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Lambda-Temperatuzes of Solutions of He' in He'
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An expression for the efI'ect of He' on the lambda-point of He' is developed from thermodynamic prin-
ciples. Use is made of the idea that normal He4 and superQuid He4 are in equilibrium with each other and
that the lambda-temperature is the temperature at which superQuid Grst appears. This expression contains
the difference in enthalpy of normal Quid and superQuid. The lambda-points of mixtures containing large
amounts of He' are discussed on the basis of various assumptions regarding this difference in enthalpy as a
function of temperature.

5=5),(T/T), )", (3)

which gives the entropy below the lambda-point as a
function of temperature. ' Equation (2) also has a ther-
modynamic basis, but with the additional assumption
that He4 below the lambda-point can be considered to
be a mixture of two Quids, normal He4 and superfluid,
and that these two are in equilibrium with each other.
Equation (2) was derived only for very dilute solutions
of He' in He4, and in this concentration range it agrees
well with the results obtained from Eq. (1) and with the
experimental data.

It seems desirable to extend these considerations to
concentrated solutions of He', and this will be the
principal object of the present paper. Ke summarize
herewith the assumptions and observations which we
shall use as the basis of this further development:

~ J. W. Stout, Phys. Rev. 76, 864 (1949).' Abraham, Weinstock, and Osborne, Phys. Rev. 76, 864 (1949}.
I O. K. Rice, Phys. Rev. ?6, 2701 (1949).' F. London, Rev. Mod. Phys. 17, 310 (1945).

dTg/dxg ———Tg[x3(1—xs) (1+6x3)
+ (1—xg) 1.6/6Rj, (1)

representing the shift in the lambda-temperature T),
with the mole fraction x3 of He' has been developed by
J. W. Stout. ' While based upon a thermodynamic
development which is certainly correct, Stout's ex-
pression is restricted in its application by his assumption
that the discontinuity of the specihc heat at the lambda-
point, AC„4, remains constant and equal to its value in
pure He4 which Keesom gives as —7.6 cal. per mole
per degree. This assumption means that Stout's equa-
tion will be accurate only in very dilute solutions of
He'. It represents accurately data obtained by Abraham,
Weinstock, and Osborne. '

Another equation,

dTg/dx, RT),(r=+1)/rS)„— (2)

involving diGerent quantities, was developed by O. K.
Rice.' In this equation 5), is the molal entropy of liquid
helium at the lambda-point, R is the gas constant, and
r is a constant in the empirical equation for pure He4

(A) Superfiuid helium may be considered either as a
component or as a "phase" as was suggested by Tisza. '
We assume that it has the character of a component
in that the chemical potential of superfluid helium
depends on the amount present. If it is treated as a
phase, as was suggested by F. London, 4 it must not be
regarded as a phase in the usual phase-rule sense. The
lambda-transition is considered to be a second-order
transition taking place without latent heat whether or
not He' is present. According to the picture given by
Rice the lambda-transition initiates the formation of
superfluid in a sort of fibroid form, and the superfluid
continues to form over a range of temperatures below
the lambda-point.

(8) The superBuid component (or "phase") is
exceptional in that the partial molal entropy of super-
Quid is 6nite even under the condition that the concen-
tration of superfluid approaches zero. This partial molal
entropy of superfluid depends only on the mixing of
superfluid with normal Quid' and with the isotope He'.

(C) The lamba-point is the temperature at which the
chemical potential of superfluid helium at zero concen-
tration becomes equal to the chemical potential of the
normal Quid. It was shown by Rice that essentially this
statement follows from the assumption that the two
forms of He4 are in equilibrium with each other. It is
probable that superfluid begins to appear slightly above
the lamba-point, but it is in a different form (globules )
and may be neglected. We also neglect any eGect which
may result from the globules persisting below the
lambda-point.

(D) The partial molal enthalpy of superfiuid helium
is independent of temperature and arbitrarily set equal
to zero. *

We use notation as follows: p, ; equals chemical poten-
tial of component i (f = 3, 4n, or 4s for He', He' normal
fluid, and He' superfluid, respectively); x, equals mole
fraction of component i; 8; equals partial molal entropy
of component i; H; equals partial molal enthalpy of
component i, ; and subscript X is used to indicate values
at the lambda-point of the particular solution con-
sidered.

If we consider a closed system at constant pressure
' L. Tisza, Phys. Rev. 72, 838 (1947).* See W. Band and L. Meyer, Phys. Rev. 74, 386 (1948).
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containing a mole fraction x3 of isotope He', a mole
fraction x4 of normal He', and a mole fraction x4, of
superfluid He4, then, at the lambda-temperature where
the mole fraction of superQuid is zero

d~4. , ~= (~~4/~Ti)dT~= &4., A—»,
dp4., g =

(Bp4„/DT'S)

d T) + (8II4./Bxg) gdx3
= —6,AT)+ (&g4./»s)) dxs.

In a perfect solution

p4„f(T——, I')+RT lnx4,
a&4./ax, = (RTz/x4„)(Bx4 /Bx3) z= RT&/—x4„,

since along the lambda-curve where x4, ——0, dx4„/dxs
= —i. Therefore,

dp4n„x= ~4m, xdTx (RTx/x4n)dx3

The chemical potential of the normal Quid is equal
to the chemical potential of superfluid helium at the
lambda-temperature (C). Consequently,

dp4. , ) =dp4n, )

84, , gdTg—= S4„,)dTg—(RTg/x4 —)dx, . (4)

Further, since the chemical potential is the partial
molal free energy, it follows that

p4, , },=@4,, ~
—T) 84. , X, p4. , ).=&4, )

—»84., ).

Subtraction of the second expression from the first shows
that

84., x
—&4., x= (H4, , x H4. , k)/Tx—= H4. , x/Tx—

since the partial molal enthalpy of superQuid is zero (D).
With this substitution, Eq. (4) can be written

dT), /dxm —(RTg')/H4——„,g(1—x3). (5)

At the normal lambda-point Eq. (5) is identical with

Eq. (2) above if one makes use of the value of
H&(=H4„, &) which follows from Eq. (3).

The equation is logical as was indicated by Rice' in
that it indicates a lowering of the lambda-temperature
with increase in the mole fraction of He'. This would be
expected because addition of He' lowers the escaping
tendency (chemical potential) of the normal Quid and
therefore shifts the equilibrium between superfluid He4

and normal He'.

FIG. 1. Lambda-tem-
perature es. the mole
fraction x3. Experi-
mental points circled.

lb

If it is assumed that H4„, ~ is constant, and if the
experimental value of 3.01 cal. per degree' for He4 at
the lambda-point is used (since at the lambda-point
He' is practically all normal Quid) the solution of Eq.
(5) is'

1/T—),= 1.52 log(1 —xg) —0.457.

The locus is given as curve A in Fig. 1 where the points
in circles are the recent experimental values of Abra-

ham, Keinstock, and Osborne. '
However, H4„, z will not be strictly constant, and some

adjustment should be made for the variation in it
which must occur as the lambda-point shifts to lower
temperatures. Specific heats just above the temperature
where the lambda-point anomaly sets in may be con-
sidered to refer to the normal fluid, and we may attempt
to extrapolate to temperatures below the lambda-point
in order to gain some idea as to how the molal enthalpy
of normal Quid will behave in this region.

Keesom' has recorded data on the specific heat of
He4 determined experimentally by Keesom and Clusius,

by Dana and Kamerlingh Onnes, and by Keesom and
Miss Keesom. The 1932 data of Keesom and Miss
Keesom might indicate a region in which the heat
capacity is constant at about 2.2 cal. per mole per
degree just prior to the anomalous behavior of the
specific heat as the lambda-point is approached. Unfor-

tunately, the data are given for only a short range of
temperature above the lambda-anomaly in the specific
heat so that it cannot be said with assurance that there
is not some slope in the specific heat curve. If the value
of the heat capacity of normal Quid has become essen-

tially constant at 2.2 cal. per mole per degree, the
enthalpy should go to zero in less than one and a half

degrees, and the entropy even sooner. To avoid this
one might assume that the heat capacity remained con-
stant over a short range of temperature and then
followed a T'-law to the absolute zero.

On the other hand, it would appear from the data of
Keesom and Clusius, and from that of Dana and
Kamerlingh Onnes that the specific heat of He4 just
above the lambda-anomaly might be a decreasing func-
tion of the temperature, and that as a first approxima-
tion the heat capacity might go to zero linearly as the
temperature goes to zero.

Both cases seemed likely enough to deserve con-
sideration. Each has been treated with respect to its
eGect on Eq. (5) and the results are represented by
curves 8 and C, respectively, in Fig. 1. For purposes of
comparison, the curve obtained by Stout' is also shown

as curve D in Fig. i. His curve is about the same as
curve A until the mole fraction of He' becomes equal
to 0.2.

6 Just as we were 6nishing this paper we received a copy of a
Letter to the Editor of the Physical Review by C. J. Gorter and
J.de Boer, very kindly sent to us by Professor de Boer, in which
a similar but not entirely equivalent expression for Tg as a function
of x3 was given. See Phys. Rev. 77, 569 (1950).

'%. H. Keesom, Helium (Elsevier Publishing Company, Inc. ,
New York, 1942), see p. 215.
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In treating the first possible behavior of the specific
heat curve discussed above, it was assumed that the
heat capacity remained constant at 2.2 cal. per mole
per degree down to 1.46'K. The temperature of 1.46'K
resulted from the imposed condition that the entropy
of the normal Quid (known to be 1.62 cal. per mole per
degree at the lambda-point) should go to zero as T goes
to zero. Below this temperature it was assumed that
the heat capacity followed a T'-Law,

C~4„=0.707T'.

The constant 0.707 resulted from the condition that the
heat capacity is 2.2 cal. per mole per degree at 1.46'K.
Under the condition of constant heat capacity, Eq. (5)
takes the form (with Hq=constant=3. 01 cal. mole ')

dTg/dx3 —RT——g'LH), —(2.19—T))2.2J '(1—x3) ' (6)

above 1.46'K, which can be integrated to give the part
of curve 8 of Fig. 1 above 1.46'K. From the expression
for the heat capacity used below 1.46'K,

H4„= 0.177T'+0.60.

The constant of integration is derived from the experi-
mental fact that the total enthalpy of the normal Quid
at the normal lambda-point is 3.01 cal. per mole. (With
the heat capacity constant from the normal lambda-
point to 1.46'K, the enthalpy at 1.46'K is found to be
1.404 cal. per mole. ) Substitution of this expression for
H4„, q in Eq. (5) gives

(0.177Tg'+0.60/Tg-')dT), ——L
—R/(1 —xg)fdx3. (7)

The solution of this differential equation is

0.059T„'—0.60/Tq=R ln(1 —x,)+0.242. (8)

The value of the constant of integration was found
from the condition obtained from the integration of Eq.
(6) that x3 is 0.21 when Tq is 1.46'K. Equation (8)
gives curve 8 of Fig. 1 below 1.46'K.

In treating the second possible behavior of the
specific heat curve we assume as noted that it is a
straight-line function of zero intercept.

C„4„=bT.

From the data of Keesom and Clusius and from those
of Dana and Kamerlingh Onnes, the heat capacity is
about 2.4 cal. per mole per degree when the temperature
is 3'K from which b is found to be 0.8. This actually
results in an entropy of the normal Quid which is
slightly negative at O'K, indicating that before O'K is
reached the value of C„4„must drop below 0.8T.
However, the discrepancy is small, and no correction
has been made for it.

From this expression for the heat capacity, the
enthalpy becomes

H4 0 4T'+k. —— .

And since the experimental value of IIq is 3.01 cal. per
degree at the normal lambda point (2.19'K), k is 1.09.
Substitution of this expression for H4. &, in

, Eq. (5) gives

(0.4Tg'+ 1 09)d Tg/T)P = R—dxa/(1 x—g)

The solution of this differential equation is

0.4Tq 1.09—/Tq ——4.58 log(1 —x )+0.378.

The constant is found to be 0.378 from the condition
that Tq is 2.19'K when x3 is zero. This equation pro-
duced the values for curve C of Fig. 1.

The assumptions made have an interesting con-
sequence. The constant in the expression for H4„makes
the enthalpy finite in each case at O'K. It is, in fact,
necessary that there should be an intercept in the
enthalpy ~s. temperature curve in order that the
entropy of the normal Quid may not become negative.
Since the enthalpy of superQuid is presumably constant
and has been set equal to zero (D), this would in-
dicate that superQuid helium has lower enthalpy at
O'K than normal Quid. It implies that if one could
by-pass the lambda-transition and could cool He' to
0 K, the product would be supercooled normal Quid
and not superQuid. In his recent article on the thermo-
dynamics of liquid helium, Rice' has suggested that the
superQuid condenses out in ordinary space as well as
in momentum space. The superQuid is, nevertheless, in
a highly dispersed state and, as we have noted in (A),
has the character of a component rather than of a
phase. Nevertheless, as Rice has pointed out, it would
be necessary for the superQuid condensed in ordinary
space to have an especially low energy in order to be
stable. It need, therefore, occasion no surprise if the
attempt to extrapolate the properties of normal Quid
to O'K indicates a residual enthalpy greater than that
of the superQuid.

From the experimental results curve C would appear
to be more probable than curve B. It seems likely that
the true curve lies somewhere between curve A and
curve 8, and probably it is not far from curve C.

The equations and conclusions derived from this
development depend, of course, upon the validity of
the original assumptions. Further, in obtaining Eq. (5)
the chemical potential of the normal Quid was found
by using the thermodynamic expression for a perfect
solution. In this regard, the most recent work of glein-
stock, Osborne, and Abraham' seems to indicate that
these solutions are not exactly ideal even above their
lambda-temperatures in that their vapor pressures
exceed those which would result from application of
Raoult's law, so some modifications will be called for.

Note added ie proof: J. G. Daunt and C. V. Beer t Bull. Am.
Phys. Soc. 25 (No. 1},38 (i950}j mention measurements of the
lambda-point with solutions containing as much as 90 percent
He'. The two points they give fall close to curve C.

~ VVeinstock, Osborne, and Abraham, Phys. Rev. 77, 400 (1950}.


