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Photo-Disintegration of the Deuteron at High Energies
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Total cross sections and angular distributions for the photo-
disintegration of the deuteron for energies between 10 and 150
Mev are computed for various types of central neutron-proton
interactions. Most of the explicit computations are carried out for
the case of 50 percent ordinary and 50 percent exchange inter-
action. Neutron-proton interactions considered are of the square
well, Yukawa, and exponential type with two effective ranges.
Theoretical analysis of the experimental data on high energy
neutron-proton scattering excludes the square well, but is com-
patible with both Yukawa and exponential types of potentials.
The Vukawa potential is replaced by an equivalent Hulthen
potential. For the square-well and exponential potentials explicit
analytic solutions were obtained. Our treatment of the case of
the exponential potential is rigorous and at the same time almost
as simple as that of the Hulthen potential. A qualitative dis-

cussion of the photoelectric dipole transition is given on the basis
of the f-sum rule. This shows how exchange forces greatly increase
the cross section at high energies. The discussion can be carried
out for any exchange ratio. It is pointed out that only the photo-
electric dipole and quadrupole cross sections can be obtained
independently of specific meson theories of nuclear forces. The
results for photo-disintegration show a pattern similar to those
on neutron-proton scattering: very little difference between
Yukawa and exponential potentials, somewhat larger difference
between these two and the square-well potential. There is a pro-
nounced dependence on effective range. In the Appendix a simple
derivation of the dipole cross section for the ordinary square well

potential is given, based on a transformation involving the equa-
tions of motion.

I. INTRODUCTION

C[
UR present knowledge of the neutron-proton

interaction has been obtained from neutron-
proton scattering data and from studies of the ground
state of the deuteron. From low energy neutron-proton
scattering one can obtain the eRective range of the
neutron-proton interaction, "but no information about
the shape and exchange character of the potential. The
values of the quadrupole and magnetic dipole moments
of the deuteron indicate the existence of a tensor force
between neutron and proton. High energy e—p scat-
tering should yieM, in addition, information concerning
the shape of the potential, its exchange character, and
further information about the nature of tensor forces.
Theoretical interpretation of the data available at;
present' indicates that the potential is of the "long-
tailed" type, but it is not possible to distinguish between
the Vukawa and exponential potentials. The percentage
of charge exchange seems to be somewhat higher than
50 percent but the experimental evidence is not com-
plete enough to assign a definite value. The eRect of
tensor forces is not negligible at high energies though
the present data do not yield conclusive evidence on
the strength of the tensor forces.

Similar information can be obtained from a study of
the photo-disintegration of the deuteron. At low

energies the photo-disintegration is independent of the
shape of the potential and depends in a simple way on

* Assisted in part by ONR. Some of our results using a square
well have been published. fJ. F. Marshall and E. Guth, Phys.
Rev. 76, 1879, 1880 (1949)j.

f Part of this work was done while the author was an AEC Pre-
doctoral Fellow.

' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 {1949).
2 H. A. Bethe, Phys. Rev. 76, 38 (1949).' R. S. Christian and E. %. Hart, Phys. Rev. 77, 441 (1950).

9"e are indebted to Drs. Christian and Hart for informing us of
their results prior to publication. Hadley, Kelly, Leith, Segre,
'6'iegand, and York, Phys. Rev. 75, 351 (1949).
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the effective range of the neutron-proton interaction.
At high energies total cross sections and angular dis-
tributions depend on the shape of the potential and the
percentage of charge exchange, and will be influenced

by the type and range of tensor forces assumed.
In the present paper the photo-eRect is discussed for

three possible potentials: square well, exponential, and
Hulthen' (which is a good approximation to the
Yukawa potential)' in the energy range 10 to 150 Mev.
In the case of the exponential and Hulthen potentials
all calculations are made on the assumption of purely
central interaction and an equal mixture of ordinary and
charge exchange forces, while for the square well an
estimate is made of the influence of diRerent mixtures.

Section II contains the constants for the three n —p
potentials used. Section III presents a general dis-
cussion of the photoelectric dipole cross section based
on the f-sum rule generalized for the case of exchange
forces. Section IV presents a summary of the calcu-
lations in the form of graphs. Section V contains the
principal formulas used in the detailed calculations,
together with a brief discussion of the limitations of our
present theory of the deuteron photo-eRect from the
point of view of meson theory.

SYMBOLS USED IN THE TEXT

P;: Eigenfunction for the ground state of the system.
~&, : Radial eigenfunction for the ground state.
Pi. Eigenfunction for state of angular momentum /.

17. Radial eigenfunction for state of angular momentum /.
3f: Mean mass of neutron and proton.
p„. Magnetic moment of neutron.
p, ~.. Magnetic moment of proton.

~: Binding energy of the deuteron.
E&. Energy of the incident y-ray in the center-of-mass system.

4 J. S. Levinger, Phys. Rev. 76, 699 {1949).' L. I. SchiG has kindly informed us of independent computa-
tions, using Hulthen and exponential potentials. His conclusions
and ours are in general agreement.
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Spherical Bessel function of order l

j)(x} (~j2x)V)+g(x).

Fraction of exchange forces in n —p interaction.
Total electric dipole cross section.
Total electric quadrupole cross section.
Total magnetic quadrupole cross section

~2=(.M/h2). e= (,v/a2)(z —.).

II. CONSTANTS FOR THE n —p INTERACTION

The constants for Yukawa and exponential potentials
were obtained from the graphs of Blatt and Jackson'
using the latest value of the effective range (rp ——1.74
X10 " cm) of the neutron-proton interaction. ' The
corresponding potentials are then

Vr(r)= 4e "'/~; A=1.53X10"cm '
a=0.614X10"cm —', (1)

Vx(r) =8'e '&' 8'=4.27X10"cm ',
P=0.717X10"cm —' (2)

The range of the Hulthbn potential is chosen to give
the same low energy electric dipole cross section as the
Yukawa potential (see footnote 21), yielding:

~
—Pr

VH(r)=(P' —~') P=1.41X]0» cm —~ (3)
e—ar

fo,
—iIjtr

The binding energy of the deuteron is taken equal to
the value used by Blatt and Jackson, e= 2.208 Mev.

Calculations for the square well were made at an
earlier date and the constants for it correspond to an
eAective range, F0=1.54X10 " cm, and a binding

energy, 2.237 Mev.

III. GENERAL DISCUSSION OF DEUTERON
PHOTO-EFFECT EMPLOYING SUM RULES

Evaluation of the photo cross sections involves com-
putation of integrals of the type

P;s'P(dr.
0

For low energies (E„&10Mev) it is sufhcient to take
only l= 1; i.e., consider the dipole cross section only. It
is also permissible to use for f& the wave function of a
free nucleon

l~ 1 free

At low energies the main contribution to (4) comes from
t.he region "outside" the e—p interaction. For inter-
mediate and high energies the interactions of the
nucleons must be taken into account, and the con-
tribution from the "inside" increases with energy.

For an equal mixture of ordinary and exchange forces
(5) is exact and the computation is quite simple. The
~Iipole cross section in this case depends on the range

6 D. J. Hughes, Phys. Rev. 78, 315 (1950).Hughes, -Surgy, and
P.ingo, Phys. Rev. 77, 291 (&950),

and shape of the n p—interaction only through the
ground wave function. For the case of an arbitrary
exchange ratio x (x=0, ordinary, x=1, exchange) it is
possible, however, to gain a qualitative understanding
of the dependence of the cross section on range, shape,
and exchange ratio by application of the f-sum rule. As
is well known, the f-sum rule yields a value of the inte-
grated dipole cross section of the deuteron, given by

oodE= s-'e'h/Mc= o,

t' 2.M
o, = pi o1+——x ' P;*Vr'Pg, dr i.35' &p )

This formula is in agreement with Way and also with
I.evinger and Bethe" who recently made a detailed
application of sum rules to nuclear dipole photo-efI'ects.

2000 —EXPONENTiAL
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Frc. 1. Total cross sections for r0=1.74)&10 "cm.

' V. Fock, Zeits. f. Physik 89, 744 (1934).
"E.Feenberg, Phys. Rev. 49, 328 {1936).
"A. I. F. Siegert, Phys. Rev. 52, 787 (1937').
'" K. %'ay, Phys. Rev. 51, 552 (1937)."J.S. Levinger and H. A. Bethe, Phys. Rev. ?8, 115 (1950).

AVe are indebted to Dr. Levinger and Professor Bethe for com-
rgunicating their results to us before publication.

"I'his form implies the assumption of ordinary forces,
however. In this case the integrated cross section does
not depend on either range or shape of the e—p inter-
action.

It seems that Fock' was the first to point out for
atomic problems that the usual form of the f-sum rule
needs modification when exchange forces are taken into
account. Independently of Fock, Feenberg' and Siegert'
pointed out the same fact in connection with nuclear
problems and Way'0 has already applied the modified
sum rule to the deuteron photo-efI'ect. For the integrated
dipole cross section at exchange ratio x one obtains



J. F. .'vl;XRSHALL A. ."i D E. GL TH

and for a Hulthen and an exponential potential, which
yield about the same value

0.33
garo=

At high energies it seems permissible to conclude that
a~ will also increase with increasing x."An attractive
exchange force for the ground (5) state of the deuteron
implies a repulsive exchange force for the final (P)
state. This repulsion implies, (a) an increase of the
energy of a given I' state compared to the case x=0,
when the I' state is bound by an attractive ordinary
force, and (b) a decrease in the integral (4) for small
final energies and an increase in the integral, i.e., in 0.~,
for large final energies.

Ke conclude that at high energies for a given range
e~ for a square well will be larger than that for a
Yukawa (Hulthbn) or exponential potential, the last
two difkring but little, and that o.q increases with
increasing x. This last conclusion is certainly not valid
for energies less than 30 Mev, as is shown by numerical
computations.
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FIG. 2. Total cross sections for ro= 1.56X10 "cm.
'2 The following arguments have already been given by Levinger

and Bethe (reference 11).

Evaluation of (7) for a square, a Hulthen, and an
exponential potential leads to the approximate general
form

0.=00(1+inrox),

where 1 is a shape factor and ro the e6ective range.
This form shows clearly that 0. increases both with x
and r. In particular, for ro= 1.56 and 1.74 we obtain for
a square well

0.40
fnrp=

0.44

For quadrupole (even-even) transitions, in contrast
with dipole (even-odd) transitions, exchange forces do
not modify the matrix elements or the sum rules.

IV. SUMMARY OF CALCULATIONS

The results of calculations based on the assumption
of central forces and 50 percent charge exchange are
shown in Figs. 1—4. The energy range 10 to 150 Mev is
chosen because below 10 Mev one cannot detect any
shape efFects, and above 150 Mev relativistic effects
and interactions other than photo-disintegration become
important (see Section V). Total cross sections for the
"long-tailed" potentials, including electric dipole,
electric and magnetic quadrupole (the magnetic dipole
contribution can be neglected) are shown in Fig. 1 for
r0=1.74X10 " cm. Throughout most of the energy
range the difFerence between the Hulthen and the ex-
ponential cross sections is quite small, but at the higher
end they begin to deviate from each other appreciably,
the difference amounting to 13 percent at 150 Mev. It
is interesting to note that for energies greater than 80
Mev the cross section for the exponential well always
lies below that for the Hulthen well. This agrees with
SchiG's theorem" on the asymptotic energy de-
pendence, according to which the exponential cross
section should fall off more rapidly than that for the
Hulthhn well by a factor 1/E„at high energies.

Total cross sections for the square-well and Hulthen
potentials are compared in Fig. 2 for an eGective range
of 1.56&(10 " cm in the energy range 20 to 100 Mev.
The difference between the two curves is quite marked,
amounting to about 30 percent at 100 Mev. Conse-
quently, while it would be quite dificult to distinguish
between the "long-tailed" wells experimentally, a poten-
tial of the square-well type should be recognizable.

The electric and magnetic quadrupole cross sections
are plotted in Fig. 3 for the two "long-tailed" poten-
tials. [In computing the electric quadrupole cross
sections, it was assumed that the outgoing wave could
be treated as free (see Section V).]At low energies both
can be neglected as far as their influence on the total
cross section is concerned, although the electric quad-
rupole cross section still has an important influence on
the angular distribution. At the higher energies their
contributions to the total cross section are about the
same: electric quadrupole contributing five percent at
150 Mev and magnetic quadrupole eight percent.

Angular distributions in the center-of-mass system
are shown for two energies (150 and 17.5 Mev) in Fig. 4.
Distributions for other energies can be obtained very
readily by use of Figs. 1 and 2 and Eq. (42). In the
17.5-Mev curve' the magnetic dipole contribution,
which would yield an isotropic term amounting to

"L.I. Schiff, Phys. Rev. 78, 83 (1950); see also Levinger and
Bethe (reference 11).

"Angular distributions in the range 4 to 20 Mev have been
measured by Fuller. LE. G. Fuller, Phys. Rev. 76, 576 (1949) and
Ph.D. thesis. g We have shown that his forward asymmetry agrees
with ours to within the experimental error (see asterisk reference).



about two percent of the 90' cross section, has been
subtracted out. The distribution is predominantly of
the electric dipole form, but is slightly asymmetric
about 90' due to interference between electric dipole
and electric quadrupole transitions. At this energy there
is no noticeable dependence on shape in the angular
distribution, and the angular distribution is given very
nearly by the zero-range formula. The distribution
normalized to unity at 90' is given by

2I—

—EXPONE&T)QL +

f(8) = sin'8[1+0.264 cos8], at 1i.5 Mev (9)

which is approximately

f(8) = sin-"8[1+2((E,—c)(Mc')l cos8]. (10)

The coeijicient of cos8 in (9) is the same for all three
potentials and is larger than that for the zero-range
distribution (10) by about three percent.

The angular distribution of photo-protons at 150 Mev
is plotted in the solid curve of Fig. 4 for the exponential
potential, the angular distributions for the other po-
tentials having much the same form. At this energy the
angular distribution has the form

f(8) = sin"-8[1+ 1.066 cos8+0.2839 cos"-8]

+0.1880 cos'8. (11)

The sin'8 term still dominates, but the forward
asymmetry is much larger than in the low energy case.
Furthermore, since the magnetic quadrupole cross
section is appreciable at this energy there is appreciable
scattering in the forward direction.

V. DETAILED CALCULATIONS AND DISCUSSION

A. General Considerations"

2dfiller and Rosenfeld" have shown that since the
charge density of the virtual meson field has an average
value of zero, the exchange moment contribution to the
electric dipole and electric quadrupole moments is zero
to order r„„,.~., )c. On the assumption of purely central
forces corresponding cross sections are then given by:

4
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I'rc. 3. Electric and magnetic quadrupole cross sections
for ro= 1.74X10 "cm.

the magnetic exchange moment vanishes for any sta-
tionary state of the deuteron, but the exchange moments
of H' and He' amount to about six percent. " The
exchange currents are likely to contribute to the
photomagnetic cross section, as pointed out by Pais."
His original estimate of the magnitude of this con-
tribution on the basis of Mgller and Rosenfeld's mixed
theory was much too large. "Still, the magnitude of this
contribution is unknown. The same holds a fortiori for
the magnetic quadrupole transition. Fortunately, the
magnetic dipole cross section, assuming zero exchange
contribution, is negligible over our energy range. How-
ever, the magnetic quadrupole cross section, again
assuming zero exchange contribution, is larger than the
electric quadrupole cross section above 100 Mev. For
the sake of this comparison we retained the magnetic
quadrupole transition, though its inclusion, according
to our previous discussion, does not have a sound
theoretical basis.

Assuming the exchange moment to be negligible, the
magnetic quadrupole cross section for transitions to a
final triplet state is given by

(12)

I2= JI u2r'I, ;dr. (13)

The situation with respect to magnetic transitions is
not quite so simple since exchange effects will depend
upon the specific meson theory assumed. It is true that

"In these computa, tions it was assumed that the interaction
is purely central. The numerical calculations of T-M. Hu and
H. S. W. Massey, Proc. Roy. Soc. A186, 135 (1949), indicate for
x= -'; a 40 percent increase of Od by tensor forces at 28.8 Mev. For
x=$ the percentage increase is smaller, but very likely still
appreciable."C.Mgller and J. Rosenfeld, Kgl. Danske Vid, Sels. Mat, .-Fys.
M'edd, 20, No. 12 (1943).

The cross section for transitions to singlet states is about
one-fiftieth of this amount and can safely be neglected.

The angular distribution of photo-particles in the
center-of-mass system is given by"

'7 F. Villars, Phys. Rev. 72, 256 (1947).
' A. Pais, Kgl. Danske Vid. Sels. Math-Fys. '.Vledd. 20, Xo. 17

(1943)."I.Rosenfeld, Xuclear Forces (Interscience Publishers, Inc. ,
Xew York, 1949), Vol. II, p. 449.

Several authors state that there is no interference between
electric dipole and electric quadrupole transitions, as indicated
by the above expression, since the 6nal states belong to diferent
isotopic spin states. Were it not for the Pauli principle this would
be the case, since cross product terms would vanish on summation
«ver isotopic spins. Since, however, for a given angular momentum
and spin one of the two possible isotopic spin states is always
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do sin'-8

[3oe+6(5eqoe) 'z cos Hz cos8z cosH
dQ Sx

u;"+V(r)u; —n'u;= 0. (16)

In order to satisfy Eqs. (12)—(14) the function u;
must be normalized to unity,

+15zr, coszH]+ (3/4zr) o„,cos'H. (15)

B. Wave Functions for Initial and Final States

The radial wave functions for the ground state
satisfy a wave equation of the form

V(r)=B'e 'e" p—=aJ (x) (22)
v here

P=n/P; x=(B/P)e e"; a=r(P+1)(B/2P) z'. (23)

The solutions to the wave equation for the three
potentials are then:

(a) Hulthen:

e
—t'"

1'(r) = (P'- —n') — ie= e
—"—e e" (21)

e
—er e—Pr

(b) Exponential:

J
u;zdr=1.

It is found convenient to express (22) in the form of
(1i) an infinite series

It is more convenient to use a wave function which
has the asymptotic form exp( —nr). Writing

" ( —1)'(B/2P)"
(p= Q e—(~+zze)~

7

jap~
(24'

u=A q, where y -e (18) where

P = (0+1)(&+2) (A+i)
A-'= 2n/(1 —n p),

2p= e " "—' ydf.
J,

It has been shown by Blatt and Jackson that p
divers from rp by about one-half percent, and for all
potentials considered here

(c) Square well:

V(r) = Vo, r(f z

V(r) =0, r) b,

e—aha

sin Vp '1, f'(6,
sin Vp&b&

(25)

I.O

p= & 73X&0 "for rp= &.74X&0 ",
p= 1.5&X 10-» for rp=1.S6X«0-»

q =e ", r&b, . (26)

In order to evaluate the integrals I~ and I2 we need
final state wave functions for the I' and D states. On
the assumption of x=0.5, the nucleons may be treated
as free in the I' state and the corresponding wave
function is simply

ui ——rjz(kr), H, =0. (2i)

To obtain a general solution of the wave equation for
the D state would require a numerical solution for the
exponential and Hulthen potentials. A possible ap-
proximation would be to assume that in the evaluation
of I2 the important part of the wave function is that
outside the range of interaction, and that we can ap-
proximate u2 by

zzz = r[cos5.j (kr) —sin 5'zzz(kr) j,
where 5& is given approximately by

(28)

/

0 30
l
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I

90
e

i

i20
I

f50 180
sinHz ——kJt V(z)j (kr)rzdr.

Fir. 4. Angular distributions of photo-protons. The dashed
curve is for 17.5-Mev gamma-rays, and the solid curve is for
150-Mev gamma-rays.

forbidden by the Pauli principle, averaging over isotopic slain
states is not justified and the cross product terms remain,

It was found that in this approximation the effect of
binding in the D state was quite small. Furthermore,
the contribution to the integra1 from inside the well is
quite large, and it is not entirely clear that (28) is a
much better approximation than the assumption that,
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u. = rj,(kr); 8,=0. (3(l)

the outgoing wave can be treated as free. Consequently,
the D wave function for the Hulthen and exponential
well was taken tn he

(b) Fxponential potential:

( —1)'(&/20)"
I'q= 1—

(a'-'+ k'-') '-'

(38)
L(P+2i)'t3'+k']'

l,=,f rj,(V„lr), r&b],
u& r$cosh. j&——(kr) —sin82n..(kr)], r)b&

(31)

C. Eva1uation of the Cross Sections

1. Fifty Percent Charge Exchange

LUse of Eqs. (28) and (29) instead of (30) would change
o., by about 10 percent. Since the asymmetric term in
the angular distribution depends on (o,)', the change
there is smaller. ]

In the case of the square well, the effect of binding is
much more pronounced and exact wave. functions were
used,

~ ( —1)'(8/2P) "(a'+k"-)'
F,=1—. Q

~ j'P L(p+2j)' 3t'+k']'
(39)

o.'+ k'-'

Fg = 1 -1.57
(p+ 2) 'P'+ k'-'

Up to 150 Mev, only two terms (j=1, j=2) are
needed for an accuracy of better than one percent in the
total cross sections. Putting in values for n, 8, t3 cor-
responding to an effective range of 1.74)&10 "cm, the
series can be written

since over a la1.ge part of the energy range considered
the cross sections di6er very little from the zero-range
cross sections, it is convenient to express them in terms
of these cross sections. On the assumption of a free
outgoing wave in I' and D states the expressions for
the cross sections take the form

I'2 ——1 —1.57

+0.146

(&+2)'t3'-+ k'

9+$9 9

(40)
(&+4)'t3-'+ k'

where

a.,( ——a.eFg'/(1 np), — (3'2)

+0.146 (41)
(&+4)'t3'+ k'

Also
Sm' e h" e'(E —e)'

Og= ———
3 IEc M E~'

o,=o e,F2'/(1 —n p), - (34) IQOO

50 Z Ordinary farCe—
50 p malorana force
60% ordinary force—
40 I majorana force

IOO y ordinary force
0 l majorana force

IO

Finally,

(n'+ k'-) '
yj g(kr)r"dr

Sk'

(E~ —e)
08q= 0 P.

5Mc'-
(3$ IOO I.O

Substituting (21) and (24) we obtain for F~ and F&.
(a) Hulthen potential:"

F =1 D'-+k')/(t3'+k-')]', (36)

F,, —1 P(a2+ k2)/(P2+ k2)]3 (3 ) )

E
O
O

b
IO

'-' At, energies below 15 Mev the factor F1 is very nearly equal
to one for all potentials. Consequently, the electric dipole cross
section is given by

cry= crgy/(1 —up)

which is independent of the shape of the potential. Since the
constants of the Yukawa potential are chosen to correspond to
p=1.73X10 "cm, the constant p in the Hulthdn potential must
be chosen to correspond to this value of p, if the two potentials
are to yield the same low energy cross section. From (20) one
obtains a relation between p and t8 for the Hulthen case

p = (3P—~)tP(P+~)
v;hich can he solved for P yielding /=1.41)&10"cm '.

5,0

3.0—
Electric dipole cross sections

(without retardation)

ro 2.8 x lo cm
I.O

lo 30 50 70
E, mev

].05

I-.03
l
I
I
I

~
—-' —.OI

/

.006
90

FK;. 5. Flectric dipole cross sections for several mixtures.
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Taking 81=8&=0, we have for the angular distrihu-
tloIl

do/dQ= (gs/3) sin'-8[3oe+6(5oeo, )& cos8
+15o, cos'87+ (3/47r)o, cos'-'8. (42)

The expressions for the cross sections in the case of
the square well are quite a bit more complicated than
those for the Hulthen and exponential potentials, and
are most simply computed by substitution in recursion
formulas.

2. Egeet of Mixture

Dipole cross sections for several exchange mixtures
are plotted in Fig. 5 for a square well of intrinsic range,
2.8)&l0 " cm. From these curves one can obtain a
qualitative idea of how the mixture will affect both
total cross sections and angular distributions.

The cross section for x=0 (a simple derivation is
given in the Appendix) is found to fall ofi much more
rapidly than that for x=0.5, and actually goes to zero
at 90 Mev. Furthermore, since the quadrupole cross
section is una6ected by mixture the angular distribu-
tions will be radically different for the two cases. Con-
sequently, it should be very easy to determine experi-
mentally whether the interaction potential has a large
percentage of ordinary forces.

The dipole cross section for x=0.4, however, is seen

to be very nearly equal to that for x=0.5 and a rough
estimate indicates that all values of x greater than 0.4
yield very nearly the same value of the cross section.
Consequently, very careful experiments would have to
be made in order to assign an exact value to x.

(44)

inserting (44) in (43) we obtain

Mh' BV
Xpl = fs—COSH/id 7'.

(E1—EP)' Br

But for a square well 8 V/Br =b(r —bt), therefore

0'(~ l'/~f') 41~'«= A(bt) 41(bt) bt'

(45)

giving o~ in a rather compact form.
This result agrees with that of Breit and Condon~ which was

obtained on the basis of a more involved computation.

~ G. Breit and E. U. Condon, Phys. Rev. 49, 904 (1936).

APPENDIX. DERIVATION OF ed FOR ORDINARY
FORCES

The matrix element for the dipole transition is proportional to
the absolute square of the integral (matrix)

XP1 = @iZfldT.
p

(43)

We can transform this integral and evaluate it at once by using
the equation of motion
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Hyperfine Structure and Nuclear Syins of Tungsten and Tellurium

G. R. FowLKS*
Department of Physics, L niversity of California, Berkeley, Cabfornia

(Received March 3, 1950)

By the use of enriched isotopes, hyperfine structure in the optical spectra of Te'~, Te'~, and W'83 has
been observed. Milligram amounts of the isotopes were used in a modified Schuler hollow-cathode discharge
tube. In the visible region, 4000 to 6000A, about a dozen lines of singly ionized tellurium showed hyperdne
structure, all of them giving just two components for the odd isotope. Te'" and Te'~ gave identical structures
except for a scale factor, the total splitting of the lines of Te"' being about 88 percent of that of Te'~. In the
spectrum of neutral tungsten, all of the lines which show the isotope shift for natural tungsten gave just
two components with highly enriched W'~. The number of hyper6ne-structure components, namely two,
gives for Te"', Te'~, and W'8' a nuclear spin of ~. This was also verified by intensity measurements.

I. INTRODUCTION

HE nuclear spins of all the stable isotopes of odd
atomic number are now believed to be known,

and even the spins of a number of radioactive nuclei
have been measured. On the other hand, the spins of
about one-third of the stable nuclei of even atomic
number and odd atomic weight remain unknown. The
reason for the scarcity of data on the spins of even-odd.
nuclei is in many cases the low abundance of the odd
isotopes in the natural element. Enriched isotopes of
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many elements separated by mass-spectrographic
methods have recently become available in milligram
amounts through the Atomic Energy Commission. By
the use of these enriched isotopes several nuclear spins
heretofore not known or not definitely established have
been measured recently. Although the spin of any
nucleus is a desirable datum, there are some nuclei
which are particularly important or interesting from a
theoretical point of view. In this investigation the spins
of three interesting nuclei —the two odd isotopes of
tellurium, Te'" and Te'", and the odd isotope of tung-
sten, %"'—are measured by observations on the hyper-


