PHYSICAL REVIEW VOLUME

78, NUMBER 6 JUNE 15, 1950

The Lorentz Correction in Barium Titanate

J. C. SLATER
Massachusetts Institute of Technology, Cambridge, Massachusetts*

(Received March 13, 1950)

It is assumed, following Devonshire, that the ferroelectric be-
havior of BaTiO; arises because of the Lorentz correction, leading
to a vanishing term in the denominator of the expression for dielec-
tric constant. If the polarizability varies slowly with temperature,
the temperature variation of dielectric constant follows. This tem-
perature variation is assumed to come from that part of the polari-
zation resulting from the displacement of the Ti ion, in a field whose
potential energy has fourth-power as well as second-power terms
in the displacement. The main object of this paper is to compute
the Lorentz correction exactly, not assuming spherical symmetry,
but taking account of the precise crystal structure. When this is
done, it is found that the Ti ions, and those oxygen ions which are
in the same line with them, the line being parallel to the electric
field, exert very strong fields on each other, the resulting local

field at the Ti ion being much greater than if computed on the
assumption of spherical symmetry. This enhanced field makes it
clear that even a relatively small ionic polarizability for the Ti ions
will be enough to lead to ferroelectricity. The polarization of the
Ti ions is however an essential feature of the theory; if they are
not polarized, the Lorentz correction is profoundly modified,
leading almost exactly to the value given by the approximate
theory assuming spherical symmetry, and not resulting in ferro-
electricity. Detailed formulas are given for comparison of the
present theory with Devonshire’s results, so that the present
methods can be incorporated in his treatment of the effect of
elastic strain energy on the stability of the various phases below
the Curie point.

I. INTRODUCTION

HE f{erroelectric properties of barium titanate

have aroused much interest in recent years,
particularly because its structure is so simple that there
is good hope of understanding it fairly completely
Enough progress has been made very recently so that
we begin to have a satisfactorily consistent theory of its
behavior, but this thecry has hardly advanced far
enough so that direct numerical comparisons with
experiment can be made with complete success. The
present paper fills in one missing gap in this theoretical
treatment. To explain what this gap is, we give in the
present introductory section a discussion of some as-
pects of the present state of understanding of the
problem.

Barium titanate has a ferroelectric Curie point at
about 118°C. Above that point, the dielectric constant
is of the form [constant/(7T—T,)], where the constant
is very large, of the order of 150,000°K, and where T
is the temperature, T'; the Curie temperature.! The
dielectric constant even of a single crystal does not
literally become infinite at the Curie point; the curve
is rounded off somewhat, but the Curie law holds to
within a very few degrees of the Curie point, so that
there are very large dielectric constants. Below the
Curie point,? there is a permanent polarization and the
dielectric constant decreases from the very high values
close to the Curie point, but remains high, of the order
of several thousand, around room temperature. At
about 5°C there is a phase change, and at about —70°C
another phase change, the dielectric constant becoming
very large near each phase change, and permanent
polarization persisting in each phase. The nature of the
phase changes is well understood. Above the Curie

* This work was assisted in part by the Signal Corps, the ONR,
and the Air Materiel Command.

1'S. Roberts, Phys. Rev. 75, 989 (1949); 76, 1215 (1949).

2 P. W. Forsbergh, Jr., Phys. Rev. 76, 1187 (1949) gives an ex-
tensive set of references relating to the phase transition.

point at 118°C the crystal is cubic. A unit cell holds a
Ba ion at each corner of the cube, an O ion at the center
of each face, and a Ti ion at the center of the cube. The
permanent polarization in the range between 118° and
5°C is along a 100 direction in the crystal. There is a
slight mechanical deformation associated with this
polarization: the crystal axis in the direction of the
polarization slightly expands, whereas the two axes
at right angles to it contract, the amount of mechanical
deformation being proportional to the square of the
polarization, so that the crystal becomes tetragonal
in this range. In the range between 5° and —70°C
the polarization is along a 110 direction; here again
the crystal stretches along the axis of polarization and
shrinks at right angles, producing an orthorhombic
symmetry. Below —70°C the polarization is along a
111 direction, again with crystal deformation, re-
sulting now in rhombohedral symmetry. The phase
changes from tetragonal to orthorhombic, and from
orthorhombic to rhombohedral, are changes of the
first order, with latent heats. It is not quite certain
experimentally whether the change from cubic to
tetragonal is of the first order or is a second-order transi-
tion of the lambda-point variety; if it is the latter,
however, the increase of polarization just below the
transition point occurs much more rapidly than would
be expected from elementary theories of lambda-point
transitions.

At the various transitions, the free energies of the two
phases in equilibrium with each other must be equal.
Since these phases correspond to different polarizations,
it is clear that it requires a negligible external effect
(that is, a negligible electric field) to shift from one
phase to the other, or to modify the magnitude or
direction of the polarization. This is the qualitative
explanation of the very large dielectric constant near
the transition temperatures, and it explains as well the
directional dependence of dielectric effect. Thus near
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the transition between tetragonal and orthorhombic
form, where the spontaneous polarization is shifting
from the 100 to the 110 direction, it is particularly easy
to rotate the polarization from the one direction to the
other, so that the dielectric constant related to polariz-
ing the crystal at right angles to the existing spon-
taneous polarization becomes very large, though that
associated with changing the magnitude of the polariza-
tion, without change of direction, is not unusually
large.

With this sketch of some of the observed facts in
mind, we naturally ask what is responsible for the ab-
normally large polarization of the crystal. There are in
general two types of possible polarization: electronic
polarization, or distortion of the electronic structure of
one of the ions, and ionic polarization, arising from the
displacement of the ions as a whole. They can be dis-
tinguished on the basis of the frequency dependence:
in the optical part of the spectrum, where the frequency
is too high for whole ions to follow the oscillations, only
the electronic polarization remains. The dielectric con-
stant of BaTiO; as found from the index of refraction
in the visible spectrum is no larger than one would
expect from the electronic polarizabilities of its con-
stituents, and is? in fact about (2.40)*=S5.76. Thus it is
clear that the abnormality in the low frequency dielec-
tric constant arises from ionic displacement. It is
generally considered that it is the Ti ion which is
responsible for the effect. The reason is that the Ti ion
is surrounded octahedrally by six oxygens; the Ba ions,
being rather large, stretch the structure enough so
that the hole in the middle of the octahedron occupied
by the Ti is slightly too large for that ion, if we compute
using conventional ionic radii; and as a result the Ti ion
is rather loosely held, with a small restoring force, or
large ionic polarizability.* This seems to be the qualita-
tive reason for the effect, but it is clear that the ionic
polarizability arising in this way is not larger in order
of magnitude than that usually found. To explain the
enormous effect which this has on the dielectric con-
stant, it is usually to invoke the Lorentz correction in
the theory of the Clausius-Mossotti formula. According
to the Lorentz correction, we assume that the field
acting on a dipole to polarize it is not really E, but is
E+P/3¢ (in rationalized m.k.s. units) or E447P/3
(in non-rationalized Gaussian units). Let us assume
that the dipole moment induced in a volume v is « times
the field, where « is the polarizability. We then have
P=(a/v)(E4+P/3¢), so that the dielectric constant is

P a/ €
k=14+—=14+— (1)
«F 1—a/3ev
in rationalized m.k.s. units; here, as elsewhere through-
out the paper, we obtain the corresponding formula in

3W. J. Merz, Phys. Rev. 76, 1221 (1949).
4 See, for instance, G. H. Jonker and J. H. van Santen, Science
109, 632 (1949).
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non-rationalized Gaussian units by replacing e, wherever
itappears by 1/(4w). From (1) we see that the dielectric
constant becomes infinite when /3¢ (in m.k.s. units)
or 4ra/3v (in Gaussian units) becomes unity. This is the
so-called “4w/3 catastrophe.” The ferroelectricity of
barium titanate, then, can arise from a quite finite
value of the ionic polarizability, and does not demand
infinite polarizabilities.

We next ask why the dielectric constant shows the
temperature dependence which it does, and why it has
a Curie point. We can explain this if we assume that
the quantity «/3ew shows a slow decrease with tem-
perature, being slightly greater than unity at absolute
zero, and going through the value unity at a certain
temperature 7';, which then must be the Curie tempera-
ture. Thus if we have

a/3e=1—C(T—T,), (2)
where C is a constant, we find at once that
k=—2+[3/C(T—-T.)]. 3)

This simple hypothesis, then, is enough to result in a
Curie law for the dielectric constant; in the region we
are interested in, the second term is very large com-
pared to the additive constant, —2, which can be
neglected. If, then, the constant in Curie’s law is known
to be of the order of 150,000° C is of the order of
21078, indicating a very slow change of the quantity
(2) with temperature. What physical mechanism, we
may ask, is responsible for this slow decrease of /v
with temperature?

The first suggestion, which has been made by certain
writers,® is that the change arises from the obvious
increase of volume with temperature, coming from the
thermal expansion. The volume coefficient of expansion
of BaTiO; is about 3)X1075% so that this alone is more
than capable of explaining the whole effect. But this
neglects an important fact: as the volume increases,
the atoms get farther apart, the repulsive forces between
them get smaller, the elastic restoring forces conse-
quently decrease, and the ionic polarizability increases.
In fact, there is evidence that « increases faster than v,
under these conditions. Thus it is found that either
application of pressure,® or substitution? of smaller ions
for Ba, resulting in a decrease of volume at constant
temperature, results in a decrease of the Curie tempera-
ture. That is, a/v is smaller at a given temperature, for
a smaller v, so that we have to go to a lower tempera-
ture for the quantity a/3ew to become equal to unity.

This argument shows that an increase of volume at
constant temperature will make a/v increase, rather
than decrease. Since we have seen that /v nevertheless
decreases with increasing temperature, there must be
an additional influence making « decrease with increas-
ing temperature, at constant volume. Such a possible
effect is of course known. The familiar Langevin theory

5 For instance, Jonker and van Santen, reference 4.
6 W. J. Merz, Phys. Rev. 78, 52 (1950).



750 J. C.

of rotating permanent dipoles leads to an average
polarization inversely proportional to the absolute
temperature. Such a temperature dependence leads to a
temperature coefficient C equal to 1/7, very much
larger than we are looking for. The rotating dipole is
not the only model leading to this temperature de-
pendence. We get it whenever we have an ion which can
move in a region of arbitrary shape and size in which
the potential energy is constant, surrounded by in-
finitely high walls; that is, when we have an ion in a
potential well. The rotating dipole is the case in which
the available region for motion is a thin spherical shell.
Other shapes of potential wells which have been dis-
cussed are those in which the ion has several alternative
locations allowed to it, all with identical energy.” Any
such model, then, will lead to the same temperature
coefficient C, of the order of 100 times as great as the
value we are looking for, provided we assume the
ordinary Lorentz correction. Such a model is probably
approximately correct for rochelle salt,® in which C
is in fact not far from 1/7,; but not for BaTiO;. At
the other extreme is an ion held by a linear restoring
force; in this case the polarizability « is independent of
temperature, so long as the volume, and hence the force
constant, remains constant.

Between these two extremes, we should be able to
find a model capable of explaining the facts, and in fact
we can. If we start with a linear restoring force, but
modify the potential by adding a term in the potential
energy in the fourth power of the displacement, as well
as in the square, we introduce, as Devonshire® has
shown, a linear decrease of polarizability with tempera-
ture whose coefficient C is proportional to the coefficient
of the fourth-power term in the potential energy. A
reasonable value of this fourth-power term leads to a
value of C of the order of magnitude of that observed.
It seems highly probable that this is the explanation
of the observed temperature variation, and hence of the
occurrence of Curie’s law. A difficulty arises when we
use this model, however. The same fourth-power term
in the potential energy of the ion leads not only to a
temperature dependence of the polarizability (that is,
to a temperature dependence of the coefficient of the
term proportional to P? where P is the polarization, in
the free energy), but leads also to a fourth-power term
in the free energy, a term proportional to P* Such a
term is essential in calculating the spontaneous polariza-
tion below the Curie point. If we calculate the spon-
taneous polarization from this term, however, choosing
the coefficient to describe the temperature dependence

7W. P. Mason and B. T. Matthias, Phys. Rev. 74, 1622 (1948).
These writers explain the temperature variation by use of an
artificially low value for the Lorentz correction which, in the light
of the present paper, seems to have no physical justification.

8 W. P. Mason, Phys. Rev. 72, 854 (1947).

* A. F. Devonshire, Phil. Mag. (Series 7) 40, 1040 (1949). Such
calculations regarding the effect of a fourth-power term in the
energy were made independently by P. W. Anderson, Phys. Rev.
78, 341 (1950), and by the present writer, before the work of
Devonshire came to their attention.
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of polarizability correctly, we find that the polarization
increases much more slowly below the Curie point than
is observed. This discrepancy between observation and
theory is removed, as Devonshire has shown, by in-
cluding the electromechanical terms in the free energy,
the ones which lead to the piezoelectric effect and elec-
trostriction. When the crystal is allowed to distort
itself, in the tetragonal phase below the Curie point,
the free energy is decreased by a term proportional
to the square of the elastic strain. We have already
seen that this strain is proportional to the square of
the polarization; thus the effect of the electromechanical
coupling is to introduce into the free energy a term,
with negative coefficient, proportional to P4 The
effect of this term is to make the crystal polarize
much more rapidly below the Curie point; in fact,
as Devonshire has shown, it is easy for the term to
be great enough to lead to a first-order phase change
at the Curie point. This mechanical effect does not
alter the temperature dependence of the polarizability,
however, and hence leaves Curie’s law unaffected.
Devonshire has shown that, by a complete expansion
of the free energy in powers of the polarization and
strain, one can arrive at constants for the various
coefficients which lead to a rather complete understand-
ing of the successive changes from one type of polariza-
tion to another, as the temperature goes down.

This argument seems convincing, and in its broad
outlines it is. However, there is a feature missing in it,
which we shall supply in the present paper. We have
not taken account of the contribution to the polariz-
ability made by the electronic polarization of the various
ions of the crystal. The optical value of the dielectric
constant shows that the value of a/3ee arising from the
electronic polarization is about 0.61. Thus a further
contribution of only about 0.39 must be made to this
quantity by the ionic polarizability of the Ti ion, in
order to produce ferroelectricity. This fact was entirely
neglected in the treatment of Devenshire mentioned
above, the most elaborate treatment of the problem to
date. Not only this, but our formula (1), on which our
discussion has been based, is correct only if the Lorentz
correction in its simple form is valid. But it has been
pointed out by several writers*!® that there are large
deviations from the Lorentz formula in the BaTiO;
crystal. If the polarization is along a 100 direction, a
third of the oxygens will fall into linear arrays, in the
same lines in which the Ti ions are located; these we
shall call oxygens of type a. The other two-thirds,
which we shall call type b, do not fall in line with the Ti
ions. We now find that in the presence of the Ti ions,
the type @ oxygens are much more strongly polarized
than the type b ions. Furthermore, these type ¢ oxygens
are very close to the Ti ions, and are oriented in such a
way as to be able to polarize the Ti ions with maximum
effect. The result is that the Ti ions are really in a field

1 H. F. Kay and P. Vousden, Phil. Mag. (Series 7) 40, 1019
(1949).
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much greater than the Lorentz value E+P/3e. The
field is, so to speak, enhanced at the location of the Ti
ion by a considerable factor. Thus, in order to result in
ferroelectricity, we do not need nearly as great an
ionic polarizability on the part of the Ti as we should
otherwise suppose. In fact, we shall find that the quan-
tity «/3ev arising from the ionic polarizability of the Ti
need be only 0.06 in order to produce ferroelectricity,
rather than the value 0.39 mentioned above. The
perovskite structure met in the ferroelectric form of
BaTiO; is thus particularly favorable for the production
of ferroelectricity. It has already been pointed out™ that
the other polymorphic forms of BaTiO;, which do not
have these rows of alternating Ti and O ions, do not
have this favorable predisposition toward ferroelec-
tricity, and in fact they show quite ordinary dielectric
behavior.

The main point of the present paper, then, is to work
out the Lorentz correction in detail, and to show how
it is to be incorporated into calculations of the dielectric
constant and the free energy of the type made by
Devonshire. As a preliminary to this, we take up in the
next section the calculation of the free energy of the
crystal, as arising from the displacement of the Ti ion in
the field of its neighbors, including a fourth-power term,
following to a considerable extent the calculations of
Devonshire. We adopt a rather different statistical
method, however, which seems more straightforward
than his. Then we pass on to the treatment of the
Lorentz correction, taking account of the actual crystal
structure of BaTiO;.

II. THE FREE ENERGY OF Ti IONS
IN A NON-LINEAR FIELD

In our first discussion we shall treat the Ti ions as
being independent of each other; later we shall consider
their interactions. Let the potential energy of an ion at
position (x, y, z) (measured from the position of equi-
librium of the ion) in the absence of an external field
be ¢(x, v, z). When it is displaced to position x, y, z, let
the resulting dipole moment have components (gx, ¢y,
q2), q being the effective charge on the ion. We shall
assume ¢ to have cubic symmetry, on account of the
symmetry of the field surrounding the Ti ions. In this
respect we introduce greater specialization than does
Devonshire, who assumes a general potential energy.
That assumption is necessary if, for instance, we are
interested in the displacement of an oxygen ion, since
these are not in positions of cubic symmetry in the
lattice, but it is not necessary for the Ti ions, which we
assume make the principal contribution to the ionic
polarization. Now let there be a local electric field E,
of components (E., E,, E,), acting on the ion. (We
postpone until later the question as to how this depends
on the external applied field.) Then the additional

VT‘R. D. —Burbank and H. T. Evans, Jr., Acta Crys. 1, 330
(1948); H. T. Evans, Jr., and R. D. Burbank, J. Chem. Phys. 16,
634 (1948).
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potential energy of the ions in this local field is
—q(Ezx+Eyjy+E.z)=—qE-r, where r is the radius
vector.

We shall now proceed to treat this system by statis-
tical mechanics. We shall operate entirely with classical
statistical mechanics; this should be suitable at the
temperatures concerned in the BaTiO; problem, though
our results would need correction at fairly low tempera-
tures. Then the first step in handling the problem statis-
tically is to compute the partition function, Z. If we
were dealing with a single polarizable ion, this would

be (2rmkT/h?)*w, where m is the mass of the ion, and
w=J" exp(—¢+qE-r)/kTdv. 4)

If our system contains N identical ions, the whole
partition function is the value above, raised to the Nth
power, divided by N !; or, using the Stirling formula for
the factorial, we have

Z=[(e/NI)2xmkT)} V¥,

The free energy Ag is then given by the equation
Ag=—FkT InZ. That is,

Ap=—NET In[(¢/NI¥) 2rmkT)¥]— NET lnw.

This free energy is expressed as a function of T and E;
it is for this reason that we have denoted it by the sub-
script E. The entropy is given by —(34/37T)g, and
hence is

S=NkIn[(e/NF)2rmkT)¥ ]+ (3/2)Nk+ Nk Inw
4 NET(3 Inw/dT) 5.

By differentiation of (4), the last term may be re-

written
NET(0 Inw/dT) g=N{¢p—qE-1)/T,

where (¢—gE-r) signifies the average value of this
quantity over the distribution given by the Boltzmann
factor exp[ (—¢+-¢E-1)/kT]. The total dipole moment
of the distribution is given by — (94 g/dE.)r, etc., so
that its x-component is

(Moment) ,= NkT(d Inw/dE.) r= Ngx, (5)

where again the last form comes by differentiating (4).
The internal energy U is given by U=A4y+TS; thus
it is
U=3/2)NkT+N{¢p—q¢E-1),

the sum of the kinetic energy as given by equipartition,
and the mean potential energy of the ions as displaced
by the field E. In all these formulas if we are dealing
with unit volume of the material, so that N becomes the
number of ions per unit volume, our expressions give the
values of free energy, entropy, moment, and so on,
per unit volume. Thus in particular the moment per
unit volume, given by (5), is the polarization vector P.
If the volume per ion, or the volume of unit cell, is v,
as in the preceding section, we then have the number of
atoms per unit volume, or NV, equal to 1/, so that we can
express the quantities properly by replacing N by 1/v.
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If we are dealing with unit volume, we then have
=—(345/3T)g, P,=—(34A5/0E;)r. Then we have

at once
(8S/9E,)r=(3P/dT)s, (6)

analogous to the Maxwell relations of thermodynamics.
This shows us that if the polarization depends on tem-
perature, the entropy must depend on the field, or
polarization. If, for instance, we assume that the polar-
izability depends on temperature as in Eq. (2), we then
find from (6) that at the Curie point

S= So—% 360CE2=S()—CP2/660,

where Sy is the value of entropy when E or P is zero. We
therefore see that if C is small, the change of entropy
with polarization is also small, so that there is only a
small increase of entropy in going from the ferroelectric
state at low temperature to the unpolarized state at
high temperature.

The free energy A g which we have computed, like the
Helmbholtz free energy in ordinary problems of statistical
mechanics, is the one which is simplest to find, from the
partition function. More convenient for most purposes,
however, is a free energy 4 p, analogous to the Gibbs
free energy, expressed in terms of the polarization and
temperature, rather than in terms of the field and
temperature. This is defined by the relation

0Ag 0AE 0AE
AP=AE-E,( ) —Eu( ) —E(———)
aE; T aEy T aEz T

and is to be expressed as a function of P and 7. That is,
itis Ap=Ap+E-P, if we are dealing with unit volume
of material. When expressed in terms of the proper
variables, it has the properties that

=—(84p/0T)p, E.=(84p/dP:)r. (7)

In many ways the most convenient way to approach
the problem is to find 4 p as a function of P and T'; we
shall discuss the results later. We note that in the ab-
sence of an electric field E, the free energy A p will have
a minimum value as far as changes of polarization are
concerned, at constant temperature. Corresponding to
this, Ap will be unchanged when there is a change of
phase, involving change of polarization, at constant
temperature, so that the equality of the values of 4p
for the two phases is the condition for equilibrium. It
is this free energy 4 p which Devonshire considers in his
paper, but his method of finding it is less straight-
forward.

We now have the necessary statistical and thermo-
dynamic background for our calculations of free energy.
Following Devonshire, but modifying his results for
the special case of cubic symmetry, we shall assume that
the potential energy of a displaced ion is

6(x, 3, 5) = a(@+y*+ )+ b (¥ +y'+2)
T 2by(y 2+ 22+ 22y).

SLATER

For the case of spherical symmetry, &, will equal b,
and ¢ will reduce to ar’+br%t. We must now insert this
expression into (4), and compute the partition function.
This cannot be carried out exactly, and we therefore
use series expansion methods, treating &; and b, as
small quantities, and disregarding all terms of higher
powers than the first in these quantities. We expand the
quantity —¢+¢E- r appearing in the exponent of (4) in
power series in the coordinates about the point where
it is a minimum, and it then becomes the sum of a term
independent of the &’s, and a term linear in the &’s.
We expand the exponential function of this linear term
in power series, retaining only the term in the series
linear in the &’s. The integration then becomes straight-
forward, and we find

w=(wkT/a)? exp(q2E?/4akT){ 1 —3(3b1+ 2bs) (kT /a?)

q2(3b1+ 2b2)

(B EMED
Q

[01(Es*+E,/*+ E.)
16a*kT

+ 2b2(Ey2Ez2+ EZE4 EzZEyz) ] :

This agrees with the result of Devonshire [reference 9,
Eq. (10.11)7, provided we consider the differences in
notation. The free energy A is then

Ap= —NET In[(¢/Ni®)(wkT)}(2m/a)¥] — Ng*E?/4a

3N(ET)?
+

(3b1+2by)+ NET (36,4 2b2) 2 /40

a?

N¢'
[6:(ES-ESAESH
16a*

+

+ 2b2(Ey2Ez2+ E12E22+ Eszyz) ]

From this free energy, we can use our general equa-
tions to calculate various other quantities. Thus we find

S=NE In[(e/ NI3)(xkT)*(2m/a)} 43Nk

3 NkT
- N (3b1+ 2b2) —Nk(3b1+ 2b2)q2E2/4(13, (8)
a
2
P. =Nq E,I‘l B kT (3b:+ 262)]
2 L a’

4

b B (B ED], )
4q4

N¢
U=3NkT —N¢*I*/4a+ Ié—;[bl(E,4+E,,4+E,4)
a

+2b,(EE +E2EE2E) ],
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Ap= —NkT In[(¢/ NB)(wkT)*(2m/a)¥]
3N(kT)? aP? kT
+—@b+ 2b2)+_[1+ —(3b:+ sz)]
4a? Ng? @

a

1
[bl(Pz4+Py4+Pz4)
[\73q4

+

+2by(P 2P 2HP2P2+PAPA)]. (10)
At this point cur treatment has differed significantly
from that of Devonshire (who introduces the Lorentz
correction before making these steps), so that (10) does
not agree with Devonshire’s Eq. (10.13) (which, in
addition, contains several misprints).

Let us now call attention to a number of aspects of
these results. From (9), giving the polarization as a
function of the field, we see, as we mentioned in the
preceding section, that the polarization decreases
linearly with temperature, for constant local field. It is
this decrease of polarizability with temperature which
we have seen in Egs. (2) and (3) to be responsible for
the temperature dependence of the dielectric constant
in the neighborhood of the Curie point. In order to
get a small temperature dependence of polarization, we
clearly need only assume a small value of the quantity
(3b,42b,), determining the non-linear behavior of the
law of force. We shall return later to the necessary
value of this quantity, and show that it is reasonable.
Associated with this decrease of polarizability with tem-
perature is a decrease of entropy, as given in (8), with
electric field; we immediately verify that Eq. (6) is
satisfied. It is interesting to look into the physical
reason for this change of entropy with polarization, for
by (6) this will then tell us why the polarizability de-
creases with temperature. Let us consider the entropy
for a linear oscillator, in which the b’s are zero. From
(8), we have in this case

S= Nk In[(e/ NIi3) (xkT)*(2m/a) ]+ 3Nk.

Let us particularly observe the dependence on a: S
contains a term — (3/2) Nk Ina. This dependence is fun-
damental, and has a simple explanation. For a large
restoring force constant a, the particle at a given energy,
or temperature, is confined to a small volume; but we
know that the smaller the effective volume available
to a particle, the smaller is its entropy. Or alternatively,
for a large value of a, the frequency of oscillation of the
particle will be large, its stationary states as given by
the quantum condition will be far apart, and at a given
temperature there will be fewer occupied states than
for a smaller value of a; this again leads to small en-
tropy. Now let us return to our case of the non-linear
restoring force, where the ’s are different from zero,
and positive. If we polarize the ion by a local field, so
that its position of equilibrium is displaced from the
origin of our (x,y, z) coordinates, the fourth-power
terms will have the effect of increasing the restoring
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force constant for this new position of equilibrium, in-
creasing the vibration frequency about that point, and
hence decreasing the entropy. It is this effect which
results in the term in F?, in (8). At the same time, as
the temperature goes up, the particle spends more time
in a region of high amplitude, where the restoring force
constant is larger; this results in the decrease of
entropy with temperature described by the term
— (NET/a?)3(3b1+2b5)/2 in (8). In this way we under-
stand the effect of the fourth-order terms on the en-
tropy, and hence on the polarizability. It is interesting
to see that the effect is very simple and elementary,
and quite different from any order-disorder explanation
of entropy change, such as is invoked in some other
phenomena leading to lambda-points.

III. THE NATURE OF THE LORENTZ CORRECTION

In Section II, we assumed that the various Ti ions
vibrated quite independently of each other. This
assumption is incorrect, since actually they exert forces
on each other, rather than having an external force
acting on them which depends only on their displace-
ment. This situation is well known from the theory of
the specific heat of solids. We know that if we treat the
vibrations of the atoms separately, we arrive at a
specific heat theory of the Einstein type. On the other
hand, if we consider their interactions, we must intro-
duce normal coordinates, describing the various stand-
ing waves which can be set up in the crystal, and arrive
at a specific heat theory of the Debye type. If there are
several types of atoms or ions, then as Born and others
have shown, there will be various branches to the vibra-
tion spectrum, some being of the so-called acoustical
type, and having frequencies extending down to acous-
tical ranges, while others are of the so-called optical
type, with frequencies in the infra-red. These optical
vibrations are the ones in which the ions of different
type oscillate in opposite directions; they are connected
with the residual rays or Restsirahlen. In our case, the
vibrations of the Ti ions with respect to the rest of the
lattice will be of this optical type. And in general it is
found that the spectrum of frequencies in an optical
branch is not widely spread out, so that the correct
theory is not greatly different from an Einstein-type
theory, in which all frequencies are assumed to be
identical. For this reason, in the present treatment we
shall not consider the interactions of the ions, but
shall treat them as being independent. The writer has
been informed by Dr. P. A. Anderson, of the Bell
Telephone Laboratories, that he is working on a more
elaborate treatment, in which the normal coordinates
are properly introduced.

This simple discussion is correct in some respects;
but it neglects a very important aspect of the problem,
the Lorentz correction. The ordinary theory of elastic
vibrations of the ions deals with short-range forces,
only interactions between nearest neighbors ordinarily
being considered. When the ions by their displacements
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produce electric dipoles throughout the interior of the
solid, however, these dipoles produce long-range electric
forces acting on each dipole of the system, and these
dipole forces must be considered separately. We can
make a first approximation to a theory including these
Lorentz forces if we proceed in the following way. We
introduce as coordinates representing the motion of the
Ti ions first the coordinate of the average displacement,
or center of gravity, of all the ions; then, as additional
coordinates, the displacements of the separate ions
from the displaced position which they would take up
if the whole Ti lattice were displaced bodily. The dis-
placement of the whole lattice will be equivalent to the
polarization produced by the ions, and there will be a
term in the energy coming from the Lorentz interaction
of the field produced by the resulting dipoles, with the
dipoles themselves. There will be further terms in the
energy arising from the displacements of the separate
ions from this average position, and these will be
treated essentially as in the preceding section. This is
admittedly only a partially satisfactory way of handling
the complete problem of the interactions of the dis-
placed ions, including their electrostatic interactions,
but it should give a satisfactory first approximation.
Let us see how it would work out, if the Lorentz
assumption of spherical symmetry were correct. In that
case, if there were a polarization P, the local field acting
on a given ion would be E+P/3¢. If the ions were dis-
placed in such a way as to produce the polarization P,
each ion would make a negative contribution to the
electrostatic energy, since it is displaced in the direc-
tion of the field P/3€,. The total electrostatic energy per
unit volume arising in this way will be — P?/6¢,, the
factor 3 (leading to — P?/6e, rather than — P?/3e)
arising because we are really dealing with interactions
of forces between pairs of dipoles, and we must count
each pair only once, not twice. We can then take care of
the Lorentz correction by supplementing the free energy
Ap of (10) by this correction term — P?/6¢), where we
are dealing specifically with unit volume of material.
We can now take this revised free energy, and inquire
what is the polarization as a function of field arising
from it, and consequently what effect the Lorentz cor-
rection has on the dielectric constant. From (7) we find

2aP, kT
Ex=-———-—[1+—(3b1+2b2)]
N¢* a?

P, 4P,
— —+—[0:1P 2+ (P 4P ] (11)
36 Nogt

If we disregard the cubic term, to get the dielectric
behavior above the Curie point, in a small field, and
solve for P, treating the b’s as small quantities, we have

qu kT -Pz
P:-_—"—[l - _(3b1+ 2b2)](E2+ -}
2a a? 3e€g
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This agrees with the assumption leading to Eq. (1),
and when we remember that N=1/v, we see that the
polarizability « is given by

Fr kT
a=—[1——2(3b1+2b2)], (12)

a

showing a linear decrease with temperature proportional
to the b&’s, qualitatively agreeing with (2). Thus our
addition of the correction term — P?/6¢, has correctly
taken care of the Lorentz correction. We note that the
entropy expressed as a function of the P’s, by (7), is
unaffected by the presence or absence of the Lorentz
correction; it is

S= Nk In[ ¢/ NI) (xkT)(2m/a) 1+3Nk
3NET Pk
(3b142bs) —

2a? ag?

(3b142bs).

This shows the quadratic decrease of entropy with
polarization, proportional to the b&’s, which we have
already discussed.

We can discuss the spontaneous polarization below
the lambda-point from the expression (11). Let the
applied field E be zero. Then we have various possibili-
ties for spontaneous polarization. Let us consider the
simple case where P, is different from zero, P, and P.
equal to zero. Then we have from (11)

P2

N%g?a[ N¢g* kT
[ —-1- —2(3b1+ 2b2)]- 13)

€ 2b160 660& a

The spontaneous polarization will be zero at the Curie
point; hence we have

Ng*/ (6€a) = 1+ [ kT o(3b1+2b5) /a*].

We may then rewrite (13), correct to linear terms in the
b’s, in the form

(P,;z)/éo= 3A7k(3bl+ 2b2)(Tc— T)/bl

(14)

(15)

This indicates that P is proportional to (7.—T)* below
the Curie point, the usual type of dependence for a
lambda-point theory. If the actual transition is a
lambda-point transition rather than a phase change of
the first order, however, the temperature dependence
of polarization given by (15) is much too slow. Thusif we
have something not far from spherical symmetry for
the Ti ion, so that 4; and b, are comparable in size, and
(15) reduces to 15 Nk(T.—T), comparison with ob-
served curves shows that if the real variation of polariza-
tion with temperature is to be fitted to a curve of the
form (15), the coefficient must be something like 60
times as large as that given above. This situation, as
we indicated in the introductory section, can be cor-
rected by considering elastic distortion of the crystal,
as we shall describe in a later section.
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IV. THE LORENTZ CORRECTION FOR THE
ACTUAL CRYSTAL

In the preceding section, we have considered the
way in which the Lorentz correction affects the free
energy, and hence the expression for dielectricconstant.
Now we are ready to ask how this argument is modified
if we take account of the polarizability of the other
ions in the crystal. In the present section we shall deal
only with the polarization above the Curie point, where
the polarization is proportional to the field. In the next
section we extend the argument to a calculation of the
effect of the Lorentz correction on the free energy, so
as to treat the problem below the Curie point.

In the BaTiO; crystal, each unit cell contains five
ions. Let us assume that the crystal is polarized along
the z axis; symmetry demands that each of the ions
be polarized along the z axis. Let us then write the total
polarization in the crystal as the sum of five terms: the
polarizations arising from each type of ion. When we
consider the whole crystal, each of these types of ions
will form a simple cubic lattice. We then visualize for
each type of ion a simple cubic lattice of equal dipoles,
and we wish to find the field of these dipoles at one of
the lattice points. It is well known that the field of a
simple cubic lattice of dipoles at one of its lattice points
is P/3¢y, where P is the polarization resulting from this
lattice alone. Thus, for instance, if we had only the
polarization arising from the displacement of the Ti
ions, as we were considering in the preceding section,
the Lorentz correction as treated in that section would
be correct. However, the field of a simple cubic lattice
of dipoles is not equal to P/3¢ at most points within
the unit cell. Thus for instance the field exerted by the
lattice of Ti ions is not equal to P/3¢, at the position of
one of the oxygen ions, but is quite a different amount.
What we must do is to examine the field actually
exerted at the position of each ion, by the lattices of the
dipoles of all types of ions.

Fortunately the necessary calculations have been
performed in papers by McKeehan!® and by Luttinger
and Tisza.’® Luttinger and Tisza give the field exerted
at various points through the lattice by a lattice of
dipoles whose polarization is unity, polarized along the
z direction. They express their results in the non-
rationalized Gaussian units, and the fields which they
give are those in addition to the value 47P/3. Thus
they find that the additional field at a point (&, 7, ¢)
in the unit cell, where £, %, { are the ratios of the dis-
placement from a lattice point to the lattice spacing,
are given by expressions S.(¢, 9, {), where

SZ(Oy 0; 0) =SZ(%7 %) %) =0
Sz(O) %y %)=4334a SZ(%: %7 O) = —86681

S.(%,0,0)=—15.040, S.(0,0,%)=30.080. (16)

Let us see what these mean. The first statements show

Tu L. W. McKeehan, Phys. Rev. 43, 913 (1933); 72, 78 (1947).
13 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946); 72,
257 (1947).
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that the ordinary Lorentz correction 47P/3 (in Gaus-
slan units) is correct not only at a lattice point, but
at a point in the center of the unit cell. Thus this
ordinary correction is valid for the actions of the Ba
and Ti ions on themselves and on each other. On the
other hand, for interactions between the oxygens and
the other ions, the ordinary correction is entirely in-
correct. Thus if we ask for the action of the Ti ions on
those oxygens which lie along the same line parallel to
the polarization (or z axis), which we have previously
called oxygens of type a, we find that the Lorentz cor-
rection is really (30.080+447/3)P, or approximately 8.2
times the ordinary value 47P/3. The action of the
oxygens of type a on the Ti ions contains this same
greatly enhanced Lorentz factor. It is this fact which
we shall find operating to make the field at the position
of the Ti ions so much greater than we should get from
a simple Lorentz argument, as we mentioned in the
introductory section.

Let us now write the polarization of the Ti ions as
Pr;, that of the Ba ions as Pga,, that of the oxygens of
type a as Pog, and that associated with the two lattices
of oxygens of type b as Pos; and Pope. By symmetry, we
shall find that Posi= Poss, but it will simplify our pro-
cedure to keep them separate. These polarizations are
assumed to arise from electronic polarization, except
in the case of Prt;, where we shall sometimes assume
that it is the sum of that arising from electronic and
ionic polarizations. Then from the relations (16) we
can write the effective or local fields acting on each type
of ion to polarize it. We shall write these fields in the
m.k.s. system; to get the corresponding formulas in the
Gaussian system, we replace ¢ by 1/(4r), as usual. We
shall then want to use the quantities 8.668/4m and
30.080/4w. We shall abbreviate these as

8.668/41=0.690=p, 30.080/4r=2.394=g. (17)

Then we have:

Field on Ti= E+ (1/60)[%PT1+%P33
+(g+3) Poat (—3¢+3) (Povs+Poss) |.
Field on Ba=E+(1/€)[1Pr1i+ 1P,
+ (= p+3) Poat Gp+3) (Pon+ Posa) .
Field on Oa= E+ (1/¢0)[ (¢+3) Pri+ (— p+3) Psa
+3Poat (3p+3) (Pos+Poss) .
Field on Op=E+ (1/e0)[(—3¢+3) P
4+ Gp+3)Prat Gp+3) Poat5Pon
+(—p+3%)Pose]-

The equation for the field at Ops is like that at Ops, with
subscripts 1 and 2 interchanged. We observe, as we
pointed out above, the very large factor ¢+3% by which
the Ti ions and the type a oxygen ions interact on each
other.

We can now set up simultaneous equations, stating
that the polarization resulting from each type of ion
equals the corresponding polarizability per unit volume,

(18)
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multiplied by the appropriate local field." Let the
polarizabilities of Ti, Ba, and O be ari, ap., and ao,
respectively; ar; will be assumed to be the electronic
polarizability, and will be specifically augmented by the
ionic polarizability when we are dealing with low fre-
quencies. Then we have

Pri =(ari/v)(field on Ti),
Pg, = (ap./v)(field on Ba),
Poas = (ao/v)(field on Oa),
Povi=(ao/v)(field on 0b,),
Pobg= (Cto/v) (ﬁeld on Obz),

where the fields are as given in (18). We at once see by
inspection that Py = Poss, so that we have four simul-
taneous equations for the four unknowns Pri, P,
Poa, Posi. These equations can be solved by determi-
nants for the polarizations, as functions of E. We can
also solve for the dielectric constant, which we get from
the sum of all the polarizations, divided by the field.
In expressing these quantities, we encounter the com-
binations ai/ew, and similar expressions for the other
polarizabilities. We abbreviate these as Xri, etc., so
that by definition we have Xti=ari/ew (in m.k.s.
units), or 4rar;/v (in Gaussian units), with similar
expressions for Xpa, Xo. In terms of these quantities,
the solutions of (19) prove to be

Pri/(eE) =(X1i/A){1+pXo
—(3/2)p(p+ 9 X B X 0+3p(3¢—p) X 0*}
Pyo/(«E) = (Xa/A) {14+ pXo
—(3/2)g(p+ 9 X 1iX0—2p°X 0%}
Poo/(&E) = (Xo/A){1+2pXo+¢X1i—pXsa
—39(3¢—pP) X 11X 0—2p*X 3 X o}
Pou/(eE)=(Xo/A){14+3pX0— 59X 1i+5pX 8a
—39(3¢—p)X1:iX0—2p* XX 0!
k—1=1/A){X1i+Xpa+3X o0+ pX1: X0
4+ pX5Xo+3pX0*—(3/2)(p+¢)* X 1iX X0
—33¢— ) X 1iX 0*— 8p* X B X 0%}
A=1-3(Xri+Xp.)+(p—1)Xo
—Gp+GB/2)PX1iXo—p(3+(3/2)p) XX 0
—p(1+3p) X0’ +58¢—p)* XX
+(8/3)* X5 X0’ +3(p+9)* X 1iXBuXo.  (20)

In Egs. (20) we have solved our problem of setting
up the correct Lorentz factors for the BaTiOj; structure.
Let us now examine some of the implications of these
formulas. It can be verified that in spite of their com-
plication they reduce to the exact Lorentz expression in
two important cases: first, when X ; is zero, and X,
equals Xo; second, when Xo is zero. The first case is
one in which the oxygen and barium ions, assumed
identical for that special case, together form a face-
centered cubic lattice; the latter that in which the
barium and titanium together form a body-centered

(19)

14 Similar equations have been set up for this case by J. M.
Richardson, formerly of the Bell Telephone Labcratories, in
unpublished work, but the results were not carried as far as in the
present work. See J. M. Richardson and W. Shockley, Phys. Rev.
70, 105 (1946). See also J. H. van Santen and W. Opechowski,
Physica’s Grav. 14, 545 (1948).
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cubic lattice. Let us now ask what is the situation with
the actual numerical values for BaTiO;, in the optical
spectrum, so that we disregard the ionic polarizability
of the Ti. As values for the electronic polarizabilities of
the various ions, we take the following values:

ari/e(m.k.s.) =4rar; (Gaussian)=2.34X 102 cc
apa/€=24.42X10"% cc, ao/e=30.0X10"2cc. (21)

The values for Ti and Ba were supplied by P. W.
Anderson and W. Shockley of the Bell Telephone
Laboratories; they come from unpublished work in-
volving an intercomparison of the refractivities of a
good many crystals.® The value for oxygen is chosen
to give the correct value for the optical dielectric con-
stant, which except for a small deviation very close to
the Curie point is approximately (2.40)?=5.76. This
procedure is in accordance with the findings of the
group at the Bell Telephone Laboratories, who find
that the oxygen ion appears to show different polariza-
bilities in compounds of different structure.’®* We take
the lattice spacing to be 4.00X 1078 cm, a value which
is correct at a temperature in the required range (we
neglect the thermal expansion at this point), so that v
is 64X 10~% cc. Then we have

X1i=0.0365, XB,=0.382, X0=0.470. (22)

When we substitute these values, and p and ¢ as given
in (17), into Egs. (20), we find that we get the correct
value 5.76 for the dielectric constant. The associated
value of (k—1)/(xk+2) is 0.613. If the ordinary Lorentz
correction were applicable, this would be equal to
$(X'1i+X8a)+ X0, which is 0.609. In other words,
in this case of the optical refractivities, the crdinary
Lorentz formula gives a very good approximation to
the truth. The reason for this is undoubtedly that
X1; is small; X, is of the same order of magnitude as
Xo, so that we are not very far from the special case
X1i=0, XBa= X0, in which we have pointed out that
(20) reduces exactly to the Lorentz case.

It is also interesting to calculate the polarizations of
the various types of ions in this high frequency case.
When we substitute, we find

Pri/(eE) =(X1i/A) (1.262) =3.30X 1,
Pp./(&E) =(X5a/A)(0.921)=2.41Xy,,
Poo/(«E) =(X0/A)(1.174)=3.08X o,

Pou/(eE)=(Xo/A)(0.946)=2.47Xo.  (23)

If the ordinary Lorentz correction were applicable, we
should find these numerical coefficients in each case to
be equal to (k+2)/3=2.59. We notice that they are of
the same order of magnitude; but there is a distinct
tendency for the Ti and the type a oxygen ions to be
polarized more than this value, and for the others to be
polarized somewhat less. We shall find in the low fre-
quency case, where the Ti is polarized much more,
that this tendency is greatly enhanced.

18 W. Shockley, Phys. Rev. 70, 105(A) (1946).
186 W. Shockley, Phys. Rev. 73, 1273 (1948).
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Now let us pass on to the problem of the static
dielectric constant, where the Ti ions can polarize by
ionic displacement. Let us assume that the total
polarizability of the titanium is the sum of the value
given in (21), and another quantity ari’, a function of
temperature which is given by (12). Let the correspond-
ing value of X be X1i'=ari'/ew. We shall then have to
use Xr1i+ X1 in place of X1; in Egs. (20). In that
case we see at once from (20) that the dielectric constant
can be written in the form

. . !
atc Xt ¢

. ! ~
csteXmi' oy

(¢c1/¢s) = (ca/ca)
1+ (54/63)XT‘1/

K—1=

where

=X 11+ Xpat+3Xo+pX 11 X0
+3pX 0’ (3/2)(p+¢)* X 11X BaX o0
3 (3g— PP XX~ 8 X, o'
c2=14+pXo—(3/2)(p+¢)*X 8. X0 —3(3¢— p)*X o*

¢;=A from Eq. (20),
including terms in X 1; but not in X1/

aa= =3 = G+ (3/DP) Xo+ 49— pIXo?

+3(p+9*XsXo. (29)
In case Xti, XBs, Xo are all zero, so that the only
polarization comes from the ionic displacement, we

have ¢1=0, co=c3=1, cs=—1%, and we have at once
the values given in the introductory section,
X 3 )
k=1+ =24 (25)
1—%XT1/ 1—%XT;/

in our present notation. However, when we put in the
values of Xri, etc., from (22), determined from the
optical behavior of the material, the situation is entirely
different ; we find

61=1.834, cy=—5.892, ¢;=0.385, c,=—2.076,
k=3.84+1.93/(1—5.39X 1y). (26)

This important result (26) shows that the effect of
the polarization of the other ions is greatly to enhance
the effect of the ionic displacement of the Ti ions in
producing ferroelectricity. Thus from (25) we see that
if these other ions were not helping the polarization,
we should get ferroelectricity only when Xr1i’=3. On
the other hand, from (26), we get the same result when
5.39X1i’=1, or when X1;/=0.186. This indicates en-
hancement of the effect of the ionic displacement by a
factor of approximately 16. Some such enhancement,
of course, would arise from the ordinary Lorentz cor-
rection. If this correction were applicable in its simple
form, we should get ferroelectricity when

X1+ X1+ Xpa)+Xo=1.

We already know that 3(Xti4+Xs.)+X0=0.609.
Thus we should require that Xr;'=3(1—0.609)=1.173,
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as compared with the value 0.186 which we find from
our more correct theory. The elementary theory of the
Lorentz correction thus is so far wrong that the ionic
polarizability of the Ti ion needs to be only 0.186/1.173
=0.160 times as great, or about one-sixth as great, as
if the elementary theory held. Let us now examine how
this very large enhancement of the effect of ionic dis-
placement comes about.

We can understand the situation if we examine the
relative polarizations of the various types of ions. We
can use (20) to find these, now using Xr1i+Xri in-
stead of X1; for the Ti ion. In this case, for ferroelec-
tricity, the determinant A’, obtained by using X ti+ X 1/
instead of X'1j, is zero, so that at the Curie point the
polarization per unit field is infinite. We can still
evaluate the brackets in (20), however, and these will
still give the relative magnitudes of the polarizations
of the various types of ions. We then find

Pri/(eE) =[(Xni+X1i)/A"](1.262),
Pra/(eE) = (Xpa/A")(—0.047),
Pou/(eE) =(Xo0/A")(0.939),

Pos/ (eE) = (X 0/A")(0.046).

These values are strikingly different from those of (23).
Only the relative values now have significance; and we
see that the polarization is almost entirely contributed
by the Ti ions, and the type @ oxygen ions. The Ba and
type b oxygen ions are hardly polarized at all. In fact,
when we take account of the polarizabilities, we find
that the Ti ions contribute about 37 percent of the
total polarization (of which about 31 percent comes
from ionic displacement, six percent from electronic
polarization), the type a oxygen ions about 59 percent,
the type b oxygen ions about six percent, and the Ba
ions about two percent in the reverse direction. We
thus see the evidence of the effect which we discussed
in the introductory section: the Ti ions, by their
polarization, polarize the type @ oxygen ions; these in
turn act back on the Ti ions; and the net result is to
build up the polarization of both types of ions, resulting
in linear chains of dipoles all pointing in the same
direction, the positive end of one to the negative end
of the other, and producing spontaneous polarization
below the Curie point.

Now that we have found the influence of the polariz-
ability of the other ions on the dielectric constant, we
can combine Eq. (26) with an assumption similar to (2),
to investigate Curie’s law. It is clear that, to make the
denominator of (26) vanish at the Curie point, we must
assume that

5.39X v/ =5.39ari/(ev) |=1—-C(T—T.). (27)
If we insert this value in (26), we find that
k=3.844+1.93/C(T—-T.), (28)

as a substitute for (3). It is interesting to find that, in
spite of the large change in the general situation pro-
duced by the electronic polarizability, still (28) is not
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very different from (3), so that the qualitative discus-
sion given in the introductory section regarding the
temperature coefficient of the ionic polarizability of
the Ti ion is still correct. The constant C, however, is
now seen to be about 1.3X107% instead of the value
21075 given in the introductory section.

We may now compare (27) with (12), the ionic
polarizability as determined from our molecular model,
and ask whether the constants of (12) have reasonable
values. Comparing them, we have approximately

5.39¢%/(2aer) =1, C=[k(3b,42bs)]/a%.  (29)
If we combine these equations, we have
(30142b)/a=(5.39Cq*)/ (2eqtk). (30)

If we assume that the charge ¢ is # times the electronic
charge (where # is 4 if the Ti ion is quadruply charged),
and use the value of C given above, and v=64X 10" cc
= 64X 107*m?, the right side of (30) becomes 1.15X 10252
(m.k.s. units). We can judge whether this value is rea-
sonable or not, by recalling that our expansion of the
energy, which in the case of spherical symmetry can be
written ar’+br*+- .., is really the beginning of a
power series, which is bound to diverge, or have a
singularity, when the Ti ion gets very close to one of the
oxygen ions of the octahedron. This divergence will
arise because all terms of the series have the same order
of magnitude. Thus we should expect that at a distance
r where we have a divergence, ar? and br* should be of
the same order of magnitude, or r*=a/b, where for
this crude calculation we may set b;=by=>0. Then
b/a=(1.15/5)X10*#2=2.30X10%%%, and »?=1/2.30
X1079/n2, r=(2.1/n)X 10™°m=2.1/n angstroms. This
is certainly of the right order of magnitude for inter-
atomic distances, showing that the value of  which we
have found necessary to explain the Curie constant is of
a reasonable magnitude. Since the actual distance be-
tween the Ti ion and its neighboring oxygen ion is just
2A, this crude argument suggests that it might be more
likely that » should be approximately unity than 4,
which we should have with a quadruply charged ion.
From (29) we can also estimate the value of the
constant a. If we assume again that ¢ equals # electronic
charges, we find that a=7.6n* ev/(angstrom)?. That is
to say, the energy of the displaced ion, displaced a
distance of 1A from its position of equilibrium, would
be 7.6n* volts. This again is of a reasonable order of
magnitude, 1A being halfway to the oxygen ion. Here
again n=1 would be more reasonable than »=4, which
would lead to an energy of about 120 volts at a dis-
tance of 1A. Without more detailed study of the in-
terionic forces, however, it is hardly possible to estimate
how great the expected restoring forces should be. It is,
of course, not inconsistent with the structure of BaTiO;
to assume a smaller value of # than 4, which would
correspond to the strictly ionic compound. Thus if the
oxygen ions on the average were singly rather than
doubly charged, the Ti ion would have to have a single
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positive charge. Some evidence as to the charge carried
by the Ti ion should eventually become available, when
it is known by x-ray measurements exactly how much
the Ti ions displace in the spontaneously polarized
condition. The magnitude of the spontaneous polariza-
tion is known, being equal to about 16X 10~% coulomb/
cm? We have seen that we may expect about 31 percent
of this, or 5X107% to come from ionic displacement.
With a charge of » electronic charges on each Ti ion,
this would correspond to a displacement of 0.20/n
angstroms. There is some x-ray evidence for a displace-
ment of about 7 0.16A, suggesting #=1; but also some
evidence for a smaller displacement,'® suggesting a
larger value of n. These questions must await further
experimental information.

V. THE LORENTZ CORRECTION AND THE
FREE ENERGY

In Section IV we have considered only linear terms
in the force acting to polarize the various ions. Now
we shall pass to the more general problem, where we
include higher power terms as in Section II, but treat
the Lorentz correction properly as in Section IV. We
shall find it convenient to work backward, starting
from the equations for the electric field in terms of the
polarization, ending up by integrating these expressions
to get a formula for the free energy. First we note that
by differentiating (10) with respect to P, we get the x
component of the field polarizing the Ti ion. We have

ZaPzTil

E.=
702

T
p+-@m+zm>
Ng a?

4P2‘Ti/
o [P P P)] G
Ng

+

where we have now written the polarization arising from
ionic displacement of the Ti ion as Pri’. The field
acting here is of course the local field, not the external
field; in Section II we were not taking account of the
difference between these two fields. But now, using
results of Section IV, we know how to find this local
field: it is set up in Eq. (18). In interpreting that set of
equations, we must now distinguish between that
part of the polarization of the Ti ions arising from
electronic polarization, and that from ionic displace-
ment. We shall call the first part of the polarization
Pri, the second part Pri/, so that Eqgs. (18) are now
to be modified by replacing Pr; where it appears by
P+ Pri. As before, we let X1; equal ari/ew, where
aT; is the electronic polarizability of the Ti ion. The
corresponding relation giving the ionic polarizability
must now be given by (31), where we recall that the E,
appearing in that equation is the local field acting on the
Ti ion. We may then rewrite Egs. (18) and (19), modi-

17 Danielson, Matthias, and Richardson, Phys. Rev. 74, 986

(1948).
18 Kay, Wellard, and Vousden, Nature 163, 636 (1949).
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fied to take account of (31), in the form
50E2+.;{(P:Ti+PzTi,+PzBa)

+(g+5) Pzoat (—39+3) (Pzov1+Pzono)
2(1601)11'1, kT
- [1+ = (3bit zm)]
qu? a‘Z
450P2Til

[61Pori"*+ b2(Py1i*+ Pori®) ],

Nigh
elist3(Perit Pori'+ Pipa)+ (g+3) Pero.
+(=39+3)(Pzom+ Pobz) = Prri/ X i,
Bt 5(PoritPori'+ Pepo)+ (— p43) Peoa
+ (Gp+35) (Pzobit Pzob2) = Prpa/ X Ba,
€L+ (g+3) (Pzrit Peri')+(—p+3)Pzpa
3P 200t (Gp+3) (PzobitPzob2) = Pr0s/ X o,
L2+ (— 3¢+ 5) (Porit Pori')
+Gp+3)Pasat Gp+3) Paou

+3Pzo01+ (—p+3)Prove=Pzobi/Xo.  (32)

There is an equation similar to the last one for P.ope.
We can now solve all equations except the first for
P.r1iy, Pzay Proa, Pzov1, Pross in terms of P,ryi’ and E..
We then substitute these values into the first equation
of the set (32), and this becomes an equation relating
E, and Pry, containing now the higher power terms
from that equation. When we carry out these steps,
which can be simplified by comparison with the similar
problem involved in finding the first equation of (20),
the resulting equation is

C3 Z(ZP,;Ti, kT
E,=- l [H— —(3b1+2bz)]+

sl Ng? a*

4sz'Ti

Nig
Cq PzTi/
X[b1P2ri*+bo(Pyri* 4 P.1i?) ] }‘*‘ - )
Cs

€

(33)
where

cs=14pX0—3/2p(p+9) X Xo+3p(3g— p) X%,
and c3 and ¢4 are as given in (24).

In case the electronic polarizabilities of all the various
ions are zero, we have c3=cs=1, cs= —3, and hence the
only effect of the Lorentz correction in (33) is to sub-
tract the term Prti’/3¢ from the right-hand side, or to
substitute a local field E4 P/3¢ for the field E, as we
should expect, and as we saw in Eq. (11). However,
when we take account of the electronic polarizability,
there are two changes: the Lorentz correction term
P/3¢€ is changed from —} to cs/cs, and the other term
is multiplied by a factor c¢s/cs. When we insert the

numerical values which we have been using, we find
that ¢3/cs=0.309, ¢s/cs=—1.69. In other words, the
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Lorentz correction term is 3X1.69/0.309=16.4 times
as important as would be given by the simple Lorentz
theory. This is the same enhancement factor which we
have already met in our discussion of Eq. (26), only
now expressed in somewhat different language.

In the process of setting up the solution (33), we
have had to solve separately for the various polariza-
tions Pga, etc. We shall not give the separate formulas
for these quantities, but we shall give the formula for the
total polarization P, in terms of Pr;. We find that

C1 2(1P1Ti, kT 4PxTi’
P.= —eo[ [1+ = (bt 2bz>]+
Cs N¢? a? N3gt
Co
X [b1Pori*+bo(Py1i*+ P.1i’?) ] ]+ —P,1i.
Cs

We are particularly interested in the relation in the
case of spontaneous polarization, when E=0, but P
and Pri are not. In that case, we may combine with
(33), and find

Po=Po1i'[ (cacs—c1¢4)/csC5 ).

But we can prove, by straightforward algebra, that
CaC3— C1C4= Cs°.
Thus the equation above becomes
P.=(cs/c3) Py, (34)

under conditions of spontaneous polarization. When we
insert numerical values, we find P,=P,ri'/0.309
=3.24P,1/, as we have mentioned in earlier para-
graphs. We readily verify that above the Curie point,
where we are interested in the dielectric constant, this
same relation still holds to a first order of accuracy,
agreeing with the results of Section IV.

We can then use (34) in connection with (33), to
express the field in terms of P, rather than Pry, and

find
kT c3\? 4P,
z|:1+ _2(3b1+ 2b2)]+ (— )
a

C3l 2a C3
- N cs ¢s] Nig

z
Cs

C3C4 Pz

x[blP,2+b2<P,2+P3>]]+—~- 35)

652 €9

This expression allows us to integrate Eq. (7), taking
account of (10), to get the free energy 4p. We have

Ap= —NkT In[ (¢/NF)(nkT)*(2m/a)*]
+ [N(kT)z/azj%(:ibl-{— 2b2)

c3\ 2 aP? kT
+(— ) —[1+ —(3bl+2b2>]
cs/ Ng? a?

C3 4 1
+ (_ ) —[by(P 4P, + Py
cs/ Nigt

C3C4 1)"“
+2bo(P P2+ PP+ PP T+ — —

652 260

(36)
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If we use (34), and express this in terms of Pri/, the
expression (with the exception of the last term) reduces
to the same value (10) which we found earlier (when we
remember that the P appearing in (10) is just the ionic
polarization of the Ti ions, which we are now calling
Pry). The last term, however, is not the same as the
Lorentz correction function in Section III. That was
— Pri"?/6€q, whereas our term (cscs/cs?) (P?/2¢) can be
written as (cs/cs3)(Pri'%/2€). We verify from (24) that
this reduces to — Pr1i'?/6¢, for the case where the only
polarization is that of the Ti ion, thus verifying our
result; but for the actual case, it is 16.4 times as great,
in agreement with previous statements concerning the
effect of the correct treatment of the Lorentz correction.

Expression (36) is the one which we should use for
discussing relations between theory and experiment.
We may define the Curie point as the point where the
term in P? goes to zero. That is,

—(ca/c3)(N@*/2€0a) = 1+kT (3614 2b2) /a?, (37)

to be compared with (14), the formula derived from the
simple Lorentz theory, in which ¢4/cs is replaced by
—1. If we substitute (37) in (36), we can rewrite the
term in P? in the form

(c3/cs5)(aP?/N@) (k(T—T.)/a*)(3b1+2b,).

We can also use (37) to rewrite the other terms of (36)
in alternative forms; we can disregard the terms of (37)
involving the &’s in terms which are small of the first
order. When we do this, we find the alternative formula
in place of (36),

Ap=—NET In[(e/NF)(wkT)}(2m/a)}]
+ (N (kT)%/a?)2(3b:+2b,)
+ (co/ €0c5) (N ¢*/40%) Pk(T — T ) (3014 2b2)
+ (cs/ €00s)*(Ng*/16a*)[b1(Po*+ P+ P.f)

+2by(P2P 2+ P2P2+P2P2]. (38)

This form of the expression is chosen to make compari-
son easy with Devonshire’s formulas. We get agreement
with the terms linear in the &’s, in Devonshire’s Eq.
(10.13) (correcting for certain obvious misprints in his
equation), if we set his 8 (Lorentz factor) equal to

B=—c4/ (eocs) = — (4mcq)/cs(Gaussian units)
—5.00(47/3). (39)

That is, for these terms, we must use a Lorentz correc-
tion 5.09 times as great as given by the elementary
theory. On the other hand, in the terms independent of
the &’s, leading to the value of the Curie temperature,
we get agreement with Devonshire’s values if we use a
value of 8 equal to

= —c4/(eoc3) = — (4mcy)/c3(Gaussian units)
=16.4(47/3),

thereby bringing about agreement between our Eq. (36)
and Devonshire’s (10.17). In other words, no single
modified Lorentz factor will take care of the whole
correct Lorentz treatment, as we have developed it.

(40)
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VI. FREE ENERGY AND ELASTIC STRAIN

The free energy as we have computed it disregards
the elastic energy; it is calculated on the assumption
that the crystal does not deform when it polarizes.
As we have pointed out earlier, this does not lead to the
correct formula for the polarization below the Curie
point. If we set E,=0 in (35), solve for P, (assuming
that P,=P,=0), and use (37), we have

k(3b1+ 2b,)

€ C3C4 b1

P ;2 C 52

(TC_T)y

(41)

as compared with (15), where we have the factor 3 in
place of —c5?/cscs. We find —c5%/cscs=1.93; in other
words, the relation between polarization and tempera-
ture is not very different on the correct treatment from
the value given in the elementary theory, so that the
disagreement between this function and experiment is
as bad as that discussed in Section III.

We have already mentioned that, as pointed out by
Devonshire, this disagreement is removed by supple-
menting A p, as given in (38), by additional terms in the
elastic strains, and terms involving both strains and
polarization components, which therefore are respon-
sible for the piezoelectric effect. The partial derivative
of this free energy with respect to one of the strain
components then gives the related stress component;
if we set the stresses equal to zero we get in this way a
set of equations from which we can solve for the
various strains under conditions of vanishing stress.
We substitute these values in the expression for free
energy, and have finally a free energy as a function
of polarization components, for the condition of vanish-
ing stress. We find that the resulting correction terms
are of the fourth-power in the polarization, hence
modifying the fourth-power terms in (38), and chang-
ing completely the relation (41), and thus the polariza-
tion below the Curie point. Since our argument at this
point follows exactly that of Devonshire, we merely
refer the reader to his paper, particularly his Eq. (9.1),
giving the free energy in terms of strains and polariza-
tions. To facilitate comparison with his results, we give
formulas, in our notation, for various coefficients ap-
pearing in his paper, his Egs. (10.14), (10.15), (10.16):

s \*N¢g
/= (—) LT =T (3bi+20),

€)Cs 2&

e \* N¢*
ar=(=)
€oCs 44!

ca \*N¢g
— ) —b..
4a4

"__
12 =

(42)
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Devonshire has made some attempt to compare the
numerical predictions of the theory with experiment,
and it is obvious that the present paper, making very
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large changes in some of the coefficients, will invalidate
most of that comparison. We shall not attempt at this
time, however, to make an alternative comparison with
experiment. There are two ways in which this compari-
son can be made. First, the observed Curie tempera-
ture permits an evaluation of ¢?/e, and the tem-
perature dependence of the dielectric constant gives
us (3b;+2bs)/a®.. We have already considered the
resulting values of these constants, and have shown
them to be of reasonable order of magnitude. To check
them better we should have to have an elaborate study
of the structure of the crystal from the standpoint of
atomic theory, in order to be able to compute the
interionic forces. Devonshire has given such a theory
in a rather elementary way, but the writer believes that
a more elaborate treatment would be necessary before
the results could have great pretensions to accuracy.
On the other hand, the behavior of the polarization
below the Curie point gives information about the
coefficients of the fourth-power terms (and sixth-
power terms, which Devonshire also has to introduce),
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but modified by the contributions resulting from the
elastic strain. If the elastic and piezoelectric constants
of single crystals were known accurately enough, we
could evaluate these modifications, and then we should
be able to find the &’s independently from the fourth-
order terms, as well as from the second-order terms,
and hence have a valuable internal check of the theory.
Unfortunately, these elastic and piezoelectric constants
are not known sufhciently well. It is to be hoped that
future experiments will supply this missing information.
In the meantime, it can be said that there does not seem
to be anything about the present form of the theory
which does not have a good chance of agreeing with
experiment, when better experimental data are avail-
able.

The writer is greatly indebted to his colleague Pro-
fessor A. von Hippel for stimulating his interest in the
problem, and for useful discussions; and to Drs. W.
Shockley and P. W. Anderson of the Bell Telephone
Laboratories, for valuable exchange of information
regarding the work on the subject of those Laboratories.

PHYSICAL REVIEW VOLUME 78, NUMBER 6 JUNE 15, 1950

Evaporation of Zinc and Zinc Oxide under Electron Bombardment
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By use of a mass spectrographic method, the rate of evaporation of zinc and zinc oxide is measured as a
function of temperature both with and without electron bombardment of the surface being evaporated. In
the case of zinc metal no increase of evaporation could be detected as resulting from bombardment whereas
a definite increase was observed in the evaporation of zinc oxide. The enhancement of the evaporation rate

of zinc oxide increases slowly at first and then rapidly with increasing temperature.

1. INTRODUCTION

HE experimental investigation of many solid state
phenomena would be much simplified if a sen-
sitive method of microanalysis were available for
measuring the chemical constitution of solids containing
impurities in very small concentration. Especially would
this be the case if the method were capable of analyzing
the constituents of solid surfaces, for many surface
phenomena such as thermionic emission, secondary
electron emission, photoelectric emission, etc., are very
sensitive to the atomic or molecular constitution of the
surface in question. The mass spectrometer is an instru-
ment which would be very well suited to such analysis
if means could be found to remove atoms or molecules
from the surface and subsequently identify them in the
spectrometer.
There is evidence that under electron bombardment
atoms or ions may be removed from solids. Baldock!
* Now at University of Oregon, Eugene, Oregon.

L R. Baldock, Ph.D. Thesis, Cornell University, Ithaca, New
York.

found that calcium ions are obtained from calcium
metal when it is bombarded with electrons. Jacobs®
found oxygen compounds to be removed by electron
bombardment from anodes coated with thin layers, and
Sproule?® found evidence that electron bombardment of
heated triple oxide surfaces removed barium, strontium
and calcium atoms. The experiments reported below
were undertaken to study this phenomenon in greater
detail in order to see whether electrons of themselves
can cause dissociation of atoms from a surface or
whether this comes about only by virtue of the heating
produced by the electrons. A beam of electrons was
directed against a target whose temperature could be
controlled. The relative number of atoms leaving its
surface was detected with a mass spectrometer and
compared with the number leaving by thermal evapo-
ration alone.

2 H. Jacobs, Phys. Rev. 69, 692 (1946).
3 R. L. Sproule, RCA Laboratories Report.



