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The Electric Quadrupole Moment of the Deuteron'

G. F. NKWKLL
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(Received March 2, 1950)

A new electronic wave for the hydrogen molecule is calculated by use of the variation principle. From this
the electric field gradient at one of the nuclei is determined and is used in conjunction with the quadrupole
interaction energy as given by Kellogg, Rabi, Ramsey, and Zacharias, to find the value of the quadrupole
moment of the deuteron. The value obtained is QD=(2.766&0.025)X10 cm'. The probable error of 0.9
percent is an improvement over the previous error of 2 percent given for Nordsieck s calculation of QD =2.73
X 10 ~ cm' and for Ishiguro's value of QD= 2.79' 10~ cm'.

l. INTRODUCTION

A N electric quadrupole interaction in the molecules
HD and D2 was detected by Kellogg, Rabi,

Ramsey, and Zacharias' and they were able to measure
the energy

H"' = —Se'qQn/4pn,

where Qn is the quadrupole moment of the deuteron in
cm', p,D the magnetic moment of the deuteron, and q
is a quantity closely related to the electric field gradient
at the nucleus due to the charge distribution of the
molecule. Since no means have been devised for meas-
uring q directly, it is necessary to calculate it from
some appropriate charge density of the molecule using
the relations given by Nordsieck. '

q = —2Jq'/(2 7+3),

expansion variables. The labor required to integrate
this makes it quite inconvenient, whereas other wave
functions available are not sufficiently accurate for this
calculation.

It was believed that some wave function of a con-
venient form could be calculated which, though not as
accurate as the James-Coolidge function, would give a
charge density su%ciently accurate for the purpose
stated above. Two previous attempts have been made
along this line, &4 but both calculations were estimated
to give an error in q of as much as ~2 percent as com-
pared with the experimental error of 0.6 percent in the
value of H'".

2. A NEW ELECTRON WAVE FUNCTION

The wave function for the ground state of the hydro-
gen molecule can be found by minimizing the integral

j. 3 cos'9' —j.
q = ——— I drp(R, r& 8)

2 ~ r3

'(2)—=q'(R) A, .
- Av

Z= d re r2$*HQ
~J

R is the internuclear distance, p(R, r, 8') the electron
charge density, r the radius vector from the nucleus
considered to the charge, 8' the angle r makes with the
internuclear line, and J the rotational angular mo-
mentum of the molecule. The average is to be taken
over the lowest vibration state of the molecule cor-
responding to the angular momentum J.

The integral over all space is not absolutely con-
vergent and must be evaluated outside a smaU sphere
about r=o after which the limit of the integral is
taken as the radius of the sphere shrinks to zero. It is
necessary to know p quite accurately since the value of
the integral is quite sensitive to small changes in p.

The most accurate electronic wave function for the
ground state of the hydrogen molecule is that given by
James and Coolidge. This wave function, however, is in
the form of a 13 term power series expansion containing
the distance between the two electrons as one of the

* This work was begun under the ONR program and finished
with the aid of a predoctoral fellowship by the AEC. A preliminary
account of this work has been published: Phys. Rev. 77, 141 (1950).

'Kellogg, Rabi, Ramsey, and Zacharias, Phys. Rev. 57, 677
(1940).

2 A. Nordsieck, Phys. Rev. 58, 310 (1940).' H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933).

over the space dv. ~d72 of the two electrons. E is the
energy of the state, B the (non-relativistic) Hamil-
tonian, and f, P some normalized wave function and
is complex conjugate, respectively.

A trial wave function is assumed of the form

P = (A '/R'N) expL —2A ($~+$2) ][cosh-',B(g~ —g2)

+a expL ——',C($~+ $,)jr~r2 cos(q ~
—p~)

+bg~rI~+c(g~ 4/A)(g2 —4/A)5, —(4)

$~, b, q~, g2 are the elliptic coordinates of the electrons
1 and 2 with the two nuclei as foci. (y~ —y2) is the
projection of the angle between the two electrons on a
plane perpendicular to the internuclear line, X a
normalization factor, and r~=()P —1)&(1—gP)». The
parameters A, 8, C, c, b, c are chosen to minimize the
energy E (Table I).

The reason for choosing this form is as follows. The
erst term alone is the trial function used by Inui' and
Nordsieck. ' It proved to be quite accurate considering
its simplicity and it was believed that it could be easily

4 E. Ishiguro, J. Phys. Soc. Japan 3, 129, 133 (1948).' T. Inui, Proc. Phys. Math. Soc. Japan 20, 770 (1938).
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l ABLE 1. Values of the parameters for the l&ew wave function.
tV, R, and F. ('including nuclear repulsion term R ') are in atomic
units.

p
~f

8
C

b

C

E

1.2

1.157,48
1.545, 7
1.255,0
0.750

—0.269
0.1081—0.060,90
2.894,82

1.3

1.165,35
1.636,6
1.344,6
0.800—0.321
0.1350—0.069,70
2.795,66

1.167,81
1.727,0
1.435,4
0.817—0.354
0.1649—0.079,78
2.701,00

1.5

1.166,48
1.814,6
1.524,9
0.850—0.399
0.1952

—0.089,88
2.613,90

TABLE II. Values cf the binding energy of the hydrogen molecule
in. ev as calculated by various authors. Trials 1 and 2 refer to
intermediate results; see Section 2.

Wanga
Inui b—Nordsieck'
Ishiguro"
I-C 5 term'
13 term'

3.76
4.03
4.26
4.51
4.70

New values
Trial 1
Trial 2
Final result
(Experimental)

4.22
4.31
4.53

(4.73)

a S. C. Wang, Phys.
b See reference 5.
e See reference 2.
"See reference 4.
e See reference 3.

Rev. 31, 579 (1928).

corrected to give a better wave function by adding
some term depending on (yi —p2). This would allow
the electrons to seek opposite sides of the molecule. An
initial attempt was made using only the first two terms of
(4) with C=0, referred to in Table II as trial 1. From
this preliminary calculation it was observed that a sig-
nificant improvement in E could be made by allowing
C to vary independently, referred to in Table II as
trial 2. The wave function is then in such a form as to
allow for the fact that the interaction between electrons
is significant only for small $i and $2 where the two
electrons are on the average close together. One sees
from Table II that the energy is appreciably better
than the Inui-Xordsieck value, in fact it is better than
the Ishiguro4 value obtained from a six-parameter wave
function. A comparison of the charge density p =fdriP
with an approximate charge density integrated nu-
merically by Nordsieck from the James-Coolidge
function showed that the new charge density was worse
at the points considered than that obtained using only
the first term of (4). Though the error in the wave
function itself must be less on the average with each
successive correction, this unfortunate coincidence is
possible because the change in P and in the energy arises
mainly from terms linear in a, whereas the charge
density contains only terms quadratic in u (p does not
depend on pi —y2).

The last two terms of (4) were finally added. The
first of these has an appreciable effect on the charge
density but little effect on the energy. The last term
was added to allow for shielding. If one electron is close
to the nuclei, the other is likely to be further away.

It is already apparent from the difhculties encoun-
tered here that a substantial improvement in the charge

density would require either a tremendous amount ~if

labor or some more fruitful. attack than the one at-
tempted here. More convincing evidence is to be found
in Section 3. Table I gives the calculated values of the
parameters and the energies associated with the wave
function (4) for several values of R. In Table II values
of the binding energy of the molecule are compared with
those of other authors.

3. ERRORS IN THE CHARGE DENSITY

The charge density at R=1.4 atomic units obtained
by integration from Eq. (4) is compared with the values
given in Table I of Nordsieck's paper. He calculated
numerically an approximate density from the James-
Coolidge function and in the same manner calculated
an approximate density from his wave function. The
density was also found by exact integration from his
wave function. Due to the close agreement between the
approximate and exact densities of the Nordsieck wave
function, it was believed to be justifiable for further
comparisons to assume a value,

p= p'P,

as the correct charge density at the points considered,
where p' is the estimated James-Coolidge density, and

P the ratio of the exact Nordsieck density to the
estimated Nordsieck density. These values are listed
in Table III as J-C. The values in the remaining columns
are values obtained by exact integration with the cor-
responding percentage error in parentheses. Figure 1
shows the position of the points (a, b, f) at which
these densities are compared.

If this charge density is to be used in an integral,
one must weigh these errors not only according to the
magnitude of p, but also according to the volume ele-
ment associated with each point. Since p is independent
of 8, the charge densities and errors given in Table III
are those associated with a volume element of magnitude
proportional to the distance from the internuclear line.
For most integrals which one might care to evaluate
from p, including the one of Eq. (2), points such as d
and ee' contribute most. The element of volume asso-
ciated with a, bb', cc' is small, whereas at f the charge
density itself is small. For the integral to be considered,
the errors must also be weighted according to the value
of (3 cos'8' —1)r—'.

The error in q'(R) at R=1.4 can be estimated in a
very crude way by assuming a continuous distribution
of errors based on the values of Table III. The errors
in the vicinity of a, b' tend to overbalance the errors at
other points despite the small volume element assigned
to them. One concludes that the new charge density
gives a value of q'(1.4) which is almost certain to be
larger than the true value. By adjusting the parameters
2, 8, etc. of Eq. (4), one can obtain a distorted charge
density and a second value of q'(1.4) which is even more
likely to be too small. The parameters were adjusted to
give a charge distribution such that the error at each
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FIG. 1. The circles indicate the positions of the points (a, h . f)
relative to the two nuclei bb'. The dashed line separates regions
for which 3 cos'8' —1 has opposite sign.

of the points a to f was either negligible or contributed
to the integral (2) with the same sign. This extreme
value of q'(1.4) differs from the first by 1.8 percent.
Using either of these charge densities with their assumed
error distributions, one can calculate a probable value
of q'(1.4). Two such calculations using each of the two
charge densities were found to be consistent within
&0.3 percent, giving a value of q'(l. 4) 0.7 percent
below the first value and 1.1 percent above the second.
That the two calculations were consistent implies only
that the continuous distribution of errors assumed in
each case gave consistent results. Both error distribu-
tions, however, were based on the James-Coolidge
values of Table III and were taken to be essentially
linear between the given points.

The James-Coolidge wave function should serve as a
good standard for comparison of the new function but
to evaluate accurately the errors by such a comparison
would be a task of comparable difhculty to actually
integrating the James-Coolidge function. Though the
above procedure is crude, it is felt that it is at least
qualitatively correct. A probable error of 0.6 percent is
therefore assigned to the new value of q'(1.4) instead
of the 0.3 percent mentioned.

4. CALCULATION OF q'

The evaluation of the integral in Eq. (2) presents no
serious difFiculties and can be done exactly using the
wave function (4). The values of R'q'(R) are given in
Table IV for several values of R near the equilibrium
posi'tlon.

Using these values, R'q'(R) is expanded in a power
series about the equilibrium position R, of the molecule

R'q'(R) =R'.q'(R, )(1+ai$+ a.P+ agP),
(6)

$= (R—R,)/R, .
Since both a2P and a3P are small for the range of P

covered by the zero-point vibration of the molecule, no
appreciable error need be assumed for the lack of high
terms in the expansion. Due to the large change in R'
over this range, the average of q'(R) over the zero-point
of vibration is quite sensitive to errors in the wave
function associated with this vibration.

TABLE III. Values of the charge densities in atomic units with
percent error in parentheses for E= 1,4 atomic units. The positions
of the points are shown in Fig. 1.

Point J-C Nord siecka Ishigurob New values

bb'
ec
d
ee'
p

0.267,3
0.446, 1
0.067,32
Q. 106,9
0.04?,47
0.005,97

0.269,9
0.430,4
0.068,25
0.108,7
0.048,49
0.006,16

(+1.0)
( —3.5)
(+1.4)
(+1 7)
(+2.1)
(+3.2)

0.271,39
0.434,45
0.069,34
0.106,23
0.047,28
0.005,85

(+1.5)
( —2.6)
(+3.0)
( —06)
( —0.4)
( —2.0)

0.264,65
0.439,76
0.069,42
0.107,22
0.047, 78
0.006, 16

( —1.0)
( —1.4)
(+3.1)
(+0 3)
(+0 1)
(+3 2)

a See reference 2.
b See reference 4.

The shape of the potential well for the molecular
vibration can be obtained more accurately from spec-
troscopic data than from the calculations of Section 2.
Using the formulas of Dunham' and the experimental
data of Jeppeson, ' the potential can be evaluated in
the form

V= aors'(1+ait+a2P+a38+a48). (7)

The values obtained for the Dunham coefFicients are
given in Table V. The merits of such an expansion are
discussed by Coolidge, James, and Vernon. ' While it
may be in serious error for large values of $, it should

represent the potential quite accurately for the small
values of g corresponding to the zero-point vibration.

To test the sensitivity of q' to the shape of the
potential well, calculations were performed using Morse'
functions. The two parameters of the Morse potential
were assigned in one case to give the correct binding
energy and the correct vibration frequency, and in
another case to give the correct vibration frequency and
the value ai of (7) when the Morse potential is ex-

panded in a similar series. The difI'erences between the
corresponding values of q' were 1 percent for D2 and 1.3
percent for HD. The second of these two Morse func-
tions was corrected by means of perturbation theory to
conform to the potential of Eq. (7). This last correction
gave an additional 0.2 percent change.

It is assumed that no significant error arises from
averaging q'(R) over the zero-point vibration. The
results for J=1 are

q'=0. 1761 for D~, q'=0. 1757 for HD. (8)

In Section 3, it was argued that the value of q'(l. 4)
given in Table IV is too large by 0.7 percent, . The
vibrational wave function has a maximum at about
R= 1.4 and a half-width AR 0.15. If one assumes that
the error in q'(R) does not change appreciably over the
short range of R about 1.4, then the error in q' may also
be taken as +0.7 percent. The corrected values of q' are

q'=0. 1749 for D2, q'=0. 1745 for HD. (9)

5. CONCLUSION

The value of H"' as given by Kellogg et al.' is 87.2
~0.5 gauss. %ithin experimental error no diGerence is

' J. L. Dunham, Phys. Rev. 41, 713, 721 (1932}.
7 C. R. Jeppeson, Phys. Rev. 45, 480 (1934); 49, 797 (1936}.
8 Coolidge, James, and Vernon, Phys. Rev. 54, 726 (1938).' P, M. Morse, Phys. Rev. 34, 57 (1929).
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TABI.K IV. Calculated values of R'q'(R) in atomic units.

R3q'(R)

TABLE V. Values of the Dunham' coeAicients as calculated from
spectroscopic data. ' ap is in cm '.

1.2
1.3
1.4
1.5

0.603,69
0.547, 18
0.488,86
0,430,96

Qp

Ql
Q&

Q;,

Qg

HD

79,795
—1.608,2
+1.846,4—1.840
+1.664

D.

79,873—1.589,2
+1.750,7—1.708
+2.07

found in the value for HD and D . The values of q'

given above are consistent with this observation. Taking
the average of the two values of q' for HD and D., Qo
is found to be 2.766&10 " cm'. On the basis of the
errors discussed in Section 3, a probable error of 0.6
percent is assigned to q'. Combining this with the
error of 0.6 percent in H"' gives V2(0.6) =0.9 percent as
the probable error in Qo.

Qn = (2.766+0.025) X 10—'-' cm'-'. (10)

This differs from the value 2.73)(10 '-" cm'-' &2 per-
cent obtained by Nordsieck'- chieAy because the latter
performed the average over the zero-point vibration
using a Morse function fitted to give the correct
binding energy. Though the new value does not differ
much from the value 2.79X10 '-' cm' obtained by
Ishiguro, the values of q'(1.4) dier by as much as five
percent. On the basis ot' the James-Coolidge density
values of Table III, the errors in Ishiguro's density are

a See reterence &.
b See reference r.

very badly distributed in the vicinity of the nucleus.
The errors are negative for points e and b, presumably
also for points in between, whereas the errors at a and ~:

are both definitely positive. The percentage error in

q(R) can be considerably larger than the percentage
error in p due to the cancellation in the integral of the
spherically symmetric part of the distribution. Thus
one can account for the five percent difference in the
values of q'(1.4). That the two values of Qo are so close
is partly due to the 0.7 percent correction of the net
value made irI Section 4 and partly because Ishiguro
used a Morse function for his average over the zero-
point vibration, probably the same one used by
Nord sieck.

The author wishes to thank Professor A. Xordsieck
for suggesting the problem and for helpful advice.
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A Hodoscope Study of Penetrating Cosmic-Ray Showers. I. Local Showers~

Ki.rRT SITTE
I'/sysics Departnient, .'1yrQeus ('ni ersiti', 5yrQcitse, Xe ' l Qrl'

(Received February 1, 1950)

Showers produced locally in a lead absorber ~vere studied vvith a hodoscope arrangement. It is sho~vn that,
in order to record "local penetrating showers, " a rigid selection demanding high penetrating power of the
secondaries as ~veil as of the primary must be used. If this is done, some of the discrepancies of recent
investigations are removed. For showers capable of penetrating at least 200 g/cm~ Pb one finds a collision
mean free path of (162~10) g/cm', and for showers of at least 100 g/cm' penetration a mean free path of
(196&13)g/cm'. Besides, "local soft showers" due to electronic or photonic secondaries of ordinary p-mesons
~vere studied. Their frequency at 3260-m elevation is about 1 in 106 traversals of the lead absorber.

I. THE EXPERIMENTAL TECHNIQUE

X its present stage, work on penetrating showers is
- particularly strongly affected by the limitations of

current experimental methods. Counter arrangements,
though suitable for detection and for selection of
showers, cannot usually provide a unique answer to
questions concerning the nature of the particles involved,
or concerning details of their interactions. Cloud
chambers, on the other hand, could adequately answer
this purpose, but it is troublesome and diAicult to stack

* The expense of constructing the equipment and of running
the experiment were partly provided by an AFC contract. .

in them a sufficiently 1;I,rge amount of absorber, an(1

they tend to become slow in operation because of the
inevitably long interval between successive expansions of.

a large chamber, and its equally inevitable unfavorable
solid angle of detection. It appeared, therefore, that in

this field the use of what one might consider a com-
promise technique, namely a hodoscope arrangement,
is well justi6ed. It ofI'ers speedier work than a cloud
chamber, as better solid angles and recovery times can
be obtained, and it overs more extended evidence than
a simple counter arrangement would reveal, though, of
course, it is inferior in this respect to the cloud chamber.


