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resonance peaks with the new method are only 0.6 as
broad as the corresponding ones with conventional
method and the same length of magnetic Geld. (2)
Unlike the earlier methods, with the new method the
sharpness of the peak is not reduced by non-uniformities
of the constant Geld since from (11)and (12) above it is
only the space average value of the energies which is
important. The 6eld must still be fairly uniform along
the height of the beam, but this is much more easily
achieved experimentally than is uniformity along the
length. This advantage of the new method is particu-

larly important and in many cases makes possible an
increase in precision of a factor of twenty or more.
(3) The new method is more convenient and effective at
very high frequencies where the wave-length may be
comparable to the length of the region in which the
energy levels are investigated. (4) The new method may
be applied to study energy levels of a system in a region
into which an oscillating field cannot be introduced;
for example, the Larmor precession frequency of
neutrons can be measured while they are inside a
magnetized iron block.
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An expression is developed for the magnetic field at a nucleus
resulting from the application of an external magnetic field to a
polyatomic molecule which has no resultant electron orbital or
spin angular momenta in the absence of the external field. The
field at the nucleus is not the same as the externally applied field
because of the field arising from the motion of the electrons in the
molecule. The expression for the electron contribution to the
magnetic Geld is shown to consist of two parts. The first is a simple
term that is similar to the diamagnetic correction developed by
Lamb for atoms. The second is a complicated one arising from
second-order paramagnetism and is analogous to the term de-
pendent on the high frequency matrix elements in the theory of
molecular diamagnetism. Under certain circumstances the second-

order paramagnetic term can become quite large. Since both of
these terms are altered when the same nucleus is in different
molecules, they at least partially and perhaps completely explain
the chemical eGect that has been reported by various observers
in measurements of nuclear moments. For linear molecules, the
second-order paramagnetic term is shown to be directly related
to the experimentally measurable spin-rotational magnetic inter-
action constant of the molecule. This relation is particularly
valuable in the important case of molecular hydrogen where it is
shown that the correction for second-order paramagnetism is—0.56X10 '. When this is added to the Lamb-type term as
calculated by Anderson, the total magnetic shielding constant for
molecular H2 becomes 2.68)(10 g.

I. INTRODUCTION
' 'N measurements of nuclear magnetic moments, a
~ - correction must be made for the magnetic field
arising from the motions of the molecular electrons
which are induced by the externally applied 6eld. For
example, the application of the external magnetic 6eld
produces a diamagnetic circulation of the electrons,
which in turn produces a magnetic 6eld at the nucleus,
so that the resultant 6eld in which the nuclear Larmor
frequency is measured divers from the applied 6eld by
a small but important amount. Since this shielding
6eld is proportional to the external field it cannot be
distinguished from it merely by varying the external
6eld. Until recently the correction has been made in
accordance with a theory developed by Lamb. ' This
theory is strictly applicable only to atoms since it
depends on the spherical symmetry of the electric 6eld
of the nuclear electrical potential. Kith the precision
available in nuclear moment experiments up unti1.

recently, this method of correction has been adequate
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' W. Lamb, Phys. Rev. 60, 817 {1941).

even though most of the experiments have been per-
formed with molecules instead of atoms. This has been
true because the diamagnetic correction in light mole-
cules like hydrogen is so small as to have been neg-
ligible, while in molecules with heavy nuclei the dia-
magnetic correction is caused chieQy by the innermost
electrons and for these the problem is approximately
an atomic one. However, the atomic approximation is
no longer adequate in treating present experiments.
The precision of experiments with light nuclei such as
hydrogen has become so great (better than one part in
a million) that the diamagnetic correction (2/ parts in
a million in H2) is important. Furthermore, with
heavier nuclei the ratios of the resonance frequencies
for the same nucleus in diBerent molecules have been
measured with high precision and discrepancies have
been found by various observers' ' that are sometimes
called the chemical eBect. The change in diferent
molecular compounds of the electronic magnetic 6elds
described in this paper will at least be an important

W, D. Knight, Phys. Rev. 76 1260 (1949).' W. C. Dickinson, Phys. Rev. 78, 339 {1950).
4 F. Bloch (private communication).
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contributor to this chemical eRect and. may well be its
complete explanation,

As with the theory of the ordinary diamagnetism and
second-order paramagnetism of molecules as discussed
by Van Vleck, ~ the diamagnetic shielding of a molecule
divers from that of a single atom in two ways, as was
pointed out by Ramsey6 in an earlier communication.
(1) The electron distribution to be used in calculating
the diamagnetic correction of the Lamb' type is altered
by the presence of the other atoms with their associated
electrons in the molecule. (2) In a molecule the elec-
trical potential is no longer spherically symmetric;
hence Larmor's theorem no longer applies directly in
the manner implicitly assumed in Lamb's derivation of
of the atomic correction. Thus an additional term
arises corresponding to second-order paramagnetism.
This term is analogous to the term dependent on the
orbital moments' high frequency matrix elements in
the theory of molecular diamagnetism discussed by
Van Vleck. ' Physically it corresponds in part to the
fact that the presence of attracting centers from several
diferent massive nuclei prevents a simple circular dia-
magnetic circulation of the electrons about any one
nucleus. Under certain circumstances the second-order
paramagnetism terms can become quite large. General
expressions for both of these terms are derived in the
present paper together with a simplified method, in the
case of linear molecules, for evaluating the second-order
paramagnetism term from the experimentally measur-
able spin-rotational magnetic interaction constant.
Although the magnetic 6eld from the electrons in the
molecule can in principle be either in the same direction
as the externally applied field or in the opposite direc-
tion, in most cases it is in the opposite direction. There-
fore, the term magnetic shielding wi11 be used in this
paper to describe the resultant of the diamagnetic and
paramagnetic eR'ects even though negative shielding is
a possibility.

II. POLYATOMIC MOLECULES

Consider a polyatomic molecule in a ground state
which in the absence of an external field has no resultant

electron spin or electron orbital angular momentum.
Most nuclear moment measurements made by any of
the various nuclear resonance techniques are made with
such molecules. Since the nuclei of the molecule are
massive compared to the electrons, the nuclei can be
treated classically to a very good approximation. In
particular, in the 6rst phases of the calculation it will

be assumed that the nuclei are approximately stationary
attracting centers for the electrons in an orientation
specified by the subscript X. If one wished to avoid this
simplification, he could do so by following procedures
analogous to those used by Van Vleck5 in the theory of
molecular magnetism. As is discussed in greater detail
by Van Vleck' and Wick, ' the e6ects of electron spin
can be omitted in the subsequent discussion; except in
cases of accidental degeneracies, the magnetic shielding
fields from the electron spin should be of a higher order
of smallness than the other contributions calculated
here. This omission considerably simplifies the subse-
quent equations, with no change in most of the sig-
ni6cant results. If it were desired, the methods used
here could be generalized to include the electron spin
explicitly.

If the magnetic shielding constant applicable to a
certain nucleus in the molecule is desired, it can be
obtained most easily by assuming that all other nuclei

have zero magnetic moments and that the nucleus con-
cerned has a magnetic moment of magnitude p and of
the same direction as the externally applied field, H.
The energy of the molecular system in the presence of
p, and H can then be calculated, and all terms whose

dependence on p and H is linear in the product pH can
be collected together and called H~), '. Let cr), be the
desired magnetic shielding constant; i.e., if an external

magnetic field of unit strength is applied, the magnetic
6eld at the nucleus from the electron motions has a
component —0.), parallel to the applied field. If 5'~'
were known, then 0), could be obtained from the energy
relation

Let V be the electrostatic potential energy function for the electrons, A be the vector potential from the nuclear
magnetic moments and from the external magnetic field, (—e) be the charge on the electron, and the remaining
notation be that used by Van Vleck. ' Then the Hamiltonian of the electronic system is

K=g (1/2m) Dp, q+ eA, I /c) '+ (p„l+eA „q/c) 2+ (p, l +eA, q/c) 2j+V. (2)

With the assumptions of the preceding paragraph and with the origin of the coordinates chosen at the nucleus
for which the shielding constant is desired, one has

A.= ,'Hy py/r', —A—„=~—~Px+ px/r', A, =0.

With these values and with the replacement of the p's by the usual differential operators, (2) becomes

X=X,&0)+X,&"+BC&'),

J. H. Van Vleck, E/ectric and Magnetic SusceptibiliAes (Oxford University Press, London, 1932).' N. F. Ramsey, Phys. Rev. 77, 567 (1950}.
~ G. C. %ick, Phys. Rev. 73, 51 (1948).
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Q—(fi '/2'-mo)p„'+ '-V X&"= Q—(H+2p/ro' )m, &o, X, "=(e'/Smc')Q(H+2p/rp')'(x o+y ') (4)

with
m„.'= —(eh/2mci) (xone/By„y—o8/Bxo) (5)

erefore, by the usual second-order perturbation theory and with the selection of those terms of the second-order
perturbation energy which are linear in the product Hp, , one obtains

&T&=H, '&'/Hp=(e''/2mc'-')(OLID(xi'+yk')/«. 'IOX) —2 P'[1/(E, —Eo)][(OXIQ m. o'j»X')(»X'jp m, %&ojOX)

+(O~IE m. ,%.ol»~')(»X'I Z m,.olo~) j. Y»

For purposes of later comparison with Wick's' theory of rotational magnetic moments, Eq. (6) can be expressed
in a somewhat different form. By virtue of the Hermitian character of m.o/«, one can write

(») 'I 2 i»*.-'/r" IO~) = o[(»l 'I 2 m*.'!«'I»)+(Ol
I 2 ™-o%o'I»~')*)

~f n), '

—4'&a
I

A~
ax )

I= [1/(2c)1 g(r, X j ), oui/«. '),&fr=-', H„), o„,

where
j ), o)«= (&e&/2m) (Po).*~ok.i —4.i ~i4oi*)

With this and with

Q(0) jm, oj»X') = —(ert/2mc)g(OXI I, j»X') = — Lpo»oi,

one obtains

&ri = (e /2mc') (0& I Z(xo +yi')/«.
I
0&)+po 2'[1/(E Eo)][Ho) «'L z o)+Lo), x'H i'ozj.

In experiments with the resonance absorption and nuclear induction methods, the measurements are made with
molecules of all orientations. Consequently (6) and (9) for these experiments must be averaged over all orientations
of the molecule. In such an average the x, y, and s coordinates must all be equivalent. Then if Av), indicates an
average over all orientations, one has

Av&, [Q(0).I
xo%o'IO) )j=—,'(0I 1/r„j»),

Avi&ri= (e'/3mc') (Oj P 1/ro
I 0) —2 Avg P'[1/(E, „—Eoj[(OX

I g mo'I »)&') (»X'I Q mo /ro'
I
Ok)

&tc n'A' i'c Ic

+(OXIP m k%"I».')(»)'Ig m. ,'IO))j, (10)

or
~= (e'-/3mc-')(Oj Q 1/ro I o)+poAvi Q'[1/(E. —&o)j[Ho~.« I-.x ox+ J-o),.~ H. i m,]-

7B)L e

The first term in either (10) or (11) is the same as
Lamb' s' complete expression for the diamagnetic
shielding of single atoms. The second term arises from
the lack of spherical symmetry of the electrical poten-
tial. The magnitude of the second term is quite com-
parable with that of the first. In fact, it serves to
cancel oB most of the contribution to the shielding by
the electrons that are tightly bound to another nucleus
in a distant part of the molecule. For this reason when

the difficult sums in (10) or (11) cannot be evaluated
an approximation to the shielding is obtained by
merely evaluating the 6rst term over just the electrons
of the atom containing the nucleus; that is, by using
Lamb's correction for the atom containing the nucleus.
This procedure, however, would be very unsatisfactory
in a molecule like H2 where the fields of the two protons
are of comparable magnitudes at most electron locations.
It is also unsatisfactory in accounting for the chemical
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e6ect' ' that has recently been observed in comparing
the resonance frequencies of the same nucleus in dif-
ferent molecules. Both the first and the second terms
of (10) will be altered in different molecules, and they
will not necessarily be altered by exactly canceling
amounts. This might be particularly true if one of the
molecules had a low energy excited state for which the
matrix elements in (10) did not vanish, since then
1/(E„—Eo) would be large and a large second-order
paramagnetism would be expected.

In (10) there is apparently a separation into two
quite distinct terms of which one seems to be a simple
diamagnetic term and the other a second-order para-.
magnetic term. However, it should be noted that these
two terms are very closely related and that the separa-
tion is largely artificial. In particular, the above choice
of the origin of coordinates at the nucleus where the
6eld is desired and the selection of the arbitrary con-
stant in the vector potential of II as in Eq. (3) make
the 6rst term in (10) correspond to a simple circular
diamagnetic circulation of the electrons about the
nucleus of interest. Had a difI'erent choice been made,
for example, had the choice been such that the 6rst
term corresponded to a simple diamagnetic circulation
of the electrons about some other point of the molecule,
then both the diamagnetic term and the second-order
paramagnetism term would have been altered. Of course,
no physical difference can result from such a change so
the two terms are necessarily altered in exactly com-
pensating fashions. The magnitudes assigned to the
physically indistinguishable diamagnetic term and
second-order paramagnetic term are, however, altered.
This property of (10) is closely analogous to a similar
dependence of the diamagnetic and second-order para-
magnetic terms of the magnetic susceptibility of a
molecule on the choice of coordinate origin, even though
the sum of the two terms is shown by Van Vleck' to be
invariant to the choice of the origin.

The numerical evaluation of the summation in (10)
would be extremely difBcult for most molecules since
the summation depends on the wave functions of the
excited states of the molecule. The calculation can be
somewhat simplified if one estimates somehow an
average value for E„—Eo as was done by Van Vleck
and Frank' in their calculation of the diagmanetism of
molecular hydrogen. If AE is the average value of
E„—Ep, then (10) becomes

e = (e'/3mc')(0~ P 1/rp~ 0)

—(4/DE)AvqL(OX~+ m 'm o'/ro'~OX)j. (12)

then taking Av), as in the previous averaging,

o = (e'/3mc')(0~ P 1/ro
~
0)

—(4/3AE)(O~Q mP mo'/ro'IO). (14)
jI

Although this approximate form depends only on the
ground state wave function, it is nevertheless very dif-
ficult to evaluate reliably since it depends on the second
derivative of the wave function and is consequently
very sensitive to errors in this derivative. This was
clearly shown by%ick'who found that by taking two
somewhat di8erent wave functions in his calculations on
the rotational magnetic moment of H2 he could obtain
results for a term analogous to the last one in (14)
which diGered from each other by more than a factor
eight.

III. LINEAR MOLECULES

Although calculation of the summation in (10) would
be extremely difBcult for most molecules, in the case
of 'Z linear molecules this summation can be directly
related to the spin-rotational magnetic interaction
constant which has been experimentally measured in
certain cases. If Fq represents the summation in (11),
if for X one writes 0 when the molecule has its axis
perpendicular to the field and ~ when the axis is
parallel, and if tII is the angle between the nuclear axis
and the z axis, one has

Avq(Fq) =Avq(sin'HqF. +c so'8&, F)

,'F,+-,'F = -', F, (15)-.
vanishes in the above since a linear molecule is

cylindrically symmetric about its axis, as a result of
which Qo m, po has only diagonal matrix elements along
the axis of symmetry. With (15), Eq. (11) can be
written as

o = (e'/3mc') (0
~ Q 1/r&

~
0)+ Po pp PL1/(E —Ep)j

Ie nX'

X LIIo. ), L.~ o.+Lo ~ &.i o.j. (16)

This result may be compared with Brooks'"-Wick's'
theories of spin-rotational magnetic interactions. I.et
H„be the experimentally observed magnetic Geld at
nucleus r due to the linear molecule rotating with an
angular velocity

where J is the rotational quantum number and I is the
moment of inertia. Let Z, be the charge on any nucleus
of the molecule other than the one at which the shielding
constant is desired, and let a; be its distance from the
desired nucleus. Then %ick's result is

mp'= m, g,5+m„p'3+ m, p'k (13)

P, PZ, ehJ/Ia, c= (Jh'/I)P—L1/(E„—Eo)j
1 n,X'

X L+psmvL nw p~+L prnk'+ex'pe] (18)

8 J. H. Van Vleck and A. Frank, Proc. Nat. Acad. Sci. 15, 539
(&929).

' Q. C. %ick, Zeits. f. Physik 85, 25 (1933}.
'a Harvey Brooks, Phys. Rev 59, 925 (1941).
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This can then be substituted into (16) and the resulting
expression can be simpb6ed by the introduction of co
for the Bohr radius, a for the fine structure constant,
and p~ for the nuclear magneton, ek/2', where M is
the proton mass. The result after simplification, is

e' ( 1 ) a'apI t' 2Z,pN H, &

(19)3~'( p rp ) 6p~ ( ~ Ia; J3f&

Although the above derivation of (19) seems to be
dependent on the second order perturbation theories,
both through its use of Kick s spin-rotational inter-
action theory and through the shielding theory of the
present paper, this particular result can be obtained
directly without the necessity for using either of the
other derivations directly. This can most easily be done
by following a procedure used in another paper by
Kick' on rotational magnetic moments. If the molecule
were rotating with angular frequency co and in a mag-
netic field of just the Larmor value

H = 2ripcpp/e, (20)

H, = —
~

[p(oiXr)Xr pi/cr'oi)do

—Q[Z;e(piXa;) Xa,"pp/oaf(o]

= —(o /o)(0oI2(»'+y. ')/rp'~0o)

+Q(Z;e~o/ca;). (21)

The experimental value of H „can be obtained from
(21) by superposing a magnetic field equal and opposite
to (20) to cancel it out. Therefore, one has

H,=H, '+o 2rlcpp/e. (22)

Furthermore, just as in Eq. (15), the average over all
molecular orientations gives

2 1 10 = 344+ 30.x' (23)

The combination of (21)—(23) with Lamb's theory for
then immediately gives the desired (19).

the molecule would rotate as a completely rigid body,
since in a coordinate system rotating with ~ the elec-
trostatic field would be constant in time, and, by a
simple extension of Larmor's theorem, the rotation of
the coordinates would exactly cancel H. Since the
nuclei are at positions where the electric field is ap-
proximately zero, the rotational magnetic field at the
position of the nucleus is independent of the nuclear
velocity; hence to a high degree of accuracy the mole-
cule can be considered as rotating about the nucleus at
which the diamagnetic shielding is desired. Then H„,
the field at the nucleus due to the rotation in the
presence of (20), is given by

IV. MOLECULAR HYDROGEN

The most important application of (19) is to molecular
hydrogen. In this diatomic case (19) becomes

e' ( 1 ) a'apa' (2Zpir y'H„y
o=

/
0 P —0

)
—

(

—
I (24)

3mc' E p rp ) 6p~ L a' 3fJ)
where p,

' is the reduced mass of the molecule.
The quantity H„p'/MJ has been experimentally

measured in a molecular beam experiment by Kellogg,
Rabi, Ramsey, and Zacharias" to be

H,p'/M I= (13.66+0.20) gauss.

Kith this and with the current standard values for the
other constants in (24),

o = (e'/3mc') (0
~ g p 1/rp

~
0)—(05291X0.7414'/6

X137'X5.05)(24.62—13.66)

= (o'/3mc')(0~ g p 1/rp
~
0)—(0.56&0.01)X10 '. (25)

Using Nordsieck's" wave functions, Anderson" has
calculated the value of the 6rst term of (25) to be
3.24X 10 5. On the other hand, Hylleraas and Skavlem"
from diferent wave functions obtain 3.16X10 '. If
Anderson's value is used, r becomes

0 = 2.68X 10 5.

This number can be contrasted to the best previous
estimates for 0 which were 1.8X 10 ~ and 3.24X 10
The first of these was obtained by applying Lamb' s
formula to a single hydrogen atom; Anderson" obtained
the second by applying Lamb 's formula directly to a
hydrogen molecule.

The result (26) can be combined with Hylleraas
and Skavlem's" value of 5.99X 10 ~ for the 0 in He
and with Anderson's" measured resonance frequency
ratio in He' and H2 molecules of 0.7617866 to yield a
value for the ratio of the nuclear gyromagnetic ratios of
one~/yr= 0 7617866[1+(5.99—2.68)X 10 ']=0.761812.

The shielding correction can be calculated from the
simplified expression (9) -only for linear molecules for
which there exist spin-rotational interaction data;
e.g. , for molecular hydrogen. Since a number of dif-
ferent hydrogenous compounds are used to determine
the proton resonance frequency in the various nuclear
moment measuremen ts, it is important that some one
should compare with high precision the resonance
frequencies in these compounds with that in molecular
hydrogen. If this is done empirical values for the
shielding constant of the protons in the other com-

pounds can be obtained from the above value for H2 ~

The author is grateful to Professors J. H. Van Vleck
and E. M. Purcell for several stimulating discussions
in the course of these calculations.
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