that more attention should be given the Sommer-
feld model, that the present paper is offered. Here an
effort is made to develop an alternative treatment which
is less elaborate than that of Kadyschewitsch, but still
is capable of giving some results of about the same ac-
curacy. Attention is limited to a few aspects of emission
from metals, and certain substantial simplifications are
introduced from the beginning. Although the develop-
ment gives some insight into a variety of secondary
emission phenomena, it is most successful in showing
how the Sommerfeld model can clarify the role of work
function, and account in a qualitative way for the
velocity distribution of the secondaries.

2. THE VELOCITIES OF INTERNAL SECONDARIES

Since no attention is to be given to the small tempera-
ture dependence of secondary emission from metals,
the electrons will be treated as a completely degenerate
Fermi-Dirac gas. In momentum space all states lying
within a sphere of radius po about the origin are filled,
while states of greater momentum are empty. The
momentum p, corresponds to the maximum Fermi

3 A. E. Kadyschewitsch, J. Phys. U.S.S.R. 2, 115 (1940); 4,
341 (1941); 9, 431 (1945).
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SECONDARY ELECTRON EMISSION

energy, Eo=po*/2m, and is related to the space density
of free electrons in the familiar manner.*

Primary electrons of about one hundred electron-
volts or greater are considered. The collisions of greatest
interest are then those in which the fast primary trans-
fers a small part of its energy to an electron of the metal.
In calculating the momentum transfer for such a colli-
sion one may consider that the primary moves with
constant speed along a straight line and interacts with
a metal electron whose motion during the collision is
negligible. In this approximation, the momentum trans-
ferred is perpendicular to the primary path and is
given by the integral:

A f“‘ e*pdt 2¢? W
=) e v,

Here, e is the electronic charge, p, the distance between
the metal electron and the primary path, and V, the
velocity of the primary. The time, ¢, is measured from
the instant of closest approach.

Thus, for the metal electrons at distance p, the
effect of the passing primary is a shift of the center of
the occupied momentum-space sphere from the origin
by the amount Ap. The number of secondaries per
unit volume at this distance having momentum greater
than upy, is the volume of the displaced sphere which
lies outside a sphere of radius upe about the origin,
multiplied by the density in phase space, 2/ De-
noting this number by G, and calculating for u>1,
which is the only case of interest here, one finds:

Thod

G<s>=67:{3<#2—1)?—8@3—1>s+6m2+1)s2—s4} @)
S

p—1<s<p+1
s2pt1, 3)

where 7 is Planck’s constant and s=Ap/pe.

By carrying out an integration over p, one can now
calculate N(u), the production of secondaries per unit
primary path length with momentum exceeding upo.
According to (1), the element of area is

2mpdp= — (8me'/ V2pe2)ds/s* 4)
and N (u) is given by the integral:®

G(s)=8mpe®/30*

mV/po
N(u) = (8met/ V2pe?) f G(s)s—%ds. (3)

When the integral is evaluated for high primary ve-

4 See, for example, the outline of the free electron theory of
metals given by F. Seitz, The Modern Theory of Solids (McGraw-
Hill Book Company, Inc., New York, 1940), Chapter IV.

& The upper limit corresponds to a momentum transfer equal to
the total momentum of the primary. In this calculation, certain
errors are made in the small p-range. However, this should not
lead to a significant final error, since the collisions in this range are
relatively few.
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locity, that is mV>(u+1)po, one obtains:
NG 32n%4po ©)
3BV(E—1)

The derivative, —dN/du, gives the momentum dis-
tribution of the internal secondaries, 4 being momentum
measured in terms of the maximum Fermi gas mo-
mentum, po. Introducing the maximum Fermi energy,
E,, and the kinetic energy of the primary electron, W,
(6) becomes:

N(u)=BE}/W (i*—1). (7

When the energies are in electron volts
16072(6) m3/2e7/?
B=o—ou—

=2.95X10% evi—cm™.. (8)
3n

It is of interest to consider whether the calculated
rate of production is at all reasonable. If po is the
minimum value of u needed for escape from the metal,
one finds for typical metals, and for W~10? electron
volts:

N (uo)~107 cm™1,

This result does not seem unreasonable. It means that
if there were no secondary absorption, so that all
secondaries having sufficient energy ultimately escaped,
a primary range of about 10A would account for the
one secondary per primary ordinarily emitted when
the primary energy is several hundred electron volts.

3. THE SECONDARY EMISSION COEFFICIENT

In this paper, attention is limited to perpendicular
incidence, and the elastic scattering of the primaries
by the metal lattice is neglected. All the secondaries
leaving the metal must then have undergone at least
one elastic collision. The relative sizes of groups having
undergone various numbers of such collisions will de-
pend on the ratio of the mean free path for secondary
scattering, /, to that for absorption,® . In a reasonably
complete theory which was to be valid for all values
of this ratio, it would be in order to formulate expres-
sions for the contributions to the emission from the
various groups, and to obtain the total emission by
summing these contributions. The calculations of
Kadyschewitsch are organized in this manner. How-
ever, in the present discussion, it is not proposed to
enter into such relatively complex calculations. Rather,
two special calculations will be made. First, the emis-
sion of singly scattered secondaries will be considered,
which would approximate the total emission only if /
were much larger than A. Then, the total emission will
be obtained for the opposite extreme, /<K\. Comparison
of results in the two cases will indicate that some fea-

6 For simplicity, it is pretended that the secondaries can only
undergo elastic scattering or absorption; and the energy de-

pendence of secondary free paths is neglected. These two simplifi-
cations should partially compensate each other.
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FiG. 1. Variation of second-
ary emission with primary en-
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tures of secondary emission are rather well covered by
the calculations, in spite of their simplicity.

Singly Scattered Secondaries

An expression will be obtained for §;, the number of
secondary electrons which leave the metal surface per
incident primary after having undergone a single elastic
collision. The probability that this collision takes place
at a distance between r and r+dr from the point of
interaction with the primary, can be expressed in the
form:

exp(—oar)-dr/l, 9)

where ¢ is the inverse mean free path (/4+\)/I\. In-
tegrating over 7, and assuming isotropic scattering, one
has for the scattering probability per unit solid angle,
(4wol)~1. Letting ¢ denote the cosine of the angle with
the outwardly directed normal to the surface, the
probability of scattering into any range dq is

dg/2ls. (10)

The typical secondary will be considered to move per-
pendicularly to the primary path before elastic collision
with the lattice, so that a once-scattered secondary,
initially produced at depth z and moving in a direction
specified by ¢, must travel a distance z/q to reach the
surface. For the numerous weak collisions which ac-
count for most of the secondaries from a fast primary,
the momentum transferred is, in fact, approximately
perpendicular to the primary path. Since the initial
velocity distribution of the electrons is isotropic, the
behavior taken as typical does correspond in a rough
way to the average process.

Letting n(q, 2) be the number of secondaries pro-
duced per unit path length at depth z with sufficient
energy to escape at the angle cos™¢, and taking account
of secondary scattering and absorption during traversal

of the layer of thickness z, one has:

1 0
o= (210)‘1f f n(q, z)exp(—oz/q)dzdg.  (11)
0 Yo

According to Eq. (7) of the previous section

Mo BE,ig?
”(‘Iy Z) = AT(_’ Z) =TT

q W (ud®—¢*)
where pg’= (Ey+®)/Ey, ® being the work function of
the metal. For the typical monovalent metals, to which
the present theory should best apply, u,* may be com-
puted from a calculated E, and the observed work
function. Values obtained in this way range from about
1.5 to 2.0.

The dependence of production on z enters through the
slowing down of the primary as it penetrates into the
metal. The simplest approximation is that the space
rate of energy loss, —dW/dz is inversely proportional
to W, which implies:

W2=Wo—az.

(12)

(13)

Here W, is the initial energy of the primary, and @ is
a constant which is characteristic of the metal. With
these assumptions (11) takes the form:

BE Wo?la g2 exp(—aa/q)dqu
z f f (14)
o

2 W= a2)h(ui— ")

The integrand in (14) has a singularity at the upper
limit of the integration which results from using the
expression for the production of secondaries by a fast
primary to the very end of the primary range. How-
ever, the integral converges in spite of the singularity,
and, in fact, does not differ significantly from a more
carefully calculated value based on a more reasonable
variation of productivity in the low energy range.
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A simple change of variable’ makes it possible to
express the z-integral in terms of tabulated functions.
If, in addition, w=g¢? is introduced, one is led finally
to the following expression for é;:

2BEg p* F(Hw)dw
5= [ , (15)
lelad V) (uw'—1)w!
where
F(x):e"zf exp(t2)dt (16)
0
and
H= (W/a)t. a7

The function F(Hw) has a maximum at Hw=0.92, and
varies slowly in this neighborhood. On the other hand,
the remaining factors in the integrand appearing in
Eq. (15) are largest at the lower limit w=1, and de-
crease rapidly with increasing w. Thus for H near
unity (15) can be approximated by the expression:

2.BIL07
F H)f
ld*a* 1 (pow-l)w

To this approximation, the variation of 6, with primary
energy is given simply by F(H). A close examination of
(15) with ue? given the reasonable value 1.6 shows that
(18) is, in fact, a very good approximation. The chief
difference is that, according to the more exact expres-
sion, the maximum of §; occurs at H=0.82, instead of
H=0.92. On the other hand, the value of the maximum
is changed only very slightly by the approximation,
being increased by about 1 percent.

(18)
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Multiply Scattered Secondaries

When / is much smaller than X, most electrons leaving
the metal have undergone a large number of elastic
collisions and have moved to the surface by a diffusion
process. Considering a primary current of unit density
(one electron/cm?-sec.), and using Egs. (7) and (13),
we may write for the production of secondaries with p
in the differential range du per unit volume per unit
time:

2BEyudu

(W—az)d(uw—1)*

If all secondaries with u>puo could freely leave the
metal on arrival at the surface, elementary diffusion
theory® would give for the secondary current density
the integral of the following over the primary range
and over all u>puo:

2BEy} exp(—z/L)ududz
(W~ az)t(u?—1)?

where L is the diffusion length (A//3):. Actually an
electron approaching the surface with momentum up,
will escape only if the cosine of the angle with the
normal exceeds uo/u. Expression (20) must accordingly
be multiplied by the corresponding fraction of the
forward solid angle, (u—guo)/u, before integration. In
this way, one obtains:

IBESL! « (um o)
b= B[(W¢/aL)'] f el

at (W2—1)?

where F(x) is again the function defined in Eq. (16).
The dependence of the emission on the primary energy

(19)

) (20)

(21)
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"H. Bruining, Die Sekunddr-Elektronen-Emission fester Korper (Verlag Julius Springer, Berlin, 1942; Edwards Brothers, Inc.,

Ann Arbor, 1944), p. 61.
8 See, for example, P. R. Wallace, Nucleonics 4, 30 (1949).
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Fic. 3. Normal energy distribution of the secondaries. The
ordinate, f(e), is the fraction of the secondaries emitted with
normal energy greater than e®, where ® is the work function. The
curves follow from (27) with ue?=1.6 (solid) and 2.0 (dashed).
The points are based on experimental data for Mo.

is similar to that found in Eq. (18) but the diffusion
length, L, has taken over the position of ¢~*. Our prin-
cipal interest in Eq. (21) lies in the function of uo
which appears. It will be seen later that comparison
with the corresponding function in Eq. (18) indicates
that the dependence of the emission on g, is not sensi-
tive to assumptions concerning multiple scattering.

4. THE VARIATION OF SECONDARY EMISSION
WITH PRIMARY ENERGY

Our development of the theory does not go far enough
to permit us to draw any new conclusions about the
dependence of secondary emission on primary energy.
However, we wish to interpolate a few paragraphs on
this question in order to indicate the relationship of the
present work to earlier considerations given by Bruin-
ing.? Also, the opportunity will be taken to point out
an important fact about the experimental data which
has apparently been ignored in previous publications.

The assumptions made by Bruining, as well as by
other authors mentioned by him, are that the produc-
tion of secondaries per unit primary path is propor-
tional to the rate of primary energy loss, and that
secondaries are absorbed exponentially. These lead to
the following:

6=Kf(—-dW/dz)e““‘dz, (22)
where K is a proportionality constant characteristic
of the metal, and « is the absorption coefficient. Bruin-
ing then uses the energy loss relationship, which we have
also adopted in Eq. (13), and obtains the result

8=K(a/a)F[(Woa/a)t]. (23)

The dependence of § on primary energy so deduced is
the same as would appear in the present work if we

¢ Reference 7, Chapter VI.
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assumed >\, so that &;, as given by Eq. (18) repre-
sented the total emission.

Bruining showed that F(x) has a maximum at x=0.92
so that the primary energy for maximum emission is
(Wo)max=0.92(a/a)}. Also, using values of ¢ and «
which he regarded as reasonable, he showed that this
leads to optimum energies which are of the correct
order of magnitude. However, he does not report a
complete comparison of the form of the experimental
curve of emission versus primary energy with that
implied by Eq. (23). This is most simply done by
plotting &/max as a function of Wo/(Wo)max. If the
emission were given by (23), the equation relating
these quantities would be:

8/ bmax=1.85F{0.92W o/ (W ¢)max) - (24)

This relation is plotted in Fig. 1, together with experi-
mental data for a number of materials. The substantial
difference between the experimental and theoretical
curves is hardly surprising. The interesting thing is
the striking degree to which the experimental points
approximate a single curve. As far as the writer knows,
the existence of such a universal curve has not been
pointed out previously, although a related regularity
was studied by Copeland!® and Warnecke.!

5. THE INFLUENCE OF WORK FUNCTION ON THE
TOTAL NUMBER OF SECONDARIES

There was a natural tendency among early workers
to expect that metals with low work function would
be characterized by relatively large values of the
secondary emission coefficient, but measurements have
shown that this is by no means true. The most signifi-
cant reason for this lack of correlation is the fact that
the bulk of the electrons in the conduction band of the
metal contribute to the secondary emission. This is in
marked contrast to thermionic emission where only the
electrons near the top of the band are important and
the width of the band is of no significance.

The importance of the width of the conduction band
appears in the present investigation when, in each of
the alternative treatments, § is found to be propor-
tional to Eo* multiplied by a function of the parameter
po= (14+®/Ey)%. In each case, this function appears as
an integral. On evaluation, one obtains from Eq. (18)

(1o?/2) (ctnhpet— ctn~pet) — &,
and from Eq. (21)
3 (uo ctnh™lpp—1).

For the range of interest, there is little difference be-
tween these functions, as may be seen by comparing
the series expansions appropriate for po>1. Letting
x=pg 2, these are respectively

«/T+22/11+23/15

10 P, L. Copeland, Phys. Rev. 46, 167 (1934).
11 R. Warnecke, L’Onde Electr. 16, 509 (1937).



SECONDARY ELECTRON EMISSION

and

x/6+2°/10+23/14+- - -

The fact that consideration of the two extreme cases
leads to very similar functions is a strong indication
that these are valid approximations for the actual case.

Since the two functions of u, can be regarded as
equally good approximations, the second will be used
in examining the implications of the theory, because it
is the simpler. The emission is then proportional to

Eo*(po ctnh™po—1). (25)

It is often an advantage to express E, in terms of the
work function, ®, so that only one parameter appears
which is not readily measured. With this change (25)
takes the form:

[®H/ (uo®—1)¥](uo ctnh~luo—1). (26)

If the reasonable assumption is made that the ratio
wo®, and such quantities as the secondary mean free
paths, do not vary in a systematic way with work
function one concludes from (26) that the tendency
should be for & to increase as the square root of the
work function. Now McKay, in his recent review ar-
ticle,”? has plotted dmax against ® for a large number of
metals and has drawn a line among the scattered points
which shows the general trend. A similar plot is given
in Fig. 2, where the solid line is that drawn by McKay.
The dashed line is a plot of (0.35®)}, where the con-
stant 0.35 has been chosen to give agreement with
McKay’s line at intermediate work functions. It is
seen that the theory is correct in predicting an increase
of dmax With ®, and (over a reasonable range) is about
right concerning the rate of increase.

Other experimental data which can be used as a
check of the theory are those concerning the effect of
surface layers of foreign atoms which leave E, un-
altered, while changing u, through changes of the work
function. Bruining®® gives such data, originally obtained
by Treloar and by Sixtus, for oxygen and thorium on
tungsten. Treloar’s data, taken at a primary energy of
300 ev (maximum emission around 600 ev) are: for
clean tungsten (6=1.31 $=4.52 ev) and for tungsten
with oxygen covering (§=1.06 =6.30 ev).

Expression (25), based on a simple spherical mo-
mentum-space distribution, would not be expected to
apply too well to a complex metal like tungsten. How-
ever, it should give a qualitatively correct result if
applied with gy computed from the measured ® and
some arbitrary but reasonable value of E,. Choosing
E,=35 ev, one gets for the ratio of emission coefficients
after and before covering

1.50 ctnh~1.50—1
1.38 ctnh™'1.38—1

=0.78

2K. G. McKay, contribution to Advances in Electronics
(Academic Press, Inc., New York, 1948), L. Marton, editor, Vol. I.
13 Reference 7, p. 56.
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in excellent but partly fortuitous agreement with the
observed 0.81.

In the work of Sixtus, the increased emission result-
ing from decreasing the work function from 4.52 ev,
to 3.30 ev and to 2.63 ev, was observed. The primary
energy was varied from 100 ev to 1100 ev, which is
well past the point of maximum emission. The frac-
tional change of & was found to be a function of the
primary energy, decreasing by about a factor two be-
tween 100 ev and 600 ev, and remaining approximately
constant thereafter. Constant fractional change is, of
course, predicted by the expressions for § developed in
the present paper. Numerical estimates, made in the
manner outlined above, lead to a fractional change
about twice as large as that observed in the large
energy range. It is seen from these comparisons, that
the theory leads in a straightforward manner to a work
function dependence of about the right magnitude.

6. VELOCITY DISTRIBUTION OF THE EMITTED
SECONDARIES

(a) Normal Energy Distribution

Expression (25) may also be used to calculate the
fraction of the emitted secondaries for which the
“normal energy” (that is, $mv.?) exceeds the value, E.
This is just that fraction which could still escape if the
work function were greater by the amount E,** namely:

w1 ctnh™u;—1
_— (27)
Mo ctnh™lue—1
Vv
0 25|
0 20| (]
// Y
Noul o N\
A vj \
I, @
™l v\\\
A\
008 hﬁq‘
\N
v + N%:_(
a +
0 4 6

Fic. 4. Total energy distribution of the secondaries. P(e) de-
notes the fraction of secondaries emitted with kinetic energy
greater than . Here —dP/de, the fraction of secondaries per
unit of e, is plotted against e. The curves are from Eq. (30) with
uo?=1.6 (solid) and 2.0 (dashed). The points show experimental
results for various metals: + Au, X Ag, O Cu (Rudberg, 1936);
] Mo, A Cb (Haworth, 1935 and 1936); V Mc (Kollath, 1941).

14 [L. R. G. Treloar, Proc. Phys. Soc. London 49, 392 (1937).]
The simple relationship between the normal velocity distribution
and the effect of work function change has been recognized a long
time. Treloar used it in showing that his experimental results on
work function change were consistent with observed velocity dis-
tributions.
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F1c. 5. Angular distribution of the secondaries. The fraction
emitted at angles with the normal less than 6 is plotted against 6.
The solid line, sin?, is the approximate result of experiment. The
dashed line follows from expression (35) with p=1.6.

where
u’=14(®+E)/Ey= po’+ (us*— 1) E/ ®.

The curves in Fig. 3 show the fraction (27) as a function
of e=E/®, for u?=1.6 and 2.0. It appears that the
fraction is practically independent of po. The points
shown are based on numbers from Treloar’s paper,!
which were computed from experimental data of
Haworth on the distribution in total energy of the
secondaries from molybdenum ($=4.2 ev). In trans-
lating from total energy to normal energy, Treloar
assumed, in approximate agreement with experiment,
that the intensity of emitted secondaries is propor-
tional to the cosine of the angle between the direction
of emission and the normal to the surface.

(28)

(b) Total Energy Distribution

According to the considerations leading to Eq. (21),
the number of electrons leaving the metal with kinetic
energy in excess of e® is proportional to

0wy = f (i) (62— 1)2d, (20)

where ui*=pe’+ (uo>—1)e. The corresponding fraction
of the secondaries is P(e)=Q(u1)/Q(uo), and the dif-
ferential distribution is:

aP  (po’—1)(m1—po)

- N (30)
de  2u1(us®—1)%Q(uo)
In Fig. 4 this function is plotted against e for uy*=1.6
and 2.0. Since these values cover a rather large range
of this parameter, one may draw the conclusion that
it is actually not of great importance in determining
the velocity distribution.

Experimental points for a number of metals are
shown in Fig. 4, the data having been taken from small-
scale graphs in original papers by Haworth, Kollath,
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and Rudberg.’® An adjustment of ordinates was made
to make the experimental data correspond roughly to
the normalization of the theoretical curves of unit
total area. In general, the agreement is actually better
than would have been expected. Possibly the data of
Kollath, showing more slow secondaries than given by
the theory, are more representative of what might
reasonably be expected. It may be added that over a
reasonable range of u,, Eq. (30) gives 0.7 & as the en-
ergy of the greatest number of secondaries. This agrees
well with observation for a number of metals, and seems
to be within a factor two of the measured value in
essentially all cases.

(c) The Angular Distribution of the Secondaries

It is an almost immediate consequence of the sim-
plifying assumptions made here that the secondary
electrons arriving at the metal surface are moving
approximately isotropically. It is therefore important
to examine explicitly what this implies concerning the
angular distribution of the secondaries after leaving
the metal. According to the familiar refraction law, an
electron incident from the inside at an angle 8 with the
normal, and having momentum up,, will emerge at
an angle @ given by:

sinf= u sinB/ (u>— uo?)*. 31)

For a selected value of B, the electrons emerging at
angles less than 6 are therefore those for which

p/ (uP— po?) < sinf/sinB (32)

or
}.LQ2 sin%f
w>— (33)
sin%— sin’B
According to Eq. (7), the number of such electrons is
proportional to

sin%0— sin?3

(uo?— 1)sin?6+sin?3

(34)

for <6, and zero outside this range. Introducing the
assumption that the number of electrons incident in
the range dB is proportional to the corresponding solid
angle, the number of electrons emerging at angles less
than 6 becomes proportional to the integral:

¢ (sin20— sin?B)sinf
f y 35)
0

(ue®— 1)sin26-+sin?3

This is readily expressed in terms of elementary func-
tions. The integral, divided by its value at 8=x/2, is
plotted in Fig. 5 against @ for the typical case, po®= 1.6,

151, J. Haworth, Phys. Rev. 50, 216 (1936); E. Rudberg,
Phys. Rev. 50, 138 (1936); R. Kollath, Ann. Phys. Lpz. 39, 59
(1941). Kollath reports that annealing produces substantial
changes in the distribution curves. This effect is outside the scope
of the present investigation.
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thus giving the fraction of secondaries emerging at
angles less than 6. Experimental information on the
directional distribution is very limited, but indicates
that the emission per unit solid angle is approximately
proportional to cosf, which corresponds to sin?¢ for
the fraction plotted in the figure. The deviations be-
tween our result and sin?9, which appear in the figure,
are probably too small to be significant.

The angular dependence implied by the theory is
best seen analytically by expanding the integral (35)
in powers of sin%), rather than by considering its exact
value. When this is done, one finds that for ug?=1.6,
the emission per unit solid angle is proportional to:
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and that the coefficients vary slowly with uo in the
range of interest.

7. CONCLUDING REMARKS

It appears here, as in the earlier work of Kady-
schewitsch, that calculations based on the free electron
model of Sommerfeld can lead to a considerably im-
proved understanding of secondary electron emission
from metals, so that this phenomenon should have its
place along with the many others which have been
illuminated by this simple picture.

The author wishes to acknowledge the interest
and encouragement of colleagues at Battelle, especially

cosf(1+40.28 sin’*+0.14 sin*6+-- - -) (36) Drs. H. R. Nelson and F. C. Todd.
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Measurement of the Proton Moment in Absolute Units*

H. A. Tuomas, R. L. DriscorL, anp J. A. HppLE
National Bureau of Standards, Washington, D. C.
(Received January 23, 1950)

By measuring the absolute value of the magnetic field and the frequency required for nuclear resonance
absorption in a water sample, the gyromagnetic ratio of the proton has been determined to be yp=(2.67528
+0.00006) X 10* sec.™* gauss~t. With this value and Planck’s constant the value of the magnetic moment of
the proton in absolute units becomes up=(1.41004-0.0002) X 10~% dyne cm/gauss.

A combination of our result with recent measurements of the proton moment in Bohr magnetons by
Gardner and Purcell results in a value of e;/m=(1.7589040.00005) X 107 e.m.u. gram™..
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I. INTRODUCTION

SINCE the development of molecular beam,' nu-
clear induction,? and nuclear resonance absorption®*
techniques, considerable work has been done on the
determination of nuclear gyromagnetic ratios. From
this ratio and the nuclear spin, the magnetic moment
of the nucleus can be calculated.

The measurement of a gyromagnetic ratio y involves
the measurement of the frequency » and magnetic
field of induction B, required for resonance as indi-
cated by the condition for resonance, w=_2mwy="yB.
The comparison of either gyromagnetic ratios or mag-
netic moments requires only frequency determinations
and for this reason much of the data on magnetic
moments now available is of this type. A few direct
measurements of gyromagnetic ratios in absolute units
have been made with accuracies of the order of 0.5
percent, which is about the best that can be done with
the ordinary techniques of measuring magnetic fields.
In the experiment reported here the proton gyro-

search Nat. Bur. Stand.
1 Rabi, Millman, Kusch, and Zacharias, Phys. Rev. 55, 526
(1939).
2 F. Bloch, Phys. Rev. 70, 460 (1946).
3 Purcell, Torrey, and Pound, Phys. Rev. 69, 37 (1946).
4 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).

magnetic ratio has been determined with much greater
accuracy by using more elaborate methods of measuring
the magnetic field and frequency. This precise measure-
ment will allow previous relative determinations to be
recalculated in absolute units and will also provide a
convenient standard of magnetic field for the measure-
ment of other atomic constants.

The nuclear absorption method of Purcell, Torrey,
and Pound** was used for detecting resonance because
the field involved lends itself more readily to precise
measurement than that used in the molecular beam
method and the apparatus appeared somewhat simpler
to construct than that employed by Bloch in the
nuclear induction experiment.

The use of one of the Bureau of Standards precision
solenoids would provide the most accurately known
magnetic field but this possibility was initially dis-
carded because the maximum field available was only
of the order of 20 gauss. The nuclear resonance signal-
to-noise ratio becomes very low in such a weak field
and at the time this experiment was planned no attempt
had yet been made to work in this range. The recent
success of Brown and Purcell® in working in fields as low
as 11 gauss now makes the solenoid method more at-

3 L. M. Brown and E. M. Purcell, Phys. Rev. 75. 1262 (1949).



