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‘I'he cross section for the photoelectric disintegration of the deuteron by gamma-rays with energies in the
range 20 to 140 Mev is calculated for various assumptions as to the interaction between neutron and proton.
This interaction is taken to be central, half-exchange and half-direct, of approximatelyYukawa and ex-
ponential forms, and with two effective ranges; experimental data thus far obtained on neutron-proton
processes do not provide a firm basis for distinguishing between these assumptions. Only the electric dipole
and electric quadrupole cross sections are found, since the magnetic dipole cross section cannot be obtained
reliably without explicit reference to a meson theory of nuclear forces. Use is made of a method for approxi-
mating to “long-tailed” potentials in such a way that the deuteron wave equation can be solved in simple
analytic form. The results show relatively little difference between Yukawa and exponential potentials
of the same effective range, either as to total cross section or angular distribution, but an appreciable dif-
ference from earlier calculations with a square-well potential, and a dependence on effective range. In the
Appendix, it is shown that at very high energies, each photoelectric multipole cross section depends pri-
marily on the coefficient of the lowest odd power of 7 in the expansion of the deuteron potential about the
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origin.

I. INTRODUCTION

T has been shown by Mgller and Rosenfeld! that the
contributions of virtual mesons to the electric dipole
and electric quadrupole moment operators of the two-
nucleon system are zero through terms of order
B2="nucteon/¢. This makes it possible to calculate the
cross section for photoelectric disintegration of the
deuteron entirely in terms of the interaction potentials
between neutron and proton in triplet states of various
orbital angular momenta. A similar elimination of the
meson field from the magnetic dipole transitions cannot
he made, since it is the meson charge density and not
the meson current density that is approximately zero.
However, the magnetic dipole transitions can be dis-
tinguished from the electric dipole and quadrupole
transitions by different angular dependences of the
emitted protons and neutrons (the former distribution
is spherically symmetric and both of the latter vanish
in the direction of the gamma-ray beam). It is to be
expected, therefore, that corroborative evidence con-
cerning neutron-proton interactions can be obtained by
studying the deuteron photo-effect in an energy range
where relativistic and free meson effects are unim-
portant. In the present paper, this energy range is
taken to be 20 to 140 Mev; for higher energies other
multipoles also become important, and for lower ener-
gies the shape of the interaction potential is of less
importance than its effective range.?

The principles outlined above have already been used
in part to calculate the deuteron photo-effect at various
energies.?~> Thus far, however, the high energy angle
distribution (which involves interference between elec-

' C. Mgller and L. Rosenfeld, Kgl. Danske Vid. Sels. Mat.-Fys.
Medd. 20, No. 12 (1943).

2 J. F. Marshall and E. Guth, Phys. Rev. 76, 1879 (1949).

3 A. Pais, Kgl. Danske Vid. Sels. Mat.-Fys. Medd. 20, No. 17
(1943).

4 J. S. Levinger, Phys. Rev. 76, 699 (1949).

§ J. F. Marshall and E. Guth, Phys. Rev. 76, 1880 (1949).

tric dipole and quadrupole transitions) has not been
calculated with potentials more realistic than the square
well.® It seems desirable at this time to attempt to dis-
tinguish, on the basis of the photo-effect, between
Yukawa and exponential potentials, which when ap-
proximately half-exchange and half-direct appear to
give about equally good accounts of the neutron-proton
scattering.” Tensor forces are ignored, since their effect
through the deuteron ground state is small>® and there
is no clear evidence for their existence in states of higher
angular momenta.’

The calculation performed here is expected to be
more accurate than is implied by the neglect of terms
of order B,%. The approximation only involves the
neglect of the meson contribution to the electric dipole
and quadrupole operators, which can be interpreted as
a vanishing of the meson charge density to order 8.
Now the term in the meson charge density of order 8,
will be fairly small in comparison with the term in the
nuclear charge density of the same order; this is true
so long as nuclear forces can be obtained from per-
turbation theory, since this implies weak coupling and
a small probability that virtual mesons are present.’
Thus the results should be fairly reliable even to
order B,2.

In Section 1I, the various choices for the interaction
potentials and the ground-state deuteron wave func-
tions are presented. Formulas for the differential photo-
effect cross section are given in Section III, and the
numerical results presented and discussed in Section
IV. The Appendix derives a general result that may
prove of interest for very high energy processes.

¢ Professor E. Guth has kindly informed the writer of inde-
pendent calculations that generally confirm the results obtained
here; they are reported in an accompanying paper.

7R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).

8 M. E. Rose and G. Goertzel, Phys. Rev. 72, 749 (1947).

® The analogous argument does not apply to the magnetic
dipole matrix element, since the meson contribution is enhanced
by the nucleon-meson mass ratio.
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II. INTERACTION POTENTIAL AND DEUTERON
WAVE FUNCTION

It is the object of the present paper to compare the
Yukawa and exponential interactions without resorting
to extensive numerical work. This is accomplished by
generalizing the Hulthén potential, which is an excellent
approximation to the Yukawa potential, so that it can
be made to approximate a large class of “long-tailed”
potentials. The ground-state deuteron wave function
(energy —e) is assumed to have the form

l100(7') = I:Bu(r)]/r,
w(r)y=e " —eFr(14+ar+br+---), (1)
I*y*=Me, B>7.

Substitution into the wave equation shows that this
corresponds to the triplet interaction potential

Vi =-[wU(nl/M,

) )
Ulr)= 72—1 i
u dr?
(B2—v*—2aB+ 2b)+[[(62—72)a—46b+ e
+[(B?

_72)b+. . .]rZ_*_- .
eB=1"— (14-ar+-brit ) '

The effective range'® " computed with the ground-state
wave function is about } percent less than the zero-
energy effective range 7o:
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Fig. 1. Solid curves give the total photoelectric dipole cross
sections as a function of gamma-ray energy in the CM system for
Yukawa and exponential potentials of effective range 1.56X 1071
cm. Dashed curve is the total cross section (all multipoles) cal-
culated by Marshall and Guth® for a square-well potential of the
same effective range.

SCHIFF

o= 2f (e~2r—u?)dr
0

4 1 4a a 8b a*+2b

e
v+8 B (v+B)? B (v+8)° 28
3ab 3b*
-t
2B+ 20
The normalization constant B is readily expressed in
terms of 7,:
1/Q2nB*)=(1/v)—r,. 4)

The dots in Egs. (2) and (3) indicate terms that would
have to be added if more terms were included in (1);
all terms that involve ¢ and b in (1) are included.

All potentials of the type (2) fall off exponentially
for large 7, at a rate determined primarily by the param-
eter 3. Once B is fixed, the behavior near the origin is
determined by the parameters @, b, ---. Thus, if
B2—~2—2aB+2b#0, U has a 1/r singularity at the
origin, and resembles the Yukawa form. If this quantity
vanishes, and the ratio of the next two coefficients is
not the same as the ratio of the corresponding coef-
ficients in the denominator, both U and dU/dr are
finite at the origin, and U resembles the exponential
form. Conditions that # have no nodes (so that it
corresponds to the lowest eigenvalue of U), and that U
be monotonic, are easily formulated. The choice
a=b="-.-=0 yields the Hulthén potential.

When this work was started, the best experimental
value for the effective range was ro=1.56X107% cm, or
r,=1.55X1071 cm."! The appropriate constants for the
Yukawa and exponential potentials were read from the
graphs of Blatt and Jackson:!°

Uy(r)= (1.842/r)e=01%7 U p(r)=5.511e-1-557.  (5)

All lengths are expressed in units of 107 cm, and U in
units of 10% cm~2. It was found that Uy could best be
approximated by the form (2) when a and b were taken
equal to zero, and 8=1.612 (Hulthén form). In order to
approximate Ug, the following parameters were chosen :
B=2.753, a=1.593, 5=0.624. The original and ap-
proximate forms for Uy agree within 3 percent for
r<1.4(Uy>0.4), and within 0.02 for larger values of r;
likewise, the two forms for Uy agree within 2 percent
for r<1.8(Ug>0.2), and within 0.01 for larger values
of r. It proved impossible to obtain an independent test
of the accuracy of these approximations by using (1) to
obtain the variational energy of the deuteron with the
potential (5), because of the errors involved in getting
the parameters of (5) from the graphs of reference 10.
After the calculations based on (5) were completed,
a new experimental value for the effective range was
reported:? ro=1.74, or r,=1.73. Only the Hulthén-
10 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).
uH. A. Bethe, Phys. Rev. 76, 38 (1949).

12 Hughes, Burgy, and Ringo, Phys. Rev. 77, 291 (1950); D. J.
Hughes, Phys. Rev. 78, 315 (1950).



DEUTERON PHOTO-EFFECT AT HIGH ENERGIES

Yukawa case was re-calculated, since the earlier results
indicated little difference between the Yukawa and
exponential cases in this energy range (see Section IV).
With ¢=5=0, the parameter § is determined by (3) to
have the value 1.410; an equivalent Yukawa potential
was found by making the coefficient of the 1/7 term the
same in the two cases, and making the variational
deuteron energy correct when calculated with the
Hulthén wave function and the Yukawa potential:
Uy(r)=(1.641/7) exp(—0.674r).

III. PHOTO-EFFECT CROSS SECTIONS

Owing to the assumption that the neutron-proton
interaction is half-exchange and half-direct,” the final
(®P) state for an electric dipole transition has no
interaction. The differential and total cross sections for
dipole transitions alone in the coordinate system in
which the center of mass is at rest (CM system) are
then:

r et MEE,
0a(f) =~ — ———TI,% sin%, (6)
2k h?
4x? @ MRE,
pam e — 1, Q
3 he h?

where

o0

1= f I rdr, B =M(E—.  (8)

For later reference, both the regular and irregular
spherical Bessel functions are defined:

Ji®)=[(n/(22) T 114(2), 9)
n(z) = (=) (7/22) _14(2).

Here 6 is the angle between the direction of the outgoing
proton and the incident gamma-ray, and E, is the
gamma-ray energy, both in the CM system. In terms
of the gamma-ray energy E, ., in the laboratory system,
E,=E,;[14+(Eyt/Mc*) ]}, where M is the nucleon
mass.

The final (3D) state for an electric quadrupole transi-
tion is affected by the full triplet neutron-proton
interaction. It must therefore be taken to be the /=2
part of a plane plus outgoing scattered wave; this has
the form

f(r)=coséd- jo(kr) —siné- na(kr) (10)

outside of the potential, where § is the scattering phase
shift. The differential and total cross sections for
quadrupole transitions alone are in the CM system:

T 2 MRE,?
o,(0)=—— I5? sin%6 cos?, (11)
32 he  hic?
w2 e* MEE,?
= ¥ (12)
60 #ic hic?
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F1c. 2. Total photoelectric dipole cross sections for Yukawa
potentials of effective ranges 1.56)X 107 cm (same as in Fig. 1)
and 1.74X 1078 cm.

where

Ih= f Falrdr. (13)

Two approximations are now made in calculating 7.
as given by (13). First, it is assumed that f(r) can be
represented by the form (10) for all values of 7, not just
those for which the potential is negligible. This is be-
lieved to be a good approximation because ¥, extends
out well beyond the range of forces, and because the 7
term in the integrand reduces the contribution from
small values of 7. Second, it is assumed that the phase
shift can be calculated from the Born approximation
formula:

sind= kf J22(kr)U (r)r2dr. (14)

Equation (14) is a good approximation if & is small;
actually, & does not exceed 12° for the highest energy
considered here.

When yo(r) has the form (1), the integrals (8) and
(13) can be evaluated in terms of elementary functions.
In calculating the phase shift from (14), it is more con-
venient and is sufficiently accurate to use the true
potentials (5) rather than (2), in which case & can also
be expressed in elementary terms. Thus the entire cal-
culation can be placed in simple and compact form for
numerical substitution.

The two differential cross sections (6) and (11)
actually interfere with each other. The resultant photo-
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electric cross section is conveniently written in the form

sin%g
oe(8) =T[3ad+6(50daq)* cosd cosf+15q, cos?d], (15)
™

where o4 and o, are given by (7) and (12), respectively.
In the energy range considered, higher multipoles can be
ignored. The magnetic dipole cross section is spherically
symmetric, and adds to (15) without interference.

IV. NUMERICAL RESULTS AND DISCUSSION

The numerical results are presented in graphical form.
The two solid curves in Fig. 1 are the total electric
dipole cross sections (7) for the Yukawa and exponen-
tial interactions with 7o=1.56. For comparison, the
total cross section calculated by Marshall and Guth®
(which is nearly all electric dipole) for a square-well
interaction of the same effective range is plotted as the
dashed curve. While it would probably be difficult to
distinguish experimentally between the two long-tailed
potentials of the same range, both are markedly dif-
ferent from the square well. The Yukawa potentials
of effective ranges 1.56 and 1.74 are compared in Fig. 2.
The difference is quite marked, both as to trend and as
to absolute value at the higher energies. The recent
experimental value® of (8.541.2)X10728 cm? at 17.6
Mev favors the larger effective range, since all other
contributions are negligible in comparison with the
electric dipole cross section at this energy.

Figures 3 and 4 show the total electric quadrupole
cross section (12); the Yukawa and exponential poten-
tials with 7y=1.56 are compared in Fig. 3, and the
Yukawa potentials with 7o=1.56 and 1.74 in Fig. 4. The
contribution of the electric quadrupole transitions to
the total cross section is small, ranging from less than
% percent at 20 Mev to about 4 percent at 140 Mev. It
manifests itself mainly in the angular distribution, as
shown in Fig. 5. Here the quantity

(4/3){[a(60°)—(0°) }/[(90°) —(0°) ]},
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Fic. 3. Total photoelectric quadrupole cross sections for
Yukawa and exponential potentials of effective range 1.56X 1013
cm.

13 Barnes, Stafford, and Wilkinson, Nature 165, 69 (1950).
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calculated from (15), is plotted against E, for the
three cases, where () is the entire differential cross
section in the CM system. This quantity would be unity
if only electric and magnetic dipole transitions con-
tributed to the photo-effect; in any event, it is inde-
pendent of the magnetic dipole contribution. Values
greater than unity mean that electric dipole and quad-
rupole transitions interfere constructively in the
forward hemisphere, and hence destructively in the
backward hemisphere. The difference between the
three curves does not appear to be great enough to be
of experimental significance. It is important to note
than an experimental determination of the differential
cross section at three angles such as 0°, 60° and 90°
would also make it possible to determine the magnetic
dipole, electric dipole and electric quadrupole cross
sections separately, and hence facilitate comparison
with theoretical results such as those presented here.
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Fic. 4. Total photoelectric quadrupole cross sections for
Yukawa potentials of effective ranges 1.56 X107 cm (same as in
Fig. 3) and 1.74X10718 cm.

APPENDIX!

Suppose that #(r) is continuous and has continuous derivatives
of all orders for all positive values of » which fall off as e as
becomes positively infinite, and can be represented by a power
series with a finite radius of convergence for small values of 7:

u(r)=ar+ap®+tagd+t---, a#0.

Then from the wave equation, the potential is given for small
values of 7 by:

MV(r) o 2a94-6a+12a02+ - - -
w7 ayr+at+tagrdt- -

It follows from this that the lowest odd power of 7 in the expansion
of V(r) near r=0 is determined by the first non-vanishing number
in the sequence @y, a4, - - -. Thusif a,0, MV (r)/h2=2az/awr+- - - ;
if a2=0, a,#0, MV(r)/h*=const. +12a¢/a1+---; if a2=0a:=0,
as%0, MV (r)/h*=const.+const.’72+30aer3/a1+- - - ; and so on.
Conversely, if V(r) can be represented by a power series with a
finite radius of convergence for small values of 7:

MV ]/BR=A_yr '+ Ac+Ar+Ar2+- -,

14 1. I. Schiff, Phys. Rev. 78, 83 (1950). A closely related but
less comprehenswe result has recently been obtained by J. S.
Levinger and H. A. Bethe (Phys. Rev. 78, 115 (1950)), from a con-
sideration of sum rules for electric dlpole transitions.
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F1G. 5. Angle distribution parameters for Yukawa potentials of
effective ranges 1.56 and 1.74X107% cm, and for exponential
potential of the shorter range. This parameter would be unity if
only electric and magnetic dipole transitions contributed to the
photo-effect.

then the first non-vanishing number in the sequence as, a4, - -
is given by

ll,+3=01A a/(5+2) (S+3),

where s is the smallest odd number for which A,>0.
Now consider the integral

“. Yo(r)rtPi(cosh)eikr cosbdr

=4xBil(a/20) [ 4. (16)

The matrix element for an electric 2-pole transition from the
ground state yo(r) of the deuteron to a plane wave can be expressed
in terms of this integral. For large gamma-ray energy, the effect
of neutron-proton interaction on the final state is small, so that
the asymptotic form of (16) for large k£ determines the transition
probability. It can be shown® that an asymptotic expansion of
the integral on the right side of (16) can be obtained by replacing
u(r) in the integrand by (aw-+ax*+---)e~®", evaluating the
integral term by term, and taking the limit of the series as a—0.
Each resulting integral can be expressed in terms of a hyper-
geometric function!® and its limiting value in terms of gamma-

16 The writer is indebted to Professor M. Shiffman for discussion
of this point.

16 G. N. Watson, Theory of Bessel Functions (The Macmillan
Company, New York, 1945), p. 385.
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functions.” The result for a typical term in the series is

lim a, f;m e~ ryntIRV Ty L (kr)dy

a-0

_ waa T'(n+21+2)
T oltipntith —
2tk I‘(”+22H_3)I‘(1 : n)

@ T(n+2142) sin(”“;lw)

n+1 ) n+1 ) (n+1).
ppr+apntir P T2 o). (22
Ti2i+iE ( 2 +1 2 +I—-1 2

Thus the leading term in the asymptotic expansion of (16) is
determined by the smallest even value of # for which a,50, and
hence by the smallest odd value of s for which A4,0. Since
V0(0) = Bay, the result can be written as

- X 4 0 ia+l+3
j Yo(r)r'Py(cosB)e’®r °°“0df;;:%f%k‘zlm‘
T(s+2145)T(3s+2)

CHDCEITGHFY ™
where s is the smallest odd number for which 4,540. Substitution
into (7) shows, for example, that the electric dipole cross section
falls off as k2s"9~E,~*>% for large E,. Thus for the Yukawa
potential (s=—1), the dipole cross section falls off as E,~7/2, and
for the exponential potential (s=+1), it falls off as E, 1112,

This result, while of some formal interest, appears to be of
little practical value since in general the leading term of the
asymptotic series does not become dominant until E, is so large
that relativistic and free meson effects are important. For
example, it appears from Fig. 1 that the Yukawa potential does
not dominate the exponential cross section, as it must for suf-
ficiently high energies, until E, is somewhat greater than 140 Mev.
It is interesting to note that the zero-range potential (Bethe-
Peierls case) corresponds formally to s=—3, and the square-well
potential (because of its discontinuity) to s=—1. The asymptotic
expansion of the cross section for an even potential such as the
Gauss potential (s=+ «) vanishes; this does not of course mean
that the cross section itself vanishes, but only that it falls off
faster than any finite power of E,. In general, the smoother the
potential is (interpreting smoothness at the origin in terms of the
way it joins on to its reflection for negative r), the smoother is
the wave function, and the smaller are the short wave-length
Fourier components of the wave function which determine the
cross section at high energy.

17 E. T. Whittaker and G. N. Watson, Modern Analysis (The
Macmillan Company, New York, 1935), p. 282.




