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The paper presents a theoretical study of the effect of a magnetic field on the lowest of the 'II3I2 levels of
N'40". The molecular Zeeman effect is calculated in detail and found to yield good agreement with experi-
ment. Consideration is given to the energy of interaction, (a), of the spin of the ¹4nucleus with the total
electronic angular momentum in the external field, and (b) of the quadrupole moment of N'4 with the
electric field at the N'4 nucleus. The last section contains an evaluation of the matrix elements needed in
the computation of absolute intensities for the transitions within the ~II3/g level.

I. SURVEY

HE splitting of the term 'II@2 in the NO molecule,
observed by Beringer and Castle, ' has its origin

in the level system schematically represented in Fig. 1
of reference 1. In a magnetic 6eM, the energy of a state
with given J takes on as many values as there are mag-
netic sub-levels characterized by 3fz, four in the present
instance. This splitting is shown in stage b of the 6gure;
it would describe the situation fully if there were no
nuclear spin with its associated magnetic moment and
no nuclear quadrupole moment.

Before considering the nuclear effects we focus atten-
tion once more on stage b. The diagram represents a
condition commonly known as the weak Geld case, a
condition in which the coupling between the various
angular momenta is not disturbed by the external
magnetic 6eld. The 6elds used in the experiments under
discussion, having magnitudes below 10,000 oersted,
are indeed weak with respect to the internal molecular
couplings in the ordinary sense of the word. The scheme
of Fig. ib of reference 1 is therefore adequate.

However, another question concerns the equality of
the frequency differences, vl, vll, and v»1. Only for eery
weak 6elds are they equal. %e shall show that under the
circumstances of Beringer and Castle's experiments the
external 6eld did alter the internal molecular couplings
to an extent rejected in an inequality of vl, ~lg and vllI,
though not suSciently to cause a Paschen-Back effect.

The hyperGne structure of our level with the exclu-
sion of quadrupole effects is shown in stage c of Fig. 1

in reference 1. Here the field is strong enough to un-

couple I and J completely, so that Ml and Mg are both
good quantum numbers resulting quite accurately in
the scheme of levels drawn. Their spacing is the familiar
one, but it will be explained in detail in Section 4.
We shall demonstrate also, notwithstanding the fact
that we are dealing with magnetic dipole transitions,
the validity of the usual selection rule, 6%1=0. Thus
one is led to expect the nine transitions marked in
stage d of the Ggure.

These would be of three different frequencies: v+ A/h,
v, and v —A/h if the equality vr = vrr= vrrr= v were true.

The appearance of nine lines is therefore at once an
indication of the distortion of the molecular Zeeman
levels, of the inequality of the v's. Observation shows
three similar groups of lines which exhibit two different
intervals, one interval of about 27 and one of approxi-
mately 100 oersted. One of these must clearly correspond
to the difference between successive v;, the other to the
value of the (hyperfine-structure) constant A. The
observed line pattern is indifferent to the assignment of
intervals; hence other considerations are necessary to
settle this assignment.

We shall see later that the intensities of the lines are
given by the formula

Int (Mr +My 1)= (I+M—g) (J Mr+1). —(1)

Accordingly, the lines associated with oil should be
stronger by a factor 4/3 than those associated with

vr and vrrr. Hence the frequencies vrr+A/h, vrr and
vrr —A/h should be equally strong and slightly more
intense than the others. If 2 were the large interval,
we should expect the middle line of each triplet to be
of greater intensity; otherwise the middle group of three
should contain all the lines of greater intensity. The
latter is the alternative present in the measurements.
We must conclude, therefore, that the hyper6ne-struc-
ture constant corresponds to 27 oersted, the separation
of about 100 oersted being assignable to molecular dis-
tortion. Our detailed calculations, too, will bear this out.

2. THE HAMILTONIAN

The NO molecule presents an instance of Hund's
case u. Nevertheless it is simpler for the purposes of
calculation to employ zero-order state functions corre-
sponding to case b, and to treat the interaction which
distinguishes the two cases as one of the perturbations.
In the initial representation, therefore, the molecular
quantum numbers' J, E, 5, and h. and Mz are sharp;
as the calculation proceeds, states corresponding to
different values of some of these constants are combined
in variational fashion.

The perturbing Hamiltonian has the form:

X'=K-+X
3Ctrs= DA. ' S+PJ' H (2)

* Supported by the ONR. ~The nototion follows G. Herzberg, Molecular Spectra and
' R. Beringer and J. G. Castle, Jr., Phys. Rev. 78, 581 (1950}. Molecular Structure I (Prentice-Hall, Inc. , New York, 1939}.
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(3)

X is the molecular, X„ the nuclear part of the per-
turbation. The two diGer greatly in magnitude, the
contribution of X to the energy diGerences sought
being several hundred times that of 3C . Of the two
terms comprising X. , the first accounts for the rota-
tional distortion of the molecule and carries the mole-
cule from case b toward case a. The term p~. H repre-
sents the energy of the electronic magnetic moments pJ
in a magnetic field H. Customarily it is written in the
foi m

gJpo J' II) (4)

and if one consults books on band spectra' one will

find for gJ the formula

(A+X)(A+2K)
gz=

J(J+I)
(4a)

as valid for Hund's case a. The level studied by Beringer
and Castle is of type'03~2, hence A= 1, Z=-,'; J= ~, and

gq should be 4/5. Our work will show that the efFective
value of g J- will depart appreciably, though not widely,
from this ideal value.

We note here that the form (4) is not a suitable one
for use on the present occasion because the intermingling
of states occurring in the perturbation calculus will

cause gg to be a function of the magnetic quantum
number M&, an incident which deprives this quantity
of its usual significance. %e must therefore turn to a
more detailed analysis of the operator p& H.

%hen II is taken along the Z axis, this operator
may be expanded to read

The quantity K—A. is the angular momentum(some-
times called N) resulting from the slow rotation of the
entire molecule, and p„ is the magnetic moment pro-
duced by it. This quantity consists of two parts,
p,„'+p„",which arise separately from the rotation of the
nuclei and of the electrons. A simple consideration
shows that p„' is a nuclear magneton, multiplied by
X„/(Xp+cV„), the ratio of the number of revolving
protons to that of nucleons. On the other hand, p,„"is
very difficult to calculate, but is known4 to cancel part
of p„'. It is clear, therefore, that the term p„(E, A,)H—,
is quite small in comparison with the remainder of

pg H. It will later be seen to be small also relative to
the important part of 3C„and will now be ignored.
Hence we take

Be„=DAS+ pp. (A,+25,) (5)

A = yrHp/I J, — (6)

The matrix elements for this operator have been evalu-
ated by Hill and by Uan Uleck. '

The three terms composing 3C (Eq. 3) represent (a)
the interaction between the magnetic moment of the
N" nucleus (p=0.403 nuclear magnetons; I, the nu-
clear spin qua, ntum number, = I) and the magnetic
field produced by the electrons; (b) the energy of
alignment of the nuclear magnet in the external field

H; (c) the operator q' which represents the interaction
between the nuclear quadrupole moment of X and the
electronic field. This last eGect is very small but, it
turns out, just measurable. Nothing is known about the
numerical value of the constant A for NO, but we recall
from elementary theory its significance:

CASE 5. CASE t CASE 5

7/~

5/

5/&

5/&

3p

tie H=[pp(A, +2S.)+p (K, A, )jH, . —

3/p

Here IIO is the field produced by all electrons in the
molecule at the place of the N-nucleus. The experimen-
tal data lead to 3=1.98)&10 " erg and H()—150,000
oersteds.

The procedure followed in this paper is to combine
"case a functions" for the NO molecules so as to di-
agonalize Xp (the unperturbed Hamiltonian)+X„, this
being the large part of the energy. Then we compute the
diagonal energy components corresponding to 3C in

the usual way. The first of these two tasks is performed
in Section 3.

Throughout this calculation we have neglected the
energy diGerence resulting from A-type doubling. This
corresponds to inclusion in X of an operator propor-
tional to L.N and requires consideration of electronic
states other than the one involved in the lines here
studied. The fact that this doubling would not appear
in our approximation is of course no guarantee of its

I I/~

K Tt', J
l/&

K TT3 J
3/2

FIG. 1. Relation between level arrangements in case a and case b

I see R. S. Mullikan, Rev. Mod. Phys. 2, 113 (1930)j.
' E.g. , K. Jevons, Band Spectra of Diatomic Molecules (Cam-

bridge University Press, London, 1932), p. 252.

4 See G. C. Kick, Zeits. f. Physik 85, 25 (1933).
6 E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928);

E. L. Hill, Phys. Rev. 34, 1507 (1929).
Equation (3), which is customary and upon which the present

treatment will be based, is only approximately true. It will be
shown in a later paper that the term J.I requires a slight correc-
tion which further improves the agreement of our results with
experiment.
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smallness. Mulliken and Christie, ' however, have pub-
lished parameters from which its size can be computed
roughly. The actual splitting should be of the order of
10 ' cm ' for the 'II@2 term of NO, and this corresponds
to about 2 oersted in the experiments of Beringer and
Castle. It would thus be on the verge of being measur-
able if the difference communicated itself somehow in
toto to the various Zeeman levels. %e have not in-
vestigated this point in detail.

3. MOLECULAR ZEEMAN EFFECT

5g&

3y&

75 GM

Eb
63 CIA

E

In this, the main part of the calculation, we deal with
the Hamiltonian Xz +X,', which we abbreviate in the
present section as X. Here X& is the energy operator
for the symmetric top, whose eigenvalues are given by
B[K(K+1)—A'j=Er. As usual, B=h/4ncI and is
measured in cm '. The eigenfunctions of BC' are charac-
terized by the values of K (and other parameters, to be
sure); but since in our case the electron spin S=-,', two
values of J=K+S are assignable to every E, namely
E~~. This is the degeneracy peculiar to the use of
case I5 eigenfunctions, a degeneracy which is removed by
the interaction between K and S. The eigenfunctions
will be written in the form P(K, J).

To locate the energies associated with the various
quantum numbers we have drawn in Fig. j. the anatomy
of the terms of the NO molecule (without external field)
in the neighborhood of the one here selected for study.
The central system, labeled case b, is the arrangement
reflected by our functions P(K, J), except that these
functions do not take account of the J-splitting indi-
cated in the diagram. As this splitting becomes im-
portant (case a) the central arrangement transforms
itself into the 'II; and the 'II3~2 systems as shown in the
figure. Our interest is in the lowest level on the right.
Its ancestor of the case b generation has quantum num-
bers E=2, J=-'„and is degenerate with the level

(2, —,'). Its closest neighbors are the states (1, -', ) and
(3, s'); these are important in our variational calcula-
tion despite the fact that, in the case a scale, one of these
states, (1, —,') moves out of the neighborhood of the state
in question.

The procedure to be described is suggested by a com-
parison of the sizes of the various matrix elements

(K, I~X„~K', J') and by the magnitude of the differ-
ences Er(K, J) Er(K', J'). HilP h—as calculated all
matrix elements needed for the present purposes and
extensive use is made of his results.

The work proceeds in three steps toward the Gnal

approximation.
Step 1.—A linear combination is formed from the

functions P(1, 2) and P(2, ~~). Of the two roots of the
secular determinant, ~K;, E~ which we will call E—,
and E ', we select the one which originates at Er(2, —,')
in the absence of the perturbation K, and we call this

' R. S. Mulliken and A. Christie, Phys. Rev. 38, 87 (1931}.' E. I„Hill, Phys. Rev. 34, 1507 (19&9).

45 cM
E

b

-53 CM'
a

Fro. 2. Behavior of energy levels under perturbation (erst stage}.

root E . The corresponding linear combination shall be
P, . Clearly, E, is a better approximation to the energy
we are seeking than is (2, 2 ~3C

~
2, -', ), but it is far from

adequate for our purposes.
Step Z.—To improve the accuracy, we first combine

the functions P(2, ~~) and P(3, x') in the same manner
in which step 1 combined f(1, —',) and P(2, —',) to yield

P . In this way, then, two energies, Es and Ez', are ob-
tained, and the root selected, Eb, shall be the one closest
to E,. The corresponding linear combination is Pq
In completion of step 2, P, is combined with Pq, and
the combination which reduces to Er(2, $) is called P,
or "the grand iP.

" The corresponding energy is E,~.

This E,b is a much better approximation than E„but
it is not quite good enough. In the absence of an ex-
ternal 6eld, states u and b do not combine; the im-
provement just noted has relevance only for the
Zeeman effect.

Step 3.—Upon the grand ip one may impose a per-
turbation in the manner of the Rayleigh-Schrodinger
scheme. In terms of the variational procedure thus far
employed this scheme is equivalent to a neglect of all
non-diagonal elements in the secular determinant except
those in the first row and the first column, P being the
first state. There is then added to E,b the perturbation

I
J'4*&-4.dr I'

DE= Q

and
E=E b+AE.

By Pq is meant any function iP(K, J) which combines
with P but is not already included in |t.

The 6rst two steps are illustrated in Fig. 2, intended
to show schematically what happens to the various
levels under the inQuence of K . To arrive at the grand
P, the two states corresponding to the two highest
levels, E, and Eb, were selected because of their prox-
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T&sr.E I. Calculated magnetic 6elds (oersteds) and
comparison with experimental values.

Step 1
Step 2
Step 3
Experiment

8612.3
8618.9
8619.5
8614.1

HII —HI

17.1
127.1
105.5
105.3

+III +II
17.5

128.6
103.1
103.0

imity. In his successful work on the Zeeman effect in
doublet states, Hill has used what amounts to the pro-
cedure here employed up to step 2, although this may
not be at once apparent from his language and indeed
his formulas. But there is one difference. He combined
the states corresponding to E, and Eb to obtain the
equivalent of the grand P. This produces indeed the
better approximation for molecules near case b, for
then the energies E, and Eb' fall closer together than
they do in NO; in fact the difference E —Eb' can be
much smaller than Eb—E,. In our case, however,
E~—Eb' is of the order 100 cm ' while Eb—E is less
than 10 cm '. As a consequence, Hill's formula pro-
duces in the present instance an approximation in-
ferior to E b, it'is but little better than E, alone.

The analytic details of the work need only be sum-
marized, for they are routine matters and involve well-
known methods. As to notation, the functions will be
labeled

non-vanishing matrix elements with P. The summation
in formula (7) has therefore only three terms.

In carrying out the numerical calculations the follow-
ing values of the constants mere adopted: 8~=1.6696
cm ', Bbl2 1.72——00 cm ', D=123.8 cm ', and pb/hc
=4.66846)(10 ' (cm oersted) '. The two values of 8
refer to the IIg and III/2 states and are taken from Gil-
lette and Eyster. ' Our choice of different 8's in the
diagonal matrix elements represents a minor refinement
which proved to have only a slight effect on the final
answer. The constant D is not identical with the doublet
splitting of 120.5 cm ', which is directly measured in
the band spectrum. It may be calculated from Hill's
formula or, as was done here, from the difference
E,—E, , this being the doublet splitting. If x is written
for HP2/hc, all expressions for the energies are of the
form

constant+ f1(x)+f2(Mg, x),

the constant being independent of M' and x, and f1
independent of Mg. To obtain the energy differences
between magnetic states the constant and f1 are not
needed and will not be listed here. The results are given
below (Mz is now replaced by M).

Step 1, leading to E, :

f2=0 776495M.x+0 001963M.'x'
Oa00001243PH+

4'(» 2) =6' 4(2, 2)=A; 4(2, r)=A; k(3, ~)=A. SteP Z, leading to Eob:

f2 0 77649——5M. x+0 014508M. 'x'
—(0.003859M+0.000184M' —0.000605M'

—0.000021M')x'+

We recall: X=Xr+X and X,,=J'f,*X/;dr, as
usual. One then finds

(8)Ea 2(X11+X22)+(P12+1)X12
SteP 3, leading to E 2+AE

with the abbreviation:

P12=(X22 Xll)/2X12

The corresponding function is

Here AE was computed separately for different
(8a) values of M, since expansion in the form of a power

series is not feasible:

with
4'a (1+S12) [4'1+S1242)

S12=P12+(P12+1)

(9)

(9a)

In a similar manner fb is formed from the functions

$2 and $4, hence Pb and Eb are also given by formulas

(8) and (9) provided the subscripts 1, 2 are changed to
3, 4 respectively.

Finally,

Eab (Xaa+Xbb) (Pab+1) Xab
P=(1+S.b') b[ S.bg.+fb-)—

the quantities appearing here being again given by
Eqs. (8a) and (9a) with the indicated changes in sub-
scripts. Explicity,

X,b=(1+S12') (1+S 4')

X(X12+S24X14+S12X22+S1424X24).

Only three functions, f(1, x2), P(3, &), and ij(4, ~2) form

~E(M= +-22) =0.000024x'+0.0000020Mx'+
t E(M = &—') =0 005371x'—00000284Mx'+

(Dots indicate omission of terms in higher powers of x.)
Beringer and Castle measure the fields necessary to

make the energy differences between magnetic levels
equal to the frequency of observation, vp=0. 3122 cm '.
Hence, to compare the theoretical results with experi-
ment, the differences of our energies (E„Eob, and E
in the various stages of calculation) for successive M's
must be equated to vo, and each equation must be
solved for II. This process leads to the three values
IIg, IIqI and IIIII tabulated in the first three rows of
Table I. Since there is some interest in the manner of
convergence of our calculation we have stated the
results computed at every stop.

The use of formula (4a) leads to H2 -—8359.3 oersted,
with zero values for the diAerence.

' R, H. Q&llette and F. H. Eyster, Phys, Rev, 56, 111$ I'1939),
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(MzMII J II MgMr) =Mar

(MrI IzIMI)=Mr

E =AM gMr+(gr/1840) poMrH (10)

to be the energy of the hyperfine levels for the case
under consideration, exclusive of the efI'ect of q' in

Eq. (3). When account is taken of E„, we arrive at
stage c of Fig. 1 in the preceding paper.

Since the ~V" nucleus has an electric quadrupole
moment, a hyperfine structure resulting from its inter-
action with the electronic field is to be expected in
addition to what we have just calculated.

Employing the customary notation, we have'

eQ("ie~(3 cos'8~ —1)rk '), ,&~,i.
q

2J'(2J—1)I(2I—1)

where

4. HYPERFINE STRUCTURE

The operator 3C„contributes the hyperfine structure
of the molecular term. In a field of several thousand
oersteds I and J are completely uncoupled. The nuclear
situation corresponds to that of a total Paschen-Back
eGect, and the correct representation of the state is
that in which J, I, Mg and Mr are sharp. The term
pr H may be written as (gr/1840) poIzH. Since

Here

3 cos'8 ' —1

%hen this effect is added onto the levels in stage c of
Fig. 1 of reference 1, stage d results. As is well known,
the quadrupole eGect causes a departure from the
interval rule as illustrated.

S. INTENSITIES

The lines observed by Beringer and Castle arise from
transitions in which the magnetic dipole moment
changes, the electric moment remaining unaltered.
Their intensities are therefore given by the squares of
the matrix elements of

5R= — (A+2S) — gr&
2mc 2mc 2Mc

Here M is the mass of a nucleon, while m is the mass of
an electron. The last term is therefore negligible.

The operotor A+2S, like the electric dipole moment,
form. s a vector of type r in the terminology of Condon
and Shortley. "The matrix elements are therefore the
same, except for constants, as those for the electric
moment vector.

In particular,
a~r=0

Now

Ii =3('I J)'-'+-', I J—/(I+1)J(J+1),'

for all allowed transitions because 5R commutes with I
when the last term of the former operator is neglected.
The intensities become

2J 3(A+ Z)'
(3 cos 8—1)molecule — —1

2J+3 J(J+1)
(12)

e q —[J(J+1)—3M g']
4(2J—1)I(2I—1)(2J+3)

3(A+I)'
X[I(I+1)—3M12] —1 . (14)

J(J+1)
' Equation (11)comes from H. B. G. Casimir, On the Interaction

betzveen Atomic ENclei and Electrons (Haarlem, DeErven F. Bohn
N.V. 1936). Equation (12) is obtained by a calculation similar
to that of J. M. Jauch, Phys. Rev. 72, 716 (1947) and Eq. (13)
can be checked by employing matrix elements given in Condon
and Shortley. The relationship between Hq in Eq. (11) and 8 in
Eq. (12) is given by A. Nordsieck, Phys. Rev. 58, 310 (1940) as

3 cos~HIe —1
ZeI, (3 cos'8q —1)rI; '=(3 cos'8 —1)Zeq, . See this paper
k k 2rk
for details and notation,

for a molecule typefying Hund's case a, and

(M,M,
I

2&I M,Mr)
= ri2[J(J+1) 3M&'][I(I+ 1) 3Mr"] (13)—

Hence the quadrupole energy in the J, 1, MJ, Mr
representation is given by

Int (Mg +My 1)=const. (J—+My)(J My+1). —

This justifies our use of Eq. (1).
An accurate calculation is required for the purpose

of comparing the absolute intensities of the measured
lines with theory. This involves the computation of the
proper matrix elements of 5R and 5K„ for the actual
molecular states under consideration. We must find

(HAMI. I
~M~1) = ~i(HAMI~, I

&M~1),

and take y to represent the state given by the grand P

4=4~=2 &A.

the P; being defined just prior to Eq. (8). It is under-
stood, of course, that the P; are now written in their
explicit dependence on the magnetic quantum number
M. As to the coefFicients a;, which were used in Section
4 (but not displayed), their'values are

a~= 0.853, a~ =0.521, a3= a4 ——0

to an approximation suKciently good for present

"E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935), p. 59 ff,
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purposes. We also need the formulas"

(J, E, M
I
m.

l
J, K, M~1)

J(J+1)2 K(K+1)

(J, K, M Im, I J, K+1, M~1)

A' J(J+1) S(—S+1)+E(K+1) S(S+1)—E(K+1)+J(J+1)
+ (JAM+1) &(JaM) '

2J(J+1)

4J(J+1)(K+1)

DE+1)' A' j(—J S+K—+1)(J+S+K+2)(K+S J+—1)(J+S E)—
(JaM+1) t(JwM)"-.

(2K+ 1)(2E+3)

When numbers are inserted we obtain for the quan-
tity we are seeking

2I(vMl~*lvM~1) I'=0386(JISM+1)(J~M). (15)

It is interesting to observe that the state f2 contributes

"These were here derived with the use of the matrix elements
given by Reiche and Rademacher, Zeits. f. Physik 41, 453 (1927)
and the quantum addition rules for angular momenta.

far less to the intensity than does P&, as is very evident
when the matrix elements are evaluated. An explana-
tion of this apparent anomaly is provided by the vector
model which shows state P~ to suffer a large change in

magnetic moment on change of M because of the rela-
tive orientation of the vectors which constitute M,
in contradistinction to the situation in P2.
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Expressions for the operators in Dirac's general theory of quantum mechanics of localizable dynamical
systems are explicitly constructed and their commutation laws directly worked out ($2). Conditions for the
expectation values of dynamical variables or their-densities to be independent of the parametrization of the
surface are given and it is shown that of the two conjugate Geld variables in Weiss theory, one is a parametri-
zation-independent variable and the other is a parametrization-independent density ((3).

Finally it is shown that P" in Dirac's theory does not have any simple expression other than that given in
Weiss theory. This, together with the results described in the above paragraph, shows that for all practical
purposes the two theories are equivalent ($5).

1. INTRODUCTION

'"N the quantum mechanical theory of localizable
& ~ dynamical systems, a wave function is introduced
on each space-like surface in the four-dimensional
space, and equations are set up for its change as the
surface changes. Such a general theory was first given
by Dirac, ' who introduced the deformation operators
II", II" to describe the changes of the surface and the
operators I'", P" giving the corresponding changes of
the wave function. Conditions which these operators
must satisfy were given, and if we call the equation
giving the change of the wave function on a surface as
the surface changes the wave equation, these conditions
are precisely the conditions of integrability of the wave
equation. '

For fields whose field equations are derived from the

' P. A. M. Dirac, Phys. Rev. 73, 1092 (1948).
2 The relativity requirements on the wave equation were over-

looked by Dirac and will be supplied here,

variation of a Lagrangian, wave equations of the above
nature were electively given by Weiss. ' The exact
form of the wave equation and a proof of its integrability
were given in two papers by the author. 4 ' It is easy to
construct I'" and I'" from this wave equation and to
verify that the conditions for them are satisfied.

In this theory, as well as in Dirac's paper, parametri-
zation of the surface is introduced and the wave func-
tion changes as the "parametrized" surface changes.
It is thus important to ask whether the expectation
values of diferent dynamical variables at a point I'
inside a surface S are independent of the parametriza-
tion of the surface 5. Conditions for such independence
of dynamical variables (and their densities) are worked
out ($3) and it is found that in Weiss' theory one of the

' P. Weiss, Proc. Roy. Soc. A156, 192 (1936).
4 T. S. Chang, Phys. Rev. 75, 96? (1949).' T. S. Chang, Chinese J. Phys. 7, 265 (1949). This paper con-

tains an extension of Weiss's theory to Gelds, the Lagrangian of
which contains various derivatives of the Geld quantities.


