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o = {mv/L)(hm)&, the final expression for E becomes

x= —,'(%+1) erfL(k+1) ~]——,
'

~
k —1

~
erg[(k —1)0j

+{1/2~&0)t expL —(k—1)'tr~j—expL —(k —1)'cr']j. (11)

This is a simple result, since all possible conditions are encom-
passed by the two dimensionless parameters k and cr. The param-
eter k is simply the ratio of the collector slit length to the entrance
slit length; o can be expressed in other terms, by substituting for
h its equivalent expression given above, and for v in terms of the
mass and charge of the particle and the accelerating voltage. When
this is done, we obtain

0 = (~/L) (eV/300RT) &.

,d'${s) d'X{s)
ds3 ds~

(13)

Substitution of numerical factors for e and R gives

= 108m/L(V/T}&.

The general discrimination equation, Eq. (9), for the special
case of k=1, can be inverted to give an explicit expression for the
initial speed distribution F(s) in terms of the collection e%ciency
function $(s). Though tedious, the process simply involves re-
peated differentiation of the integrals of Eq. {9),and suitable rear-
rangement. The final result is
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The method of generating functions is employed to analyze the composite statistical variations which
arise in a counting system that consists of a source, a luminescent crystal, and a photo-multiplier tube. The
methods are applied to several photo-type assemblies and indicate that the techniques can be used to treat.
any problem of this type in a simple way. It is found that once the crystal has accepted energy, the effec-
tiveness of the assembly is measured by the number of photo-electrons ejected from the photo-cathode of
the multiplier. This quantity, which depends upon the luminescent efficiency of the crystal, the geometry
of the crystal-multiplier arrangement and the efficiency of the photo-cathode, should be at least 5 for faithful
counting of particles absorbed in the crystal. The number of photoelectrons must be much larger than 5 for
good statistics if the current from the multiplier is measured. The results of Schiff and Evans for the statis-
tical variations in the voltage of a condensor which is charged with the pulses from the multiplier are
generalized to cover the case in which the size of pulses varies.

I. INTRODUCTION

HE type of crystal counter which depends upon
the combination of luminescent crystals and a

photo-multiplier tube shows promise of being of great
service in the detection of radiations both because of
its high sensitivity and its speed of registry and re-
covery. This device has been developed by a large
number of individuals, almost too numerous to men-
tion; however, the origin of the system appears to rest
with Coltman and Marshall, ' who employed powdered
luminescent materials of the type used in previous
commercial luminescent systems, and with Broser and
Kallmann, ' who first appreciated the advantages of
employing large transparent luminescent crystals and
introduced organic materials.

The purpose of the present paper is to analyze some

*This document is based on work performed at Los Alamos
icientific Laboratory of the University of California under U. S.
Government contract W-7405-Eng-36.

' J. K. Coltman and F. Marshall, Phys. Rev. 72, 528 (1947);
F. Marshall, J. App. Phys. 18, 512 (1947).' I. Broser and H. Kallmann, Zeits. f. Naturforschung 2a, 439
(1937); 642 (1947); Broser, Herforth, Kallmann, and Martius,
Zeits. f. Naturforschung 3a, 6 (1948).

of the factors which influence the statistical behavior
of luminescent counter systems in order to evaluate
the limits within which a counter may be used in
making a particular type of measurement. The problems
of interest range over a wide spectrum of possibilities.
However, the problem on which we shall focus atten-
tion for immediate purposes in order to provide a
practical objective is the following: A crystal counter
system is employed to count the gamma-rays emitted
from a source in time T. If S gamma-rays are emitted,
what is the most probable number that will be counted
and what is the range of variation to be expected? We
shall attempt to examine this problem in a sufBciently
general way that the results will have value for a much
broader group of problems.

It is interesting to consider the component parts of
this problem in order to be able to examine the sources
of statistical variations. The components are as follows.

(A) The source, even if constant in the sense that it
remains unchanged during the time T will contribute
to the statistical variation since the gamma-rays are
usually emitted at random. For simplicity, we shall
assume that the time T is suKciently short that varia-
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X=1/n, (r„ (2)

where n, is the density of electrons in the luminescent
material and 0., is the Compton cross section per elec-
tron. If d is the thickness of the luminescent material
in the direction in which the incident gamma-rays are
traveling, the probability that a given gamma-ray will

pass through the system without producing a Compton
electron is e where

n= d/X.

The initial energy k& of the gamma-ray and the energy
k after the collision are related by the equation'

k

ko 1+y(1—cos8)
(4)

where 8 is the angle between the incident and scattered
quantum and & is the energy of the incident gamma-ray
expressed in units of the rest mass of the electron (507
kev). The energy gained by the electron is a=ko —k.
From (4) we readily derive the relation

d(cos8) = (kp/yk') dk. (5)
' The notation employed here is that of %.Heitler, The Quantum

Theory of Radiation {Oxford University Press, New York, 1936).

tions in the source strength can be neglected and that
the statistical variations in emission of gamma-rays
can be treated on the basis of a Poisson distribution.

(8) Unless the source is completely surrounded by
the luminescent material, some of the gamma-rays will
not pass through this material and hence wil1. certainly
fail to be registered. We shall designate the average
fraction which passed through the material by f, so
that the average number of gamma-rays which pass
through the detecting system, if E are emitted from
the source, is

v= fsV.

If the source is isotropic, f will be determined simply
by the solid angle subtended by the crystal system;
otherwise a somewhat more involved calculation is
needed to determine f

(C) A given gamma-ray may or may not produce
an ionizing pulse within the luminescent crystal. The
possible mechanisms for producing such a pulse are the
photoelectric eGect, the Compton eQ'ect and pair pro-
duction. In the first and third cases the gamma-ray
transmits all of its energy to the crystal, provided the
energetic electrons produced by the gamma-ray do not
escape from the crystal. A greater statistical variation
is possible when the range of gamma-ray energy and
atomic number is such that the Compton eGect pre-
dominates. This would be the case for example if the
luminescent material were one of the organic types
such as naphthalene or anthracene and if the gamma-
rays had an energy in the neighborhood of 2 Mev.

The probability of a Compton encounter may be
described in terms of the mean free path 'A for the process
namely

in which « is the classical electron radius e'/mc'. If
we use the relation d0=2~ sined8 and replace de by
dk with the use of (5), we obtain

1 (ko k
dy=7r«2

I
—+——sin'8 )dk.

koy Lk kp
(7)

This is to be employed in the range of k from ko to
ko/(1+2'), corresponding to the range of 8 from 0 to w.
When 8 takes the values 0, s./2 and s the quantity in
parentheses in Eq. (7) takes the values

1+y+y' 1+2y+2p'
2(8=0); (8=s./2); 2 (8= ) (&)

1+y 1+2'
For values of y not larger than about 4, this variation
is suKciently small that it is reasonably satisfactory
to assume that k has equal probability of falling in
any part of the allowed range, or that the knocked-on
electron has equal probabilities of receiving any energy
in the range from zero to 2p/(1+2'), in units of ko.
For very large values of y the sin'8-term in parenthesis
in (7) may be neglected for the most interesting colli-
sions. It is then clear from the remaining terms in
parenthesis that collisions in which k is small compared
with kp are preferred over those in which k is near ko.

The degree of preference is not exceedingly great
for values of y in the normal radioactive range and we
shall assume that the probability per unit energy range
is constant within the allowed limits. This gives the
maximum statistical variation to be expected in a given
Compton process.

The gamma-ray may conceivably make a number of
Compton encounters in passing through the crystal.
There are two interesting extreme cases to consider
which we shall refer to as the "thin" and "thick"
approximations. In the thin case, which corresponds to
values of e appreciably less than unity the gamma-ray
has much smaller probability of making two collisions
than one collision. We shall treat this case by assuming
that a may be chosen to be a constant for each suc-
cessive collision as if its energy were not greatly
affected by successive Compton encounters. In this
event the probability that the gamma-ray will make n
encounters can be described by the distribution function

P„= (n'"e—«)/n!

for the range of values of n of practical interest.
In the thick approximation the gamma-ray transfers

all of its energy to the luminescent material in a suc-
cession of encounters once it has made the first en-
counter. Thus this case is equivalent to that in which

The diGerential cross section dp for scattering into
solid angle dQ is

«'dfl k' (ko—
I

—+—.
2 ko'(k ko
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the gamma-ray transfers its energy by means of the
photoelectric eGect or pair production, provided the
electrons produced do not escape. These last two cases
diBer from the thick approximation only with respect
to the geometrical distribution of points within the
crystal at which the electrons are released —a difI'erence
which we shall not consider here.

The thin approximation is best achieved by employ-
ing a very thin crystal so that n is small compared with
unity and also employing soft gamma-rays, for which

p is unity or less, which lose relatively little energy in
a Compton encounter. It is probably not a case which
would be met in practice, but is interesting as one sta-
tistical extreme. It should be remarked that this limit
cannot be achieved by going to very soft radiation for
such radiation is scattered almost isotropically. The
distance which the scattered photon must traverse is
usually diR'erent from that which the original photon
would have had to travel to pass through the crystal
because it is traveling in a diferent direction. Thus o.
is not a constant in this limit even though the energy
of the photon is not greatly altered by a Compton
collision. The thick case can evidently be achieved by
using a thick crystal and is the one that will be met
more commonly in practice.

(D) The number of luminescent quanta which the
crystal emits can vary even when the energy trans-
mitted to the crystal is fixed because of statistical fluc-
tuations in the manner in which the exciting radiation
is distributed among the difI'erent excited states of the
medium. This type of statistical fluctuation is partly
responsible for the straggling in range of heavy ionizing
particles as they pass through matter. In order of mag-
nitude the fractional variation in the number of light
quanta is l/q&, where q is the average number. Since
we shall be interested in cases in which g is 1000 or
larger, corresponding to Compton encounters in which
the knocked-on electron gains several hundred kev of
energy, this source of statistical variation will be
neglected for the present. It could be significant in
cases in which the particle being detected produces
very few light quanta, as for very soft beta-rays or
x-rays.

(E) Only a fraction of the light quanta produced in
the luminescent crystal will reach the photoelectric
surface. The fraction 0 which do is determined pri-
marily by geometrical factors involving the angular
distribution of emitted light and the angle subtended
by the photosurface relative to the luminescent ma-
terial. The value of 0 will be in the neighborhood of 0.5
for a relatively thin layer of luminescent material which
is immediately adjacent to the photo-surface, but may
be considerably smaller if the luminescent crystal is
somewhat farther away. It may be enhanced by placing
a rejecting backing on the luminescent material. or by
employing other devices which cause the light to be
"funneled" toward the photo-cathode.

(F) Only a fraction p of the photons striking the

photo-surface will eject electrons from it. This pa-
rameter appears' to be about 0.03 for the type of photo-
surface in which the photons penetrate the photo-surface
and electrons are ejected from the back side, and about
0.05 for the type of photo-surface fox which electrons
are ejected from the front surface.

(6) The electrons ejected from the photo-cathode
will give rise to pulses of various size, depending upon
the accidents which befall the primary photo-electron
and the secondaries which it emits from the multiplying
surfaces. Actually there are two problems associated
with an analysis of the pulse distribution: first, that
of determining the probability that the photo-electron
will actually create a measurable pulse, and second,
that of determining distribution of pulse sizes when
pulses are generated. If the secondary emission ratio
is s, the probability that the photo-electron will not
eject a secondary from the first stage of the multiplier
is e ', provided we assume the emission of secondaries
to be random. This probability is of the order of a few
percent for normal values of s (between 3 and 5), and is
essentially equal to the probability that the primary
electron will not generate a pulse. Since the percentage
uncertainty in p is at least as large as this, we may com-
bine this factor with p in the following discussion and
assume that a measurable pulse is produced whenever
an electron is ejected. The distribution of pulse sizes
has been measured by Engstrom' using a light source.
Presently we shall approximate his results with an
appropriate mathematical function. Evidently the
pulse distribution is not important if the luminescent
counter is employed simply as a counter of events and
if a pulse of arbitrary size can be employed as the signal
for a significant count. Knowledge of the distribution
becomes important, however, if a pulse discriminator
is employed so that only pulses larger than a certain
size are counted (as when a noise background is elim-
inated) or if the integrated current of the photo-
multiplier is recorded. The first of these cases can be
treated by redefining the parameter p as the probability
that an observable pulse is measured when a photon
strikes the cathode and introducing measured values of
this quantity. The second case will be discussed in
detail.

2. THE GENERATING FUNCTION AND ITS
APPLICATIONS TO THE PRESENT PROBLEM'

The aggregate contribution of the various unit parts
of the photo-multiplier system to the statistical varia-

4 P. W. Engstrom, J.Opt. Soc. Am. 37, 420 (1947).G. A. Morton
and J. A. Mitchell, RCA Review 9, 632 (1948) have shown that
the pulse-height distribution is broader than that expected on the
basis of a Poisson distribution of electrons at each stage.

'The generating function was introduced into probability
theory very early in its development and some of its properties
are described in textbooks {see for example, J. V. Uspensky, In-
troduction to MarhemAical Probability (McGraw-Hill Book Com-
pany, Inc. , New York, 1937)). The writers have benehted by
reading a mimeographed survey of the subject by O. R. Frisch.
An account of some of the relations employed here is given by
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tion of the system can be determined most simply
with the use of generating functions appropriate to
each stage. If p„ is the probability that a given observa-
tion shall yield n events; for example, that the source
shall emit n gamma-rays in time T, the generating
function G(o) for the process of observation is defined

by the series

G(o) =poo'+ pie'+ poo'+ +p.o"+.. . (10)

The generating function is readily found to possess the
following properties

G(0) =po; G(1)= 1

The mean value m of a series of observations, namely,

m= P.np.

is readily seen to satisfy the relation

m = (dG/do), =i.

(12)

(13)

Similarly the variance of a sequence of observations,
defined by the relation

v =P.(n m)'p—„-P„n'p„—m' (l4)

is readily found to be related to the generating function

by the equation

O'G dG t'OG ~
'

t
O'Gy

v= +—i

—
f

=f
i

+m —m'.
.Oo' do (do &, , (do' j,=,

In the case of the Poisson distribution

p =(n~e ~)/n!

G(o) is readily found to be

G(o) ea( ~—i)

whence
m=n, v=n. (18)

In the following we shall employ the ratio v', m to
provide a measure of the fractional deviation from the
mean or the fractional deviation In the cas.e of the
Poisson distribution this quantity is the familiar ratio
1/n'. Although the generating function is interesting
and useful because of the properties outlined above, its
real service appears when the following two additional
properties are considered.

(I). Suppose that instead of making one observation
of the number of events of interest (such as the number
of gamma-rays emitted from the source in time T) we
make two observations (e.g. , for two time intervals T)
and ask for the probability that n events are observed
in toto. The probability for this is the sum

Pnp0+Pn —jP1+Pn —2P2+ ' ' '+POPvvy

which is the coefficient of o" in the expansion of CP(o).

T. Jorgenson, Am. J. Phys. 16, 285 (1948). We are indebted to
Dr. S. Ulam for pointing out the value of the generating function
to us.

mz=fm Vz=tv (22)

in which m and v are the mean and variance associated
with a single observation in case I, and

mzz =mim2, vzz = v~m2'+ v2m~. (23)

It is clear that if case II were extended to that in which
the second type of event can give rise to a third type
(e.g. , if a Compton electron can give rise to ion pairs
or to luminescent quanta) which is statistically dis-
tributed in accordance with a generating function

This is a special case of the more general theorem: The
generating function governing the probability dis-
tribution of the slm of r identical observations is
G"(e) if G(o) is the generating function for a single
observation.

(II). Suppose next that we are dealing with a situa-
tion in which each member of a set of initial events
which are statistically distributed (such as gamma-rays
from a source) can give rise to a series of events of
possibly different type (for example, the production of
Compton electrons), and ask for the statistical distribu-
tion of the second type of event. Let Gi(o) be the gen-
erating function for the first type of event (e.g. , the
number of gamma-rays emitted by the source in a
given time for the example under consideration) and
Go(o) be the generating function for the number of
events of the second type associated with one primary
event (e.g. , the number of Compton recoils produced
by a single gamma-ray). It is readily shown that the
generating function Grr(o) for the number of events of
the second type when the statistical variation of the
number of events of the first type is taken into account
is given by

Gii(o) =Gi[Go(o) j. (19)

The validity of this theorem can be demonstrated
readily by writing G» in the form

Gii (o) =poG'(o)+ piGo'(o)+ poGo'(o)

+p G '(o)+ .+p-Go"(o)+, (20)

in which p„ is the probability of nevents , of the first

type, so that

Cr, (o) =poo'+ p, +opto'+ +p„o"+
The coefficient of p„ in (20) is the generating function
for the total number of events of the second type when
it is known that n events of the first type have occurred,
in accordance with theorem I. This coefFicient appears
suitably weighted with the probability that n primary
events shall occur.

We may readily find, using Eqs. (13) and (14), the
mean and variance associated with the generating
functions

Gi(o) =G'(o) and Gir(o) = Gi[Go(o)], (21)

which occur in the cases I and II described above. The
results are respectively



LU M I NESCE NT COUNTER S YSTE MS 609

Ge(e) the complete generating function which takes
account of the statistical variation in events of the
three types is

TABLE I. Kfhciency of energy conversion in luminescent ma-
terials under gamma-ray excitation. (After Broser, Kallmann and
Martius. Values in fractions. )

Giii =Gi(Ge[Ge(e) ]), (24)

for which the mean and variance are, by analogy with

(23)

mrrr —mrrm3) Iprrr vrrm3 +V3mir2

Material

ZnS:Ag
naphthalene
diphenyl
phenanthrene

Phv

0.135
0.05
0.075
0.11

We shall now examine the appropriate form of gener-
ating function to be employed in each of the con-
stituent processes described in Section j..

(1) Emissionfro, m source Since . the gamma-rays are
emitted at random, the appropriate generating function
is of the Poisson type (17), namely

G (e) —en(e —1) (26)

in which A" is the average number of gamma-rays
emitted in the time T.

(2) Passage of gamma rays into -system Agiv. en
gamma-ray either does or does not enter the crystal.
If the probability that it does is f, the generating func-
tion for this event is simply

G2(e) = (1 f)+f'— (27)

Using (19) we readily find that the generating function
G, (e) giving the distribution of probabilities that the
gamma-rays emitted at random by the source enter
the crystal is

Ge'(e) = Gi[G (e)]=exp[iVf(e —1)]=exp[v(e —1)], (28)

where v =fX.
(3) Generation of photons As state. d in Section 1,

we shall assume that a fixed fraction of the energy
which the gamma-photon gives up to the crystal is
transformed into light quanta. If this energy is E, the
number of light quanta produced is then

(29)

where P is a factor measuring the efficiency with which

the luminescent crystal converts the excitation energy
it receives into light quanta. If hv is the average energy
of the luminescent quanta emitted, Phv is the fraction
of the energy of excitation which appears in the form
of luminescent radiation. This may be as large as 0.20
for some of the most e%cient materials, but can easily
be much smaller. According to Broser, Kallrnann, and
Martius, ' the efTiciencies of energy conversion in zinc
sulfide activated with silver and in the organic materials
naphthajene, diphenyl, and phenanthrene are shown in
Table I. The investigators find somewhat di6erent
eKciencies for beta-ray excitation. Similarly, Coltman,
Kbbighausen, and Altar' have found the energy con-
version in calcium tungstate to be 5.0 percent for

' See the paper by I .Herforth and H. Kallmann, Ann. d. Physik
4, 231 {1949).

7 Coltman, Ebbighausen, and Altar, J. App. Phys. 1&, 530
(1947).

where a is the ratio (3).The energy which the Compton
electron receives is randomly distributed between zero
and the maximum value 2key/(1+2') in the approxi-
mation described in paragraph 3 of the introduction.
This means that the number of quanta generated will

vary between zero and a maximum q, where

2k'
n-= p

1+27
(32)

in which P is the efficiency factor appea, ring in Eq.
(29). A generating function for this random distribu-
tion is readily constructed by treating p as a continuous
variable and is

p slm

Ea(e) = 'e&dn—=
g„J,

exp(n loge) —1

loge
(33)

for which the mean and variance are it„,/2 and it "-/12,

respectively. The complete generating function for the
number of quanta associated with a single gamma-ray
is He(Its(e)).

(4) Emission of photo electrons Agi-ven light .quantum

x-rays. We shall be concerned with detailed values of
the eSciency in Section 3.

As mentioned in Section j. , there are two extreme
approximations that are of interest, namely those
designated as "thin" and "thick. " In the second case,
all of the energy of the gamma-ray is transmitted to
the crystal once a first collision has occurred. The
number of quanta emitted is then equal to po, the value
of p when ko is the energy of the gamma-ray. If c is the
probability that such a collision occurs, the generating
function for the number of quanta is evidently

S,(e)= (1—c)+ce«.

If this is combined with (28) the complete generating
function for the production of luminescent quanta in
the thick case is

5,'= exp[vc(e« —1)].
In the thin case there are two sources of statistical
variation, for both the number of Compton encounters
and the energy transferred to the counter per collision
may vary. The first of these quantities is distributed in
accordance with the Poisson law (17) in the ideal thin
case, for which the generating function is
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either does or does not emit a photo-electron from the
photo-surface of the multiplier. The probability that
it does is Qp, so that the generating function for this
process is

G4(e) = ((1—Qp)+ Qpe) (34)

As stated in sub-section (6) of Section 1, we shall
assume that a measurable pulse is associated with each
photo-electron ejected from the cathode of the multi-
plier.

(5) Generating function for pulse distribution Eng. -

strom' has measured the pulse-height distribution of a
typical multiplier tube. We shall represent his empirical
distribution by the analytical function

M = Xfc(1 exp( ——rtoQp)) =NfcP,

whereas the variance is

V =EfcP
The fractional variance is

(42)

(43)

in which the quantity
rtoQp,

is the average number of photo-electrons emitted from
the cathode.

With the use of the rule (25) for determining the
mean and variance of a chain of events, we find that
the mean number of counts is

f(h) =Ah' exp( —h/p), (35) V&/'M= [1/(iVfcP)]t (44)

in which h is the pulse height on an arbitrary scale, p
is a constant measuring the width of the distribution
and A is a normalization factor —,'p'. A generating
function

Gg(e) = 1/(1 —p loge)', (36)

can readily be constructed for this distribution. The
mean and variance are

(8). Thin Case. There are four statistical processes
in the chain extending from the passage of gamma-rays
into the crystal to the ejection of electrons from the
photo-cathode; namely, those described by the gen-
erating functions G2', H3, E3 and G4 of the preceding
section. The number of electrons ejected from the cath-
ode when a single gamma-ray passes through the crystal
is governed by the generating function

Ps'= 3p and 7)= 3p . (37) E(e) =Hs[E'3(G4(e))]. (45)

We shaH see later that it is not necessary to know p in
order to determine the fractional deviation which is
of interest to us.

3. CORRELATION BETWEEN GAMMA-RAYS FROM
SOURCE AND PULSES IN MULTIPLIERS

Let us now ask for the probability that a gamma-ray
from the source will produce a pulse in the multiplier.
We shall treat separately the thick and thin cases.

(A). T/n ck Case. In th'e thick case, a gamma-ray
passing through the crystal has probability c of making
an encounter in which case it generates go photons. The
distribution of such encounters is random, being
governed by the Poisson distribution. The average
number is iVfc= vc and the variance is vc. Thus as far
as luminescent pulses are concerned the effective
strength of the source is vc.

The probability that n of the p() light quanta will

eject photo-electrons from the multiplier is given by
the generating function

[G,(e)]«=[(1—Qp)+Qpe]». (38)

The probability that none will eject electrons is
(1—Qp)», so that the probability of observing a pulse,
if one electron is sufhcient to produce an observable
pulse, is

P=1—(1—Qp)"o (39)

P= 1—exp( —qoQp), (40)

Since qo is usually large compared with unity, this may
be approximated by

The probability that no electron will be ejected, and
hence that no pulse will be recorded, is E(0), so that
the probability of a pulse is [1—E(0)]and the generat-
ing function for pulses is

[E(0)+(1—E(0))e]. (46)

Hence the mean and variance in the number of pulses
are given by

M = V= 1Vf(1—E(0)). (47)

Since Qp is of the order of three percent even when Q

is unity, we readily find that Es(G4(0)) can be approxi-
mated by the expression

[1—exp( —rt„Qp) ]
Ea(G4(0)) =

A simple examination of E(0) shows that it approaches
e—~ when n Qp is large compared with unity and ap-
proaches exp( —exp Qp/2) when rt Qp is small.

We conclude that in both the thick and thin cases
the counts are governed by a Poisson distribution and
that it is desirable to have the quantities c and (1—e )
as near unity as possible; the quantities poQp and
g Qp should be somewhat larger than unity, although
there probably is little advantage to having them as
large as 10.

As a concrete example, suppose one is dealing with
gamma-rays in the vicinity of 1.5 Mev. In this case
the mean free path for the Compton e8ect in a material
such as naphthalene is of the order of 15 cm. Hence if
the crystal is a cube 5 cm on an edge, the factor e
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is 0.72. The Compton electron will have an average
energy of the order of 0.7 Mev so that the average
number of luminescent quanta produced is 10,000 if
the energy efficiency is taken to be 0.05. Choosing p
to be 0.03, we 6nd that -', g Qp is 300Q. Hence Q should
be at least 10 ' if we expect each Compton electron to
register mith reasonable faithfulness. If we assume
that the photo-surface of the multiplier has an active
area of about 15 cm', and that this surface is 5 cm from
the center of the crystal, the factor 0 should be as
large as 0.05 even if the photons are isotropically dis-
tributed, which would guarantee faithful counting of
Compton encounters. The same photo-surface would
be more nearly borderline if the crystal were chosen
to be a 10-cm cube and the surface were placed 10 cm
from its center, for then 0 would be about 0.01, which
is very close to the limit set above. In fact, those Comp-
ton encounters mhich take place at points within the
crystal that are most distant from the surface may fail
to register if the photon distribution is isotropic. In
this event it may prove prohtable to employ a method
of light funneling; for example, by covering all surfaces
of the crystal except that opposite the multiplier with
a reQecting metallic covering.

M= 3pvcgoQp,
V= 3p'vcrloQp(4+3goQp)

(49)

4. PHOTO-MULTIPLIER CURRENT

Consider next the current in the photo-multiplier, or
rather, the charge which arrives at the anode end when
X gamma-rays are emitted from the source. %e shall
treat the "thick" and "thin" cases separately once
again.

(A). Thick Case. In this case the distribution of
charge in the photo-multiplier may be regarded as
though it were compounded of the three statistical
processes which are described by the generating func-
tions 53', G4 and G~ of Section 2. The first of these
gives the distribution of photons in the crystal associ-
ated with the E gamma-rays, the second gives the dis-
tribution of the photo-electrons from the cathode of
the multiplier, and the third gives the distribution of
pulses in the multiplier. The means and variances of
these distributions are shown in Table II. The quantity
(Qp)' can be neglected in comparison with Qp since the
latter is at most a fern percent.

By compounding these statistical quantities in ac-
cordance with the rule (25) we readily obtain the fol-
lowing values of the mean and variance for the charge
in the multiplier

The fractional variance is

V& 4+3goQp &

M 3vcgoQP-
(50)

M= opvnq Qp,
V= op'vag Qp(4+-,'g„Qp(4+3a)). (51)

One again we note that p drops out of the fractional
variance. Whenever the quantity y= g Qp is very small
compared with unity the fractional variance may be
approximated by the expression

V&
p 8/3

3II Evan Qp)
(52)

In the opposite extreme, in which y is very large com-
pared with unity, the fractional variance is

V~ p4+3nq '*

M 4 3vn ) (53)

which approaches 2/(3av) & if a is small compared with
unity, and approaches 1/v& if n is very large. The latter
case, in which o. is large, is in contradiction with the
assumptions of the thin approximation; however, it is
of mathematical interest.

TABLE III. Means and variances for the thin case.

This quantity is independent of p, as pointed out pre-
viously. Moreover, it becomes independent of the
quantity x= poQp when this quantity is large compared
with unity. The condition placed upon x for this limit
to be valid is somewhat more stringent than the condi-
tion that is required for faithful counting of luminescent
pulses. That is x must be larger than 5 for this approxi-
mation to be precise.

(8). Thin Case. In this approximation the distribu-
tion of pulses is governed by a generating function that
is compounded of the generating functions G2', H~, E3,
G4 and Gs. These correspond respectively to the dis-
tribution of gamma-rays in the crystal, the distribu-
tion of Compton encounters, the distribution of lu-
minescent quanta produced in the crystal, the dis-
tribution of photo-electrons from the cathode, and the
distribution of pulses in the multiplier. The corre-
sponding means and variances are shown in Table III.

The mean and variance for the distribution of pulses
are found to be

TABLE II. Means and variances for the thick case.
Mean Variance

Sg'
G4
Gg

Mean

PCgo

Qp
3p

Variance

~Cyo

np —(op}~=np
3p

Gm'

HI
K3
G4
Gg

g '/12
Qp
3p2
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S. FLUCTUATIONS IN CHARGE ON CONDENSER

When dealing with a high intensity source, it is fre-
quently convenient to feed the current pulses from the
photo-multiplier into a condenser which is shunted
with a high resistance, and then measure the voltage
across the condenser in order to provide a measure of
the average current which arrives at the condenser.
This voltage exhibits fluctuations because the pulses
are distributed statistically both in magnitude and in
time. The inhuence of the distribution-in-time has
been investigated by Schiff and Evans' for the case in
which the pulses are equal in magnitude. We are
interested in the generalization of their results when
the pulses vary in size.

If the capacity of the condenser is C and the shunting
resistance is R, the decay time for the shunted capacity
is 7 =RC. A charge which is fed into the condenser at
time t' will have decayed by a factor exp[ —(t t')/r—]
by the later time t.

Ke shall assume that the charge associated with
each pulse of the multiplier arrives in a time that is
short compared with the decay time of the condenser.
We sha11 also assume that the pulses are distributed in
time in accordance with the distribution law governing
the frequency with which gamma-rays enter the lu-

minescent crystal; that is, in accordance with the
generating function G2'(4) of Section 2 (see Eq. (28)).
Since we shall be interested in specific intervals of time
t, we shall replace v in Eq. (28) by nt, where n is the
average number of gamma-rays entering the crystal
per unit time. Those gamma-rays which do not excite
the crystal will give rise to pulses of zero size. For the
purposes of this section, we shall designate the generat-
ing function for the pulse in the photo-multiplier
associated with the passage of a single gamma-ray into
the crystal by G(e). The pulse size will be assumed to be
expressed in units of charge. G(e) will differ in the soft
and hard approximations, but may be left arbitrary
for the moment.

Consider the gamma-rays which arrive in the time
interval dt' between t' and t'+dt'. The generating func-
tion associated with the current they contribute to the
condenser at the time t' is

1+ndt'[G(. )—1], (54)

which is the expansion of G2'(G(4)) in terms of dt' when

v is replaced by ndt'. The mean value of the charge
associated with this generating function is

ndt'G'(1). (55)

This mean contribution will have decayed by a factor
exp((t' —t)/r) by the time t. Thus the mean charge at
time t resulting from the accumulation for all previous
times is

nG'(1) exp((t' —t)/r)dt'=nrG'(1). (56)

L. I. Schiff and R. D. Evans, Rev. Sci. Inst. 7, 456 (1937);
L. I. Schiff, Phys. Rev. 50, 88 (1936).

G'(1) evidently is the mean charge pulse Q in the photo-
multiplier associated with the entrance of a single
gamma-ray.

Similarly, the variance in the charge on the condenser
at time t is the integral of the variance of (54) from
t'= —~ to t'=t, with a weighting coefficient exp[2(t'

t)/—r], since the decay constant for the square of the
charge is twice as large as that for the charge. The
result is

—,
' rn[G" (1)+G'(1)]. (57)

The quantity [G"(1)+G'(1)]is the mean of the square
of the charge pulse associated with a single gamma-ray,
which we shall designate as (Q')A, . This is also equal to
the variance of the charge pulse associated with a
single gamma-ray plus (Q)'.

We find, then, that the fractional variance of the
charge on the condenser is

Vi/M = [(Q')A„/2rnQ']'. (58)

so that

(Q4)A„= V+M = 3p tocf2l7p(4+3&, flp),

((Q) )' (4+3',flp) &

( Q' ) ( 34tocQp i

(6O)

(61)

As should be expected, this approaches 1/c& when 4to&p

becomes sufficiently large, for the pulses then approach
the constant size and the only source of statistical
variation is in the random production of luminescent
bursts.

(8). Thin CaSe. In thiS CaSe G(e) iS HA[ISA(G4(GA(4)))]
whose averages were tabulated in the previous section.
We obtain

M=Q= ,'pan Qp, -V=3p'aAt„Qp(2+n ftp),

Q'=3p'a4t Qp[2+rt Qp(1+43a)],

(Q'q & 42+rt Qp(1+-,'a) '

E Q') 3 art„fl p

(62)

Here Q'/Q' approaches [(4+3a)/3aj when 4t Qp be-
comes sufficiently large.

The coefficient (-', rn)& represents the result obtained by
Schiff and Evans for pulses of constant amplitude. We
may now investigate the coefficient (Q')A, /(lI))' for the
thick and thin case.

(A). Thick Case. In this case the generating function
G(4) is 54[G4(GA(4)) j.The means and variances of G4 and
G~ were tabulated in the previous section. The corre-
sponding quantities for G& are g&c and 4t&'c(1 —c). By
combining the means and variances, we obtain

M = Q= 3prt4cQP, V = 3p'nocflP(4+3goQP(1 —c)). (59)

Moreover


