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purposes. We also need the formulas"

(J, E, M
I
m.

l
J, K, M~1)

J(J+1)2 K(K+1)

(J, K, M Im, I J, K+1, M~1)

A' J(J+1) S(—S+1)+E(K+1) S(S+1)—E(K+1)+J(J+1)
+ (JAM+1) &(JaM) '

2J(J+1)

4J(J+1)(K+1)

DE+1)' A' j(—J S+K—+1)(J+S+K+2)(K+S J+—1)(J+S E)—
(JaM+1) t(JwM)"-.

(2K+ 1)(2E+3)

When numbers are inserted we obtain for the quan-
tity we are seeking

2I(vMl~*lvM~1) I'=0386(JISM+1)(J~M). (15)

It is interesting to observe that the state f2 contributes

"These were here derived with the use of the matrix elements
given by Reiche and Rademacher, Zeits. f. Physik 41, 453 (1927)
and the quantum addition rules for angular momenta.

far less to the intensity than does P&, as is very evident
when the matrix elements are evaluated. An explana-
tion of this apparent anomaly is provided by the vector
model which shows state P~ to suffer a large change in

magnetic moment on change of M because of the rela-
tive orientation of the vectors which constitute M,
in contradistinction to the situation in P2.
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Expressions for the operators in Dirac's general theory of quantum mechanics of localizable dynamical
systems are explicitly constructed and their commutation laws directly worked out ($2). Conditions for the
expectation values of dynamical variables or their-densities to be independent of the parametrization of the
surface are given and it is shown that of the two conjugate Geld variables in Weiss theory, one is a parametri-
zation-independent variable and the other is a parametrization-independent density ((3).

Finally it is shown that P" in Dirac's theory does not have any simple expression other than that given in
Weiss theory. This, together with the results described in the above paragraph, shows that for all practical
purposes the two theories are equivalent ($5).

1. INTRODUCTION

'"N the quantum mechanical theory of localizable
& ~ dynamical systems, a wave function is introduced
on each space-like surface in the four-dimensional
space, and equations are set up for its change as the
surface changes. Such a general theory was first given
by Dirac, ' who introduced the deformation operators
II", II" to describe the changes of the surface and the
operators I'", P" giving the corresponding changes of
the wave function. Conditions which these operators
must satisfy were given, and if we call the equation
giving the change of the wave function on a surface as
the surface changes the wave equation, these conditions
are precisely the conditions of integrability of the wave
equation. '

For fields whose field equations are derived from the

' P. A. M. Dirac, Phys. Rev. 73, 1092 (1948).
2 The relativity requirements on the wave equation were over-

looked by Dirac and will be supplied here,

variation of a Lagrangian, wave equations of the above
nature were electively given by Weiss. ' The exact
form of the wave equation and a proof of its integrability
were given in two papers by the author. 4 ' It is easy to
construct I'" and I'" from this wave equation and to
verify that the conditions for them are satisfied.

In this theory, as well as in Dirac's paper, parametri-
zation of the surface is introduced and the wave func-
tion changes as the "parametrized" surface changes.
It is thus important to ask whether the expectation
values of diferent dynamical variables at a point I'
inside a surface S are independent of the parametriza-
tion of the surface 5. Conditions for such independence
of dynamical variables (and their densities) are worked
out ($3) and it is found that in Weiss' theory one of the

' P. Weiss, Proc. Roy. Soc. A156, 192 (1936).
4 T. S. Chang, Phys. Rev. 75, 96? (1949).' T. S. Chang, Chinese J. Phys. 7, 265 (1949). This paper con-

tains an extension of Weiss's theory to Gelds, the Lagrangian of
which contains various derivatives of the Geld quantities.
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two conjugate held quantities satisfies the conditions
for a density. This feature is not too satisfactory and
and one would like to know if it is possible to develop
Dirac's general theory without this feature.

In f4 we introduce conjugate variables into Dirac's
theory. tA"e determine I'" and the dependence of the
conjugate variables on the metric so that their com-
mutation law is satisfied and their expectation values
as well as the expectation values of the energy and
momentum densities are all independent of the para-
metrization of the surface. It is revealed that a simple
change of variable carries I'" and the conjugate vari-
ables determined in such a theory into corresponding
quantities in gneiss' theory.

This settles incidentally the important question
whether Dirac's theory is actually more general than
gneiss' theory. Any difference between the Weiss
theory and Dirac's theory as developed in fl4 lies in
the determination of I'".It will be shown that there does
not exist any simple expression for I'" beside that of
gneiss' theory. Thus for all practical purposes, we may
consider the two theories as equivalent.

x"=x)" u . u= (u„uz, uz).

Let us write the wave functional 4' as &m(u), x"(u)
~
),

where m(u) is the label for the different coordinates of
the wave functional. Consider a surface 5 given by
x"=b"(u) deformed to a surface 5' given by x"=b"(u)
+Ax'(u). Writing Ax" as

zI a„(Bx"/Bzz,)+a„n"I, (r, s, . =1, 2, 3), (2)

where nv(u) is the unit normal to the surface at the
point u, (n„n&=1, ')n)0and defining D4 as &m(u),
b"+Ax" ~) —&m(u), b" ~) we have

6%'
A4=

J
Dx"(u) du

bx&(u)

l3x 6%
=Jl, 8, +Q.n" du,

Bu, bx&(u)

(du= duiduzdu, ) (3)

where M'/bx&(u) is the usual functional derivative of
4 with respect to x"(u) at the point u. Defining II", II"
according to Dirac by

(u„il'+ u„ll")+du,

2. COMMUTATION LAWS BETWEEN II", H"

To clarify Dirac's paper as well as to provide for the
subsequent sections, we shall construct explicit expres-
sions for the operators H", II" and develop their
commutation laws.

Let x& be (x, y, s, c/), and goy
———gii ———

gzz
———

ggz
——1

as usual, and let surfaces be represented by

[II"(u), II'(u')]=z
Bx"(u) b Bx"(u') b

Bu„.bxv(u) Bu, ' . bx" (u')

Bx"(u') b Bx&(u) b

Bu, ' bx" (u') Bu„bx&(u)

zb, (u —u') x,"(—b/bx" (u'))

+zb„(u' —u) x,"(u') (b/bx" (u)), (6)

where x,& stands for Bx'/Bu„b(u —u') for 8(ui —ui'),
b(uz uz'),—b(uz uz), and b, (u) for Bb(u)/Bu, The
right-hand side of (6) added to

b, (u- u') ll"(u')+ b„(u- u') ll'(u)

can be proved to be zero by showing that the sum
vanishes after performing the integration with respect
to either I or I'.' Thus

H"'(uu') —= [ll"(u), II'(u')]+ b (u u') ll—"(u')
+b„(u—u') II*(u) =0. (8)

We can find the other Poisson brackets in a similar
way. For simplicity, let us write x', II"', - in place
of x(u'), ll"(u'), . and let x, II", denote x(u),
II"(u), . Let us introduce the symbols Bx„/Bw,
u„, Bu„/Bx„, Bw/Bx„by

Bxv/Bw=nv, u"=uv, = (w, ui, uz, uz))

(Bu,/Bx„) (Bx„/Bu,) = b„&,

(Bx,/Bu„) (Bu,/Bxv) = b,".
(zz, v, p= 1, 2, 3, 0) (10)

Then

n"=Bw/Bx„=Bx&/Bw, n„=Bw/Bx"=Bx„/Bw (11).
With this notation we get

bn&(u)/bx„(u') = b, (u' u) n" (u) (—Bu„/Bx„),

H "(uu') —= [ll (u), II (u')]+b„(u —u')ll (u) =0, (12)

' A more standard proof is to cast the sum into

y(u) b(u —u')+ p(")(u) b„(u—zc')+ p("') (u) 8„(u—u')+
(B„,(u —u') = (PB(u—u') /Bu, Bu, )

and to show that all the coefficients are zero. The casting is per-
formed by expanding all functions except B(zf—u') and its deriva-
tives into a power series of (u, —u, ') with coeScients as functions
of u and removing these powers by using relations of the type

(u,—u, ') S(u—u') =0,
(u,—u, '}b,(u —u') = —b„b(u —u'), etc.

we get

II"(u)= z(Bxv/Bu„) (b/b xv( u)), II"(u) = znv(b/b xv( u)) (.5)

It is possible to calculate the commutation relations
between the II's from (5). For example, defining

[A, 8]= z—(A—B BA—) and noting that

(b/bxv(u))(b/bx"(u')) = (b/bx"(u'))(b/bxv(u)),
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H""(uu') —= [ll"(u), II"(u')]

BN„8s, BQ„BQ,—~.(u —u')
' 'll +

' ' ll" =0. (13)
Bxp, Bx~ Bx Bx~

If $ is any quantity and II"'g, II"'$ are given,
it is obvious that $ may exist as a functional of x"(u)
if and only if H'*(u'u") H""(u' u") H""(u' u") oper-
ating on $(u) yield zero. Hence the vanishing of the
brackets of H"'(u'u"), with $(u) supplies the in-

tegrability condition.
If, following Dirac, we write the wave equation as

f
(a,II"+a.II")@du= (a,P'+ a„P")+du, (14)

the condition of integrability for the wave equation is

G-(uu') [P=P"]—[n, P"]+[II",P ]—8,(u —u') P"'—8„(u—u') P' = 0, (15)

Grn(uu&) —[pr pn'] [llr pn']

+[II"',P"] 8„(u—u')—P"=0, (16)

dependence on the metric x&(u) we write a variable P

as $(u, M), with M denoting the metric x&(u). The oper-
ators II operate on $ through M, while there may be
operators operating on ( through u. Thus if a function

$(u, M) is known to satisfy the relation

11"g(u, M) =K"g(u, M), (20)

where K operates on $ through u, the condition of
integrability

[H"'(u'u"), P(u, M)]=0 (21)

becomes, because of the relation

~r IIN"g ~r Ks ( Ks"gr
g Ks Kr g

the relation

[—[K" K"']yS (u' —u")K"'
+8„(u'—u")K", $]=0. (22)

Let us work out the condition that the expectation
value of a dynamical variable 8 at a point P inside a
surface S be independent of the parametrization of the
surface. Let the parameters N„be changed to

Qna(uu&) —[p~ p~'] [IIn pn']+[II@' pn]

QN, QQ„BQ, BQ„
+b, (u —u') P"+ P"' =o (17)

Bx„Bx" Bx„Bx"

Since

we have

u„*=u„—a, (u) e.

XIs Q =X~ ZC
~

Ax„=x„*(u)—x„(u)= (Bx„/Bu,)a,e.

(23)

Obviously, we must assume P", P" as functionals of u
and x"(u), hence their brackets with H"*(u', u"),
are zero. These relations and (15)—(17) are the condi-
tions for P', P".

For completeness, we mention the relativity require-
ments. Consider two surfaces S and S* with S* ob-

tained from S by a translation of a rotation about a
certain point. The relativity principle requires that
with suitably chosen representations of the wave func-

tions on S and S*, i.e., with a suitably chosen label

rn(u) in (m(u), x"(u)
~
) the operators P", P" on 5 and

the corresponding operators P"*, P"* on S* take the
same form. Let S* be obtained from S by the infini-

tesimal transformation

We expect the existence of an operator 0 acting on

m(u) and depending on e„„,g„so that we have

P'(u), 0+ du'(e„„x"'+v„)

The change of the wave function is thus

If the expectation value of 8 at a point P inside a sur-
face is unchanged, we have

~

1+&i ' a„'P"'du ~B(u*, M*)
E

X
~

1 «i~~a, "P""—du" ~=B(u& M), (24)

M* denoting the new metric. Thus

[P"'—II" B(u M')] = —(BB/8 )bu( uu') (25).
Similarly, suppose that the expectation value of

A(u, M)du is some physical quantity independent of
the parametrization. (For brevity, we call such A(u) a
parametrization-independent density. ) We have

X {(Bu,'/Bx„')ll"+n&'lI"'} =0 (19) ~
1+ei ~ a„'P" du' ~A (u*, M*)du*

and a similar equation for P".

THE INDEPENDENCE OF EXPECTATION VALUES OF
DYNAMICAL VAMABLES OF THE PARA-

METRIZATION OF SURFACES
where

X~ 1 ei i

a„"P—""du" ~=A(u, M)du) (26)

In general, the dynamical variables are functions of
u as well as functionals of x"(u). To emphasize the

D(u~*, u2*, u3*)
du*= du= (1—e(8a,/Bu„))du. (27)

D(ug, u2, u3)
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From (26) and (27) we get

[P"'—II"', A(u, M)]=A(u', M)h, (u' —u). (28)

This can be written as

[P"—II"' Adu]= (—B(Ad u)/8 u)h(u —u')

with Bd u/8 u„underst ood as zero and

[II"', du] =dub, (u' —u).

The last relation can be obtained by comparing (27) and

du* —du=
~~

a„'du'[lI", du].

Ax„} P"+u—"P" }%du ('2&).&ax„J
Thus (28) should hold for A =Ax„ I (Bu„/coax„)P"+u&P" I .
By using Eqs. (15) to (17) and (25), with B replaced by
Ax„, a straightforward calculation from (28) for this A

leads to the condition

—~x„{(au,/cIx„)[il P"]+a [II. P"]}=0
OI

[II', P"]=0,
[II" P"']=0.

(30.1)

(30.2)

From (29), the energy and the momentum along the
direction Bx"/Oui inside an area du are given by

Bx" Bx„)
u and —P'}

}
du (31)

8Ãg Bsy)

respectively. It may be noted that (30.1), (30.2) are
consistent, since they enable the brackets between
H"'(u', u"), and P'(u) to vanish simultaneously.
(The suKx I is here of the same nature as r, s, .)

In the formulation of the wave equation in gneiss'

theory as given in reference 2, we have

p(u)q(u') —q(u') p(u) =lb(u —u'),
(32)P"= —(i/h) (Bq/Bu„) p,

LII", P]= [II" P]=0 LII"
~ q]= LII" ) q]=0 (33)

for a Bose 6eld, with similar relations for a Fermi 6eld.
From (32), (33), it is found that q satisfies (25) for B
and p (28) for A. From this, p cannot have significance
as a dynamical variable at a point, but rather as a
density. This feature of the Weiss theory is certainly
not too satisfactory. It may be noticed that Eqs. (30)
are satisfied, and thus (31) may be interpreted as the
energy and the momentum inside as area, dl.

In the usual quantum mechanics, the energy and
momentum operators are defined by the coefFicients of
hx„ in the expressions

N' t. i'Bu,
i I'Ax„- —du= I Ax„} II"+N„1I" }%du

4. CONJUGATE VARIABLES IN DIRAC'S THEORY

To push Dirac's theory further, let us ask if there can
exist dynamical variables $, $ satisfying the condition

g(u, M)((u', ill)+$(u', M)$(u, M)
=f(u, M) 8(u —u'), (34)

$f'+$'$= $P+P)=0,
where both ( and ( are dynamical variables having
expectation values independent of parametrizations
and f is a c-number. Here we confine ourselves to Fermi-
Dirac fields where $, $ play symmetrical roles, the ex-
tension to Bose feld being obvious.

Let us leave aside P" and II" for the moment. The
equations to be considered are (15), (34), (21) and a
similar one for $, and (25) for $ or $, and if we want
parametrization-independent energy and momentum
densities we include further (30.1). So far it is not at all
obvious that the above equations are consistent and
can yield an expression for P', [II"', $], etc.

Condition (25) for $ or $ are

[P"' II", g(u)]+—(Bg/Bu„)b(u u') =—0, (35.1)

[P"'—II"', &(u")]+(cIP'/Bu„") 6(u"—u') =0. (35.2)

We now define the positive Poisson bracket (p.P.B.)
[A, B]+ i(ABjB—A)——, take the p.P.B. of the left
side of (35.1) with $(u"), that of left side of (35.2) with
$(u) and add. We get, on using (34),

[II"', f(u, M)]= (Bf/Bu, )b(u u') f8„(—u u—') (36—).
f(u) thus satisfies an equation of the type (20) with
[E"',f] given by the right side of (36). From this it is
easily verified that (22) is satisfied for f, and since
[II",f] is yet entirely arbitrary, (36) may have a
solution f.

From (36) and (28), we find that f 'du has a sig-
nificance independent of parametrization. The surface
element is certainly independent of parametrization,
and thus we expect that one solution for f is

f= (~''&") ', .

7 — g(8x "/Bu ) (Bx /Bu, ) (gx /Bu, ), (37)

where ~„„» is the antisymmetrical tensor. In fact, it
may be directly verified that (37) gives a solution of
(36). For this solution, II"'f is a function of u times
6(u- u').

Among the equations to be considered, (21) and a
similar one for $ are redundant; i.e., they are conse-
quences of (15), (34) and (35). To show this, denote the
left side of (35.1) by H'(u', u), and we then have

0= [G"'(uu'), $(u")]—[P"(u), H"(u'u")]
+ [P'(u'), H"(uu")]= —6,(u —u') [P"', g"]
—&„(u—u') [P', g"] b(u' u")[P", (—,"]-
y ~ (u —u")[P",~,"]+[rr", [P, ~-]]- [~'„,[P",e,]], (38)

where $, stands for iI&/Bu, etc. Eliminating [P", g"],



T. S. CHANG

From (34), (39) we get a solution'

P'= if—'H
From this and (35), we get

[11",g]=O,

(40)

(41.1)

[II",j]=j[II"',bgf]. (41.2)

From these, one verifies that (30.1) is satisfied, and
thus (40), (41) give us a correct solution. Obviously

if —'&„$ is another solution for P", owing to the sym-
metry between $ and $.

To search for the general solution, write P" as a
series in $, $„$,i(= 8'$/Bu, 8u~), , $, $„. . Substitu-
tion into (39) gives us relations among the coefficients,
which we call a, . Substitution into (30.1) and making
use of (35) give us an equation containing $, $„

. a, ' and Ila, ', and thus give us relations be-
tween a„' and IIa, '. If all these relations for a, ' and
IIa„' have a common solution, the series gives us a
solution for P". In this way, we find that P" have only
the two above solutions.

For [II"', $], etc. we are forced to assume

(42.1)

[11"' (]=Kll"' Iogf], (42.2)

so that (41) and (42) are integrable and (30.2) is satis-
fied. (41.2), (42.2) show that $/f is independent of the
metric. If we let h)/f= $*, $~ sat-isfies

(P'+ P'$= hb(u —u')

and (28), behaving exactly as the conjugate variable
to q= t in the Weiss theory. After this transformation,
P" takes the form —(i/h)$„$" in Weiss' theory. Thus
so far as P", II"'j, II"'$ II"'$ are concerned, a

' If we had required P", P" to be parametrization-independent
densities, we could have done so. From (15) and (28) with A
replaced by P', we get

LH', P"'j=P"b,(u' —u),

which is the counterpart of (30.1). (39) is replaced by
LP"' P'j=o

and (40) by ~'-f 'b:(&«/». )(6k+ (5~),

where b„' are arbitrary quantities.

[P", $,"]etc. by (35.1) we reduce the right side of (38)
to terms of the type [II, Q [II, [II, $]],P. The vanish-
ing of this right side yields exactly Eq. (21).

The remaining equations are (15), (34), (35), (30.1).
From (15), (30.1) we get

[P' P"] b(u —u') —P"' b, (N—I—')P' 0 .(39)

simple transformation of the variables carries the Dirac
theory into the Weiss theory.

[II",c']= (a.o/a~„) b(~ ~'),—

[II"',c']= bb(N u')+—ic'c'b, (u' u), —

[II"', c']= (Bc'/Bu„) b(N I') —b„,c'—bi(u I,'), —

[II"',c']=b'b(u- u')

(44.1)

(44.2)

(44.3)

Bu, Bni
+ i —+ic'c' bi(u —I'), (44.4)

Bx„Bx"

b and b' being arbitrary. The solutions of (44) are far
from unique; thus a solution for the c' from (44.3) is
cx„(Bu'/Bx„), with the a„as arbitrary constants. The
vanishing of the brackets H"'(I', u") with the c's

give us conditions of IIb, IIb', etc. The simultaneous
solution for b and c from such conditions together with
(44) will not be pursued here.

To get wave equations essentially different from
those in Weiss' theory, let us introduce terms h'$$, and
h"$, $& into P". Equation (16) is satisfied if

[II",h"]=(Bh'/Bu„) b(u u') h—"b„(u——I')
+b„,h"b~(N, —I'),

[II" h"]= (Bh"/Bu„) b(u u') h—"'b (u—u')—
+(h™b„+h""b„i)b.„(u I'), —

both of which are integrable. However (17) is not easily
satisfied. To satisfy (17), a simple addition of a term
h'$$, compels us to introduce simultaneously terms like

g„„$„,$ and these, in turn, compel us to introduce
terms like $$„i„,$„,i„(, etc. Thus, there are no simple
expressions for P" except (43). If P" is given by (43),
the theory resembles closely that of Weiss. In particular,
the expectation value of $ at a point P inside a surface
S constructed from the wave function on 5 is inde-
pendent of 5 so long as 5 passes through P and satisfies
a Lagrangian principle.

5. THE DETERMINATION OF P"

For definiteness, let us restrict ourselves to Fermi-
Dirac fields. A simple choice of P" is

P"= (h/f) (c'8+ ~*5.B (43)

We have such a form for P" in gneiss' theory, and since
the wave equation in such a theory is integrable, this
form of P" satisfies together with (34), (40), (41), (42)
the Eqs. (15) to (17) with suitably choosen c's. On
substituting (43) into (15)—(17) and making use of
(34), (40), (41), (42), we find


