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scattering due to thermal motions. However, as Hol-
stein has pointed out, the use of such kinetic theory
concepts as a mean free path and a difFusion coefhcient
in this calculation of 0 is not completely satisfactory in
describing accurately the di8usion of imprisoned reso-
nance radiation, where the atomic absorption coeKcient
varies considerably with frequency. Holstein has cir-
cumvented these difhculties by analyzing the diRusion
process in terms of the probability of a resona, nce quan-
tum going a given distance between successive absorp-
tions. The averaging of this probability over the
resonance line takes account of incoherent scattering
due to thermal motions, and this averaged probability
is used in an equation of radiative equilibrium which is
solved approximately by variational methods for the
decay constant. However, Zemansky's method for
calculating o, which gives the right order of magnitude,
is used in this paper.

The optical thicknesses obtained from (23) for the

' T. Holstein, Phys. Rev. 72, 1212 {1947).

values of 3' and l involved in the laboratory measure-
ments of the decay constant are large, ranging from ten
to one hundred. In this range logP as calculated by the
first approximation is less than one percent larger than
logP as calculs, ted by the second approximation. In
Fig. I, values of logP are plotted for various values of
loglV and for /=1.95 cm, as calculated for the second
approximation, as calculated by Zemansky' using
Milne's theory and as calculated by Holstein. ' The
measurements of Zemansky' for the same value of /

are also plotted. Better agreement between measured
and calculated decay constants have been obtained
with the improved measuring techniques of Alpert
et a/. 4 The discrepancy between measured and calcu-
lated values of logP for large values of loglV can be
explained in part by the efFects of collisional broadening
which have been neglected in the computations.

It is a pleasure to express my appreciation to Dr.
S. Chandrasekhar for suggesting this problem and for
helpful discussions concerning it.
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The theory, previously published, of plane v aves in an ionized
medium pervaded by static electric and magnetic fields is shown
to predict wave ampli6cation, and consequent electromagnetic
noise, in certain frequency bands. It is then developed in detail
for the case in which the static 6elds are both parallel to the
direction of wave propagation and the perturbations are trans-
verse to this direction.

It is shown that for any given frequency and electron drift
velocity there are two trios of such waves, Ei and E2 waves, all
circularly polarized; the Ei and E2 waves are oppositely polarized.
It is found that any transverse perturbation temporally pre-
scribed at a given plane can be split up into two such trios which
can then be considered independently.

Necessary and sufhcient conditions are then found under which
a growing flux of energy carried by E& or E. waves can pass

normally through the boundary between two different ionized
media.

The theory is applied to show that under simple hypotheses
about the drift of electrons in the atmosphere above a large
sunspot strong circular waves can arise by growth of random
transverse perturbations and can then escape from the sun. The
consequences of two such hypotheses are compared with known
observations of solar noise and used to interpret them.

It is concluded that the general hypothesis that electrons in a
sunspot have a drift motion leads to results which are in good
agreement with many facts about strong solar noise and which do
not disagree with any others.

The ultimate intensity which a growing perturbation can attain
is also discussed.

1. INTRODUerIOZ

N two previous publications" the general equations
~ - which specify the dispersion and polarization of
plane waves in an ionized medium, pervaded by static
electric and magnetic fields, have been derived. This
theory may be conveniently referred to as the electro-
magneto-ionic theory of wave propagation and more
briefly as the E.M.I. theory. As a limiting case it
includes the well-known magneto-ionic theory (M.I.

' V. A. Bailey, J. Roy. Soc. N.S.%. 82, 107 (1948).' V. A. Bailey, Australian J. Sci. Res. A, 1, 351 I'1948).

theory) and its application is in general subject to the
same conditions of validity as the latter.

We shall here apply the E.M.I. theory to the im-
portant solar phenomenon of emission of strong cir-
cularly polarized radio noise by a large sunspot.

As it appears that the Australian publications referred
to above are not yet readily available in the United
States and elsewhere, a summary of the E.M.I. theory
is given here in the approximation which neglects the
motions of the positive ions.

In Appendix I we also give the relativistic form of the
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equation of dispersion which is needed for certain
purposes.

The physical problem is to determine the wave proper-
ties of an ionized medium which, in the steady state,
consists of lYO electrons per cc, iV;0 positive ions per cc
and gas molecules, and is pervaded by a static electric
held Ep and a static magnetic field Ho. Consequently in
the steady state the electrons and ions have the mean
drift velocities Uo and U;0, respectively, relative to a
frame of reference in which the gas is at rest. In general
also the electrons and ions will have random motions
specified by the temperatures 8 and 8;, respectively, and
frequencies of collision (with gas molecules) v and v;,
respectively. It has been found more convenient to
specify the random motions by the quantities r and ~;
which are equal to one-third of the mean square veloci-
ties of agitation of the electrons and ions, respectively.
According to circumstances we may have 7-~ Uo' and
r;~ U, o' (as for example in traveling-wave tubes and
the ionosphere, respectively).

In the theory it is assumed as a first approximation
that v, v;, 7-, v; are constants and that the distribution
of random velocities is constant. Of course v and v; are
related to v and 7.; and to Vf) and U;0 through the mean
free paths, but the actual relations are best considered
when the general theory is applied to a particular
problem, for then known experimental data may be
available or can be obtained. When the gas pressure is
very low, as in electron-beam tubes or in the sun' s
atmosphere above 2000 km from its 'surface, the quan-
tities v, v; may in general be neglected when waves of
several Mc)sec. frequency are being considered. The
motions of the positive ions may also be neglected when
the ionic density-frequency and gyro-frequency are
both much less than the wave frequency.

The E.M.I. theory is developed from the following
laws of physics:

I. Maxwell's laws of the electromagnetic field.
II. The conservation of electrons and positive ions.

III. Maxwell's laws of the transfer of momentum in mixt. ures
of different kinds of particles which are also subject to
fields of force.

As is well known, III represents only a first approxi-
mation to the exact laws. But the exact laws are in
general much more complicated than Maxwell's and
cannot be used without an exact knowledge of the laws
of force which operate at collisions and which will differ
according to the nature of the molecules and positive
ions present. In any event it is known that in the few
cases which have been studied rigorously the results
show that Maxwell's laws of transfer are very good
approximations. Also these laws become exact when
the eGects of collisions are negligible.

The laws of transfer of energy of agitation are here
neglected in the interests of simplicity. The efFect is
unimportant when v, v;, 7, and r; are negligible, but
even when they are not, the efFect may be important
only in special circumstances. The analogous probl. em

of the propagation of sound waves in air shows that the
corresponding neglect of energy transfer leads only to
the correction which Laplace made in Newton's
estimate of the velocity of sound, namely about ten
percent. In the E.M.I. theory we therefore neglect
possible perturbations of v, v;, v, and 7.; and treat them
as constants.

It has also been found convenient to introduce the
vector and scalar potentials A and V.

The physical problem now consists of the study of
perturbations of the quantities 'Vo, V;p, Kp, Ho, Uo,
U, o, Ao and Vo. These perturbations are denoted by the
corresponding lower case symbols n, n;, e, h, u, u;, a
and v.

The resulting equations for the perturbations are non-
linear. In a first approximation to their solutions we
retain only the linear terms and so can obtain plane
wave (or cylindrical wave) solutions of the form

g ~s(ru t—Lz)

This first approximation therefore holds true only
when the perturbations are small. But when the
angular frequency co lies within certain frequency
bands, * the perturbations may grow suKciently to
make it necessary to retain the non-linear terms, and
then the solutions become much more complicated and
dificult to apply except in special cases. With such
growing perturbations their reaction on the medium
may become large enough to consider. It is clear that
one important result is that the wave energy grows at
the expense of the kinetic energies ~@AU', ~m, U,', of the
electrons and ions, which in turn draw upon the energy
associated with the static electric and magnetic fields.

In this paper we cannot make an exhaustive study
of all these questions as this would require too much
space. We will therefore limit ourselves to a fairly exact
study of the origin and escape of circularly polarized
waves from a large, isolated sun spot and to a dis-
cussion of the reaction of such waves on the medium.
For the same reason we shall postpone to a future
occasion the full discussion of any longitudinal (plasma)
growing waves and their interaction with the circular
waves through non-linear terms in the equations or
otherwise.

It may also be stated here that when the relativistic
E.M.I. theory (in Appendix 1) is used it is found that
as the drift velocity Uo approaches c, the velocity of
light, the possibility of growth tends to disappear. We
will therefore restrict our discussion to situations in
which V02&&c2

The principal symbols used here are set out as
follows, mostly in alphabetical order. Considerable use
has been made of auxiliary symbols in order to keep
the formulas and some of the discussion from becoming
unwieldy.

* In which, for example, two possible values of I are conjugate
complex numbers.
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With the notation

cY=.'70+m, E= Ko+e, H= Ho+4,
U=U, +u, A=A, +&, V= V,+v, (A)

and the motions of the positive ions neglected, the com-
plete set (5) of fundamental equations which express
the laws I, II and III are

Ao, a the static and varying vector potentials respectively.
pi the imaginary part of M.
c the velocity of light.
v = i(a/a~)+j(a/a&)+i(a/a&).

D(-—8/8t.
O2=%—C 2D2

D=Df+(U V').

e the electronic charge, in e.s.u.
Ko, e the static and varying electric field vectors respec-

tively.
E&, E2 denote circularly polarized waves defined under (20)

or (20.1) and in Appendix 2.
f=co/2~, the wave frequency in Mc/sec.

fo =po/2~, the electron density frequency (or plasma
frequency) in Mc/sec.

fz= 0&/2m, the electron gyro-frequency in Mc/sec.
f» f,'=a[(fir'+4fp')&+

l fir l j at p: km above the sun's surface.
Hp, 4 the static and varying magnetic field vectors respec-

tively.
i, j, k unit vectors parallel to the x, y, and s axes respec-

tively.
)t, = (—)" ' with m =1 or 2.
I. the angular wave number (complex),

M the complex refractive index.
p the real part of M.

m the electronic mass.
Ao, n the static and varying number-density of electrons.

v the frequency of collisions of an electron with other
kinds of particles.

po=(4xXoe2/m)& the angular electron density frequency
(or plasma frequency).

P the Poynting Qux of energy.
R= a) —U,L.
p = v/co.

0. =1—k„g.
one-third of the mean square velocity of electron

agitation.
Uo, u the mean steady drift velocity and varying velocity,

respectively, of the electrons.
U„U„, U, the components of U0.

U an abbreviation for Uo.

Vo, o the static and varying scalar potentials.
~0= &O/~.

Qo = (—e/mc) 8& the angular electron gyro-frequency
vector.

Q„Q„,0, the components of Qo.
0 an abbreviation for Oo.

the angular wave frequency, always taken as positive.
~r, ~z = isa(rt'+4P p')'+

I nl j.
values of cu1, ~2 respectively in a medium A.

X=R —7 12—pp —'LvR,

p 2/~2

V=R(Z+ p02) —&Z.
q = 0/co.
Z =C21.2 —aP.

x, y, s space coordinates.
time.

4zre(.V—X,p) = — ' V,

4zreXU= — 'A, (4)

(5)

~ t(co t—Lx)

Then (Sp) reduces to the following set:

e= —jc icg8+ jI.vi,

h= —iL,i&(a,

n = (Z/4zrec') z,

cpu+ Upn= (Z/4zrec) a,

(2.1)

(4.1)

Rn = ENVOI.N„ (5..1)

Bu QpXu zrlVp 'Lni=(e/——m)(e+c —rUpXh), (6.1)

where Z, R, 8 and Qp are defined below under (11).
Without loss of generality we shall take the xy p1.ane

so that it contains the direction of the drift velocity,
i.e., we take U, =O.

On eliminating e, h, n and u from (6.1) by means of
the Eqs. (1.1) to (5.1) we obtain the following equations

DU+vU+iV 'V' rS=(e/m)(E+c-'UXH). (6)

The set (Sp) of equations for the steady state of the
medium are obtained from this set (S) by adding the
suSx 0 to all the variables and omitting all the terms
in which D& occurs.

As a check it will be found that the Eq. (6p) obtained
from (6) is consistent with the classical formulas of J. S.
Townsend' for the steady motions of electrons under
the action of uniform electric and magnetic fields.
When iVp is uniform in the steady state (6p) becomes

(Up 1)Up+ vUp (e/mc) UpXHp = (e/m) Ep, (7)

this equation determines the drift velocity Uo in terms
of the static electric and magnetic fields and the col-
lision frequency or, alternatively, determines the electric
field required to set up a given drift velocity.

To obtain the set of equations (5„) for the perturba-
tions we substitute in the set (S) given above the
expressions for 1V, E, H, etc. , given under (A), and
subtract the corresponding equations in the set (Sp).
As some of (5„) are non-linear, we may in a first ap-
proximation, which is valid for sufFiciently small per-
tubations, retain only the linear terms.

When the medium and the static fields are uniform
in the steady state the quantities with sufFix 0 are all
constants and cV;p=Ãp. To study any (small) plane
perturbation of this state it is sufFicient, by Fourier's
integral theorem, to take all the lower case variables in
the linear equations (S„) to be proportional to

3 J. S. Townsend, Electricity ie Gases (Clarendon Press, Oxford,
2 1915), Sections 91 and 92.
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in the components a, u„, a, of a:

n,a,+n„a„+a,a, =0,
P a +P„a„+P,a,=0,
p,a,+p„a„+y,a, =o,

where

.=x+iLu, v„, ~„=—i«&.+po'-'~L, U„4-',
" v', ~ (10)

P,= —(Q,R+L~U„)Z, P„=o~l', P.=~&.Z,

y, =(Q„R+LQ U„)Z, yv= —coQ.Z, y*=ooiI', ,

with
X=R"' rLo P—o"'i vR- , —
7=R(Z+ po') iv—Z,
Z= c'L'-' —o)'-'

)

E=u) —V J,
O=iE+ v

po'= 4~ ~Voe'-'/m,

ao=(—e/mc)H, =(Q., Q„, Q,).
The necessary and sufficient condition for a non-zero

solution of (9) is that the determinant io formed by the
coefFicients is zero; this yields the equation of dis-

persion.
%hen we take into account the fact that U„2&(c' it

is found that the terms in U„' are always small com-

pared with certain others. On neglecting the terms in

V„' the equation of dispersion reduces to the form

X(V' —Q,'Z') —(Q„'+Q."-)RYZ
2po'LRZQ, U„Q—„=0, (12)

which is of the eighth degree in J and cv.

This form differs from the Eq. (3A) in Appendix 1,
which is derived by means of a relativistic theory, only

by quantities which are of the second or higher orders

of sIIlallness in Ug) Vy alld 7.
When (12) is satisfied then, by (9), a„a„, a, are

proportional to the co-factors of any row of the deter-
niinant.

Then e and h are given by

h =0, h„= —&Ma„h.=&Ma„,

where 4 = ioi/c, M=cL/oi. —
Khen the drift velocity Uo and the electron tem-

perature (proportional to r) are negligible (12) reduces

to the (bi-quadratic) equation of dispersion in the M.I.
theory. For small enough collision frequencies (e.g. ,

v((oi) the latter equation reduces to

(oP—po') Loi'(Z+ poo)' —Q,'¹]
—Qr'oo'Z(Z+Poo) =0, (12.0)

where
Z= c7.' oi'= oi'(M' 1), Qi -"——Q„—

''+ Q . —-
The (oi, L) curve corresponding to (12.0) is sym-

metrical about both axes. It cuts the ~-axis at the
points &0, &po, &~I, &co2, where

= lHQ. '+4po')*'~
I Qol j (14)

It has the oblique asymptotes cf =~~ and the asymp-
totes co=&cus, co=&cu4 parallel to the L axis where

and
«& ("o'+po') '& ~o& (o (Qo'+ po'))'& ~4

&o+Po /(Qo +Po )'( oii,

and that when Qo') po' than ~I)~,&~, and ~4.
One of the bands then lies between co& and co~ and one

of the other bands lies between co2 and 0.
YVhen an electron drift velocity Uo exists the cor-

responding (oi, L) curve has some branches which are
similar to the ones just considered but distorted in a
skew manner so that they become unsymmetrical about
the +-axis. The principal consequence is that in general
we now obtain bands in which L (and M) is a comp/ex
number a+ib.

These bands approximate to the bands considered
above in the M.I. theory. YVe thus see that the effect of
electron drift is to create wave amplification and con-
sequent electromagnetic noise in frequency bands in
which otherwise waves cannot propagate. $ If L=a&ib
the phase velocity is / oiaand one of the two corre-
sponding waves or wave groups grows by the factor
exp~ bx~ in the distance x.

Xo wave amplification is possible when the wave
is propagated transversely to the drift velocity and at
the same time the magnetic field is perpendicular to
either the direction of propagation or the drift velocity.
This follows from the fact that when U =0 and
Q,U„Q„=O then (12) reduces to the Eq. (12.0) cor-
responding to the M.I. theory.

In particular when the drift and magnetic field have
a common direction (as in the case (C 11) considered
below) wave growth is in general increasingly favored by
orientation of the direction of propagation towards this
common direction.

In general a root of (12) can be determined only by
some method of successive approximation, like New-
ton's, from some erst approximation. In one method of

f This prediction of noise occurring in separate bands has now
been con6rmed by means of experiments carried out in collabora-
tion with Dr. K. Landecker. These experiments will be described
elsewhere.

~4 +Lo (Qo~+ po )~ (o (Qo'+ po')-' —Q."-po') tjt. (15)

For example when the plasma frequency is 100
Mc/sec. , the gyro-frequency is 600 Mc/sec. and the
angle 0 between the directions of the magnetic field and
of propagation is more than 45', then

oui/2ir=: 616, ohio/2m. =. 16.5,
ooo/2m. =.'605, oi4/2n. =.

' 100 cos8 Mc/sec.

The frequencies 0, po, coi, ohio, a» and oi4 are the edges
of frequency bands within which the wave number J
(and the refractive index M) is purely imaginary. In
these bands waves cannot propagate through the given
medium.

It can be shown that in general
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quite independently of these waves. For these reasons
their detailed discussion here is omitted. f.

The second and third equation under (16), combined
with (13) yield the following results:

There are two types of waves with dispersion equa-
tions given by

getting the first approximation we take v=0 and in

another UO=0. Both have their special uses. The second
method has the special virtue that it develops four of
the roots from those of the M.I. theory; moreover the
latter are expressible in a closed form.

We shall now consider in detail the important case in

which the drift and magnetic field are both in the direc-
tion of propagation, i.e., when

I, ,= Uo, U„= U, =O and 0,= Q ,OQ„= Q, =O. (C 11)

where
V—k„QZ =0, (n = 1, 2),

kI = i1 k2= —1)

and polarizations given by

h./h„= k„i—
These two types may be conveniently labeled

Ej waves when k„Q&0;
E2 waves when k„Q(0.

(18)

(19)

(20)

From now on we may conveniently drop the subscript
0 from the symbols Uo and Qo.

Then (10) and (9) combined with (13), yield

Xe =0,
~Vey+0 Ze, =0,

—Q,Ze„+i Ve.=0,
(16)

The first equation yields two waves with the dis-
persion equation X=O, i.e.,

(a&
—UL)2 rL2 po' —is(cu—UL—) =—0, (17)

which have their electric vectors in the direction of
propagation and no magnetic vectors. These waves will

grow when

r& U'&0 and P«~'&p, '(1 U'/r). —

In conformity with the M.I. theory (as shown in
Appendix 2) the E& and E2 waves may be termed extra-
ordinary and ordinary waves, respectively.

By (19) they are both circularly polarized, but in
opposite senses. Also by (18) and (19),

E~ waves are EH or LH and E~ waves are
LH or RH according as II~O, i.e., H~~O,

where RH and I.H mean, respectively, right-handed and
left-handed direction of rotation of the magnetic vector
when viewed in the direction of Ox.

From (16), (1.1), (3.1), and (5.1) we see that for
these waves e, v, sz and u are zero, i.e., the electric and

magnetic vectors and the electron vibrations are purely

Since they have no corresponding Poynting Aux they
are not of primary importance in considering observed
circular solar noise. In a more exhaustive study they
may require to be considered when (and only when)
account is taken of the neglected non-linear terms.
Otherwise, as will be seen, the origin and escape of
circular solar noise can be adequately accounted for

10-
I

(A

Asymptote to Curves(gug4)

-2

&3

«4

"2

FIG. 1. Curves of {g, M) for E1 and E2 waves with V=O and
the following values of k q: (1) 0.1; (2) 0.5; (3) 2; (4) —2;
(5) —0.5.

FIG. 2. Curves of (g, M) for E1 waves with V=0.1 and the follow-
ing values of k q. (1) 0.5; (2) 0.95; (3) 1; (4) 1.5.

f Some numerical examples of such longitudinal waves are
given in reference 2 and in a joint paper with J. A. Roberts in
the Australian J. Sci. Res. A, 2, 307 {1949).Also it now appears
that such waves have been previously discussed by %. 0. Schu-
mann in Zeits. f. Physik 121, 7 (1943).
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transverse, and there are no perturbations of the elec-
tron density.

Also from (4.1) and (13) we have

u = (1/4a

X&e)ice�(M'

1—)e. (21)

These circu1ar waves and the longitudinal waves
(corresponding to (17)) thus form a complete contrast.
Also they are entirely without mutual interactions (i.e. ,

coupling) unless and until one of them can grow so
large that the non-linear terms of the theory become
important. Therefore in considering the growth of the
circular waves it is initially unnecessary to consider the
possibility of having growing longitudinal waves.

2. THE CIRCULARLY POLARIZED WAVES

10
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The dispersion Eqs. (18) of circular waves, when

expanded by means of (11), are the two cubics

(VM —1) I (a2(M' —1)+po' I

+(k„Q+iv)co(M' 1)=—0, (22)

where M is the complex refractive index; V= U/c and
V-'« i.

These show that the circular waves depend on the
random motions of the electrons only through the
terms in v.

In order to discuss the propagation of waves in a
medium which is gradually varying in space we shall

adopt the following convenient notation/

(=po'/(a', g= Q/cv, o„=1—k„g, p= v/(u. (23)

Then the cubics (22) assume the form

f(M) —= VM' —(o„—ip)M2
+ V($—1)M+o„—$ ip=0— (24).

In general the roots of each cubic are unequal.
In our applications of the theory of the sun's atmos-

phere (in Section 5) the adopted numerical values of

pp, 0 and v are those given by Smerd, 4 the magnetic
fie1.d H being that above the center of a large sunspot.
His values of f&=po/2n and fH= ~Q~/2m. are also
indicated in our Fig. 4 by means of curves.

From such data we find that in regions at different
heights x above the sun's surface and for waves of
frequencies ~ such that they can grow in these regions,
the following relations exist.

o= 6ypa, P= 62
~
Q~, P=agco, co= a4pa, p= ag$,

where a&, a~, aa, a4 and a~ (=a~a4) have values less than
the numbers given in the corresponding columns of
Table I.

Thus in our application we have:

Above the heights 2&10' and 10' km, respec-
tively, p&2X10—' and 2&10 ",

&&10 'l&.nl
a&10—'$ and SX10 '$.

I'iG. 3. Curves of (P, M) for E~ waves with t/ =0.1 and the follow-
ing values of k„g. (1) —9; (2) —2; (3) —1; (4) —0.5.

Therefore in (24) the terms in p may be neglected
except perhaps when

~ $
—a„~ or ~a„~ is comparable

with, or less than, p.
We shall erst consider the general circumstances in

which p is negligible, i.e. , when (24) approximates to

f(M) = VM' —o M'+ V(t 1)M—+o„—)=0. (24.0)

In general neither of these cubics has more than two
roots equal.

The six roots of these equations will be denoted by
M&, M2, M& for the E& waves (when a &1), and by
M ~, M 2, M 3 for the E2 waves (when a„&1).

The dependence of real values of M on the electron
density xVp is conveniently shown by drawing curves
with P and M as coordinates for given values of q and
V and for $)0. Such curves are illustrated by Figs. 1

to 3.
Points on the curve defined by (24.0) are most easily

determined by calculating P for real values of M.
The intercept on the $-axis is a„and the intercepts

on the M axis are 1, —1, V 'c„.The only asymptote to
the curve is

M=V '8,

, (23) where 8 is a root of

8' ——,'(o +3)8'+a 8—-', V'(o —1)=0.

and is approached from above or below according as
0„~~1.

The important ranges of values of $ in which growing
waves can occur are indicated by means of the vertical
tangents. These tangents occur at points I'~, P2, I'~
determined by (24.0) and the equation

$ This is in part similar to one often used in discussing propa-
gation in the ionosphere.

S. F. Smerd, Australian Council for Scientihc and Industrial
Research, R. P. L. 14 (January, 1948).

Since V'&&1 and in general 0„40the two larger roots
8&, 82 and the third root are given approximately by

8), 82=. ~ I (o„+3)+(a '—10a„+9)I I, 83=.
' ,' V'(1 a„')——
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Mp' —1

)

2p, 353—V—'

and since $&0 it follows that p&0 when M3& V 'o-„

and either (a) V)0 with fMp f
(1 or Mp) V ', or (b)

V(0 with
f

M'p
f
)1 and Mp) V '.

From this we deduce that

or

p,)0 only when
t'&0 and k„q &1+t',
V(.0 and k„q&0.

(28)

Similar remarks may be made about M 3, M ~, M ~.
The dashed curves in Figs. 2 and 3 show p, and P in

The values of $ at the vertical tangents are given by

5= (1—U '~') (o.—b)/(1 —8)

The two tangents corresponding to 0& and 0. exist
only when o.„~&1 or ~&9 i.e., always for Ej waves and
when k„q & —8 for E2 waves. The third vertical tangent,
occurs near (but not at) the point t=cr„where the
curve cuts the $-axis. When o &0 this tangent does not
exist for values of ()0.

Figure I shows examples when V=O. This cor-
responds to the well-known case of longitudinal propa-
gation in the magneto-ionic theory. The curves are
parabolas and correspond to the usual straight lines
which depict M' in terms of $. The waves are Ez or Ez
according as k„q~~O. The values of M are either real or
pure imaginary.

Figures 2 and 3, respectively, give examples of E&
and E~ waves when V&0 i.e., when the electrons have
a motion of drift in the direction of Ox. These show that
the values of M are in general either real or complex
with non-zero real parts. Thus for a given frequency
and type E there are values of the electron density for
which all the waves remain constant in amplitude,
apart from attenuation due to electron collisions. These
may be called waves of the First Species. Kith other
values of the electron density one of the waves grows
and another attenuates (apart from the results of col-
lisions) as they travel. These may be called waves of
the Second Species.

For a/l values of the electron density at least two
progressive waves of each type can exist. The only
values of electron density at which just two such waves
can exist are those corresponding to the points cc=o„,
where M=O.

In those parts of Figs. 2 and 3 where only one real
root M3 occurs the complex roots M~, M2 can be cal-
culated as follows by means of the values of M3.

Mz = zc+zP, Mp p zP, —— —
where

p=-', (V 'o„—Mp),
P=[V 'Mp '(g o„) ,'(-V-'o—„—M—p—)zJ&

From (27) and (24.0) we have

Then by Newton's method of iteration applied to
(24.0) we obtain the second approximations

Uaf. (1—o „')
Mg, Mg ——&ia&

a2cr„a+iU(2+ t—3$o „')
Hence, if

tll e11,

where

a= (Po ' —1)&,
b= f1+-',&(1—3o ') fa '

P = k zt f/2 (o '+ V'b'),

Mz, Mp=zc+zp,

p='. —VP, P=:a+ V'Pere rb.

(29)

(30)

(31)

Clearly in this approximation M&, M2 are complex
when $)o„)0, i.e., when 0(cp&bcpz and

f Qf &cp(cp&,
where cpz, cop are defined under (14).

For E~ waves in the critical case 0„=0 we have to
proceed otherwise. Thus, when in (24.0)

o„=O and

we may take M, =: (V 'g)& and then (27) yields the
following result:

When co=k„Q and
f Uf« f g(g —1)—af,

then (31.1)
p=' —-'(U '4)' P=' '~~(V '5)'

The corresponding waves may be termed E& gyro
waves of the Second Species.

Values of M, p, and P calculated by means of (31)
a,nd (31.1) are found to agree well with those given by
the curves in Figs. 2 and 3.

The formulas (31), (20), and (31.1) yield the following
conditions for p to be positive:

When
f
Vf«1 and o.„&0 then zc)0 only

with El waves and V&0, or
E2 waves and V)0.

These conclusions are substantially independent of
collisions when the terms in p of (24) are negligible. As
mentioned earlier this is so when

f $ o„f and-
are large compared with p, i.e., when the wave fre-
quency does not lie near one of the frequencies co&, co.

or
f
Qf.

When
f g cr„f or fcr

f
is either (a) com—parable with p,

or (b) less than p, a special investigation is necessary.

terms of $. They relate to Ez or Ep waves according as
k„Q(0.

Physically p is the real refractive index and P is the
index of growth or attenuation.

When
f
V

f
«1, direct approximations to the roots Mz,

M2 can be made as follows.
As first approximations to them we take the roots

Mzp, M» of the equation derived from (24.0) when V
is made zero, namely

M, p, M» &ia= ——+i($o„' 1—)'.
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Under (a) the calculations are very lengthy whereas
under (b) they are both relatively simple and more
sensitive to the effects of collisions. Accordingly we shall
here consider only the following special cases:

a—„~&&p&(a„and $;
ia i(&p«$.

The condition p«P is added on account of (25). In
the case I we obtain from (24)

Mt=.'(—k„V}}/a )(1+ip/o„), Ms='. ip/k —Vtt.

This shows that for }a=}ut (28.1) also holds true in I.
In the case II we obtain the same approximate

results as under (31.1) and (28.1) when
~

V~&&p.
We may therefore conclude, with the help of (25),

that in our application to the sun's atmosphere, as
exempli6ed by Fig. 4, the eGect of collisions on growth
may be neglected in regions above 2000 km when the
drift velocity

~
U~&&6X10' cm/sec. and in regions

above 10' km when [ U~ &&600 cm/sec.

3. THE WAVES WHICH CORRESPOND TO ANY
TRANSVERSE PERTURBATION TEMPORALLY

PRESCRIBED AT THE PLANE x=o

In this section it will be shown that (a) any transverse
perturbation at a given plane gives rise to two trios
of circular waves which are oppositely polarized and
can be treated independently of each other; (b) within
certain frequency bands each trio will in general grow;
(c) the mean Poynting flux of a wave with refractive
index M =tt„+iP„ is in the direction of propagation
Ox and grows in that direction when p, and P are both
positive.

Also the type of growing waves (Et or Es) is found
which carries field energy in the direction of Ox under
different conditions ((48) and (48.1)).

The arguments are set out in some detail partly for
the sake of clarity and partly because some of the
relevant formulas ((32), (33), (42.1), and (42.2)) are
required in the next section.

The vital question of escape of Geld energy from the
sun's atmosphere makes the discussion of the Poynting
Qux of primary importance. It has not been found
necessary here to consider the behavior of wave groups,
i.e., of integral expressions like those in (32) but with
the limits of integration replaced by ~o+Ru and coo—bu,
respectively. This is fortunate since the mathematical
definition of a wave group is apt to become physically
vague (and perhaps misleading) when the rate of
growth is very large.

~~

%e shall represent the given transverse perturbation
by the electric vector e, the magnetic vector h and the
electron velocity u. Their dependence on time will be
indicated, when necessary, by the notation e(t), h(t),
u(t).

%e shall now determine the values of the corre-

e(t, x)= I g A e'"~™*}do}
~o

h(t, x)= Q B e* " ~ *}do}
~o

(32)

where m= 1, 2, 3, —j., —2, —3, and for convenience the
velocity of light c is taken as the unit of velocity.

IV is a known function of o} derivable from (24.0),
and A, B, C are functions of or which remain to be
determined.

On setting x=0 and inverting the resulting Fourier
integrals we obtain

P A„=I,—= 1/n. e(a)e-*" da
"o

p
oo

g B =Is=i/tr h(a)e '~~da, ' (33)
~o

P C = I.=—1/tr u(a)e —'-da.
~o

The quantities I„ I&, I are thus known in terms of
the given perturbation.

Since the component waves are circularly polarized
we may by (13) and (19) write

A =(j—ik„k)A„, (34)

where, according as 0~0,
k„=+1 for EI waves and k„=Wi for E2 waves.

Hence from (33) we obtain

(35.1)

(35.2)

A )+A2+A ~
——J,',

A I+A 2+A 3=J,',
where

J.'=-'s(I aiI.,), J.s= ', (I WiI.,), (36-)

and we take the upper or lower signs according as Q~O.
Similarly we have

Bi+B2+B3—Jh, ,

Ci+C2+Ca= J ',

and analogous relations (37.2), (38.2).
But from (13) and (19) we obtain

(37.1)

(38.1)

sponding vectors at the plane x, namely

e(t, x), h(t, x), u(t, x).

These can be expressed in the following general forms
which all satisfy the fundamental Eels. (1.1) to (6.1).

N
This difhculty is absent in the M.I. theory and so the notion

of group-velocity may there be pro6tably used. B =ik„M A, (39)
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and from (21) combining with (13),

C =t'E 'or(M '—1)A,
where

E=4~&oe.

(40)

(41)

etrrtPrtss ~ escrt(~ ttmx)d~

"o
(43)

From (24.0) we see that when or exceeds a certain
finite value err all the values of M are real, i.e., P =0.
It then follows that all the integrals (43) are finite.

Also when or&oro, P has two equal non-zero values
of opposite signs and therefore the E& perturbations
represented by (32.1) will in general ultimately grow
with increasing

~
x

~
.

Similar results hold for (32.2).
The mean Poynting Qux for the wave with index M is

given by
P„=c/4rr

~
A „~ 'p„e' ~"*

where

Thus
Mm= trm+tPm

P &0 when p )0
P increases with x when P„)0.

(45)

(46)

(47)

Thus (35.1), (37.1), and (38.1) yield the following
system of three simultaneous equations:

AI+A2+A3= J,',
MgAr+MgAg+MrrA3 ———k~fr, 'r r (42.1)

Mr2Ar+M2'A2+M32Ag ———Eor 'J '+J '

A similar set (42.2) relates A q, A ~, A 3.
These results show that the original perturbation

can be split up into two kinds of circular waves which
are oppositely polarized.

Thus (32) may be replaced by two similar sets of
Eqs. (32.1) and (32.2). In (32.1), e(t, x), etc. , are
replaced by er(t, x) etc. , and rrt takes the values 1, 2,
3, while in (32.2) e(t, x) etc. , are replaced by e2(t, x) etc.,
and m takes the values —1, —2, —3.

Accordingly each trio of waves may be treated in every
respect independently of the other.

When Mr, M2, M~ are all different (42.1) always
yields finite values of A&, A2, A&.

When Mj.=M243f3 the terms A2, M2A2 and M2'A2
in (42.1) are replaced respectively by 0, d'or 'A2' and
2i~ 'M~A2', but finite values of A~, A2' and A3 are
always obtained.

As (24.0) cannot in general have three equal roots
this case need not be considered.

Similarly we always obtain finite values of A &, A 2,
A 3.

When
M = p +ttP„,

with p„, P both real functions of or, the corresponding
term in (32.1) is

From (46), (28), and (28.1) we derive these results:

The only growing waves which carry field
energy in the direction of Ox are as follows:

With V)0 they are growing Er or E~ waves - (48)
according as 0&k„g&1+V or k„q&0.

Kith V&0 they are always E& waves.

When
~
V

~
&&1, the only growing waves which

carry field energy in the direction of Ox are 48.1
E2 or EI waves according as V~O.

When V&0 these waves may in general be either RH
or LH but when 1&)V& 0 they are LH or RH according
as H and Ox have the same or opposite directions. Also
when V&0 they are RH or LH according as II and Ox

have the same or opposite directions.
By (31), (31.1) and (44) when

~

V~&&1 then for a
growing wave P is nearly proportional to V, except
when the wave is an Ej gyro wave.

For the waves of constant amplitude P is positive
when M )0.
4. PASSAGE OF A GROWING CIRCULARLY POLAR-

IZED PERTURBATION NORMALLY THROUGH
THE BOUNDARY BETWEEN TWO

DIFFERENT MEDIA

In this section it is proposed first to determine the
transverse perturbations in a medium A which lead to
a given transverse perturbation, in a second medium B,
for which the mean energy Qux P travels away from
A, with VWO in one or both media.

This is done in the following way. First the wave
components on one side of the common boundary of A
and B are related to those on the other side and then
expressed separately in terms of the latter. Next it is
shown that these expressions always yield finite values
for the components sought. Then it is shown that even
with V=0 in either A or B,waves of suSciently high fre-
quency which exist in one medium must lead to waves
in the other. Lastly, necessary and sufhcient conditions
are found under which growing energy Quxes in A can
pass into B.

It is also proposed to determine GI~ the factor by
which the mean Qux of a growing wave increases when
passing from a plane in the medium A to a distant
plane in B.

The boundary is here taken normal to the direction
of propagation, i.e., to the x axis.

At the boundary the necessary and sufhcient con-
ditions which must be satisfied are that the three
vectors e, h, and u vary continuously across it. The
first two need not be justified here, while the third is
imposed by the fact that the electrons are drifting
across the boundary and that under finite forces they
cannot suddenly change their transverse velocity u.

From these boundary conditions we deduce that the
Poynting Qux P also varies continuously across the
boundary.
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As was proved in Section 3, for (42.1), when Moi,
M,s, M, b are all different the system of Eqs. (49.1)
always yields finite values of A I, A,2, A,3, namely

A, i ——(M.i—M 2) '(M. i—M.b)
'

XQ(Mb M 2)(Mb Mob)Ab, (50 1)

and formulas for A 2, A, 3 obtained from this by cyclic
permutation of subscripts.

Similar expressions are obtained when, exceptionally,
two of these indices are equal.

On calculating P, the mean value in time of the
Poynting flux P of the EI perturbation, we 6nd that it
consists of terms which are periodic in x and three
terms PI, P2, P3 which are not. The average value of P
in a given region of space is therefore given approxi-
mately by the formula

P=P,+P,+P,. (51.1)

For the trio of E2 waves we have similar relations
(49.2), (50.2), and (51.2) and can draw similar con-
clusions.

From (50.1) and (50.2) it follows that when pro-
gressive waves can exist in both media then such waves
can in general pass from A to 8 or 8 to A.

Waves cannot exist in a medium when V=O and
(&0.„, i.e. , co'- —k Qa) —p'&0.

Hence, if
co, b~,'= si [(0,'+4p ') bW 0, $,
bib, bib =-,'[(Db'+4pb')ba Qb j,

it follows that

%'hen V, =O there can be an energy lux in
medium A with Ei waves only when &o) &oo and (52A)
with E2 waves only when ~& co '.

If a new origin of coordinates be taken in the
boundary plane, we may use the formulas of Section 3
for the present discussion. Thus we will take the vectors
e(t), h(t), u(t) to represent the perturbations at the
boundary x=0 and regard the expressions (32) as
representing the perturbations in the medium A, when
x&0 and M, A, etc. , are replaced by M, A, , etc. ,
and those in the medium 8 when x&0 and M, A, etc.,
are replaced by Mb, Ab, etc.

The quantities I„ Ib, I defined in (33) now represent
the perturbations of frequency co at, and near, the
boundary. The same is therefore true of the quantities
on the right of (42.1) and (42.2) which determine the
two constituent trios of waves.

From (42.1) we obtain the following relations between
the amplitudes A of the trio of EI waves in the two
media.

P A.„=P;lb
m m

"
&( =1, 2, 3). (49.1)

Q M,„'A,„=QMb„'Ab

A similar conclusion** (52B) holds true for medium B
when Vb ——0.

VVe shall now establish the following result when
V=O in one of the media alone.

Pb& 0. (54)

Three possible cases, covering growing waves, which
can arise will now be considered in detail sufhcient for
use in later sections.

Case I: V./0, Vb/0

From (50.1) and (50.2) we see that both Ei and E2
waves can pass from A to B.

An EI wave which grows in A will or will not lead to
a growing wave in 8 with a positive flux, according as

(a) Abi/0 and bib)0 or (b) Abi=O.

With (a) Pb~)0 and at a suKciently large distance
xb&0 the flux PbI is much larger than Pb~ and Pb3, Ke
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FIG. 4. Illustrating the determination of the frequency bands
of growing E1 and E~ waves which can escape from the sun' s
atmosphere over a large sunspot, under hypotheses (67) and (68)
about the drift velocity.

~* These results are well-known in the magneto-ionic theory of
propagation,

When V=O in either A or 8 alone and trans-
verse waves, of frequencies cv)co ' or bib, re-
spectively, exist in one of these media, then
such waves always exist in the other.

For to suppose the contrary is equivalent to having
a non-zero solution of equations like (49.1) when their
right-hand sides or left-hand sides are all zero; this is
impossible because in general the three numbers MI,
M2, M3 for either case are all diferent. Even when
M& ——M2/Mb the result (53) is still derived, for the
terms in A2 of (49.1) are then modified as indicated in
Section 3.

Ke shall now determine the conditions under which
a mean outward Aux in medium 8 can exist, i.e.,
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TABLE II. Summary of results from hypotheses {67) and {68).
xp=2X10', xq=2X10', *g=7X10'km.

some which lead to the situation (a) and others which
lead to (b). We may therefore conclude as follows:

H�ypot-
hes�

67

Drift
~aq ~qz

&0 &0

&0 &0

1300 to 56 or 36*
growing in PQ
below 8X10'
km.

44* to 36*growing
partly above 10
km.

36 to 13 or 10~
growing in QR,

88 to 19 growing
in QR, within
broad regions.

9900 to 88 growing
in PQ.

6000 to 600 grow-
ing in narrow
regions below
5X 10' km.

Frequency bands of escaping waves
(hIc/sec. ) When V, /0 and V~ /0, certain transverse I

perturbations in medium A can lead to a positive
mean ffux of energy in medium 8 which grows
in the direction A to B; also certain other trans-
verse perturbations in A can lead ultimately to
a positive, constant mean Aux in B.

By (48) the ffrst kind of perturbations are Ei or Em

waves when V»0 but only Ej waves when V&&0.
Also when 1»V»0 they are only E2 waves.

Case II: V /0, V~ ——0

+ If the region near 0 is penetrated.

We have here the following necessary condition
(which is similar to (52A)):

Also by (53) it follows that in general when trans-

(55) verse waves of different frequencies co)a»' exist in A
there is an energy Qux in B.Hence,

Aai= pal. 'A~i)
where

(M. i —M.2) (M, i —M.g)
pii=

(M pi —M,2) (Mgi —M,g)

An energy Aux in B can arise from a growing
wave in A when, and only when, Eq. (24.0) has
complex roots with

u) ~b, g= p.'/aP, 0.=1—
I
Q. I/a for E, waves ' (62)Also the growing wave amplitude A, i(x,), at the

plane x= x,&0 inside the medium A is given by
and with

sr)ars', (=p.'/aP, 0.=1+
I
Q. I/co for E2 waves. ,

A.,(x.) = A.,e"& *..

From (56), (57), (51.1), and (44) (and on reversion to
the unit of velocity 1 cm/sec. ) we obtain The occurrence of such complex roots can be ex-

amined by means of curves like those in Figs. 2 and 3,
p,g by means of the discriminant of a cubic or, approxi-

I »iI ' "P(2~(&b & l ox )/ j (58) mately, by means of the formulas (29), (31),and (31.1}.
Thus, for example,

Pb(xg)

P,i(x.)

can therefore simpl. ify the discussion by taking A» and When V&=0 there can be an energy fiux in B,;
obezero sinceother values will give approximately with Ei waves only when co&co~, and with E2 61

b3
I hthe same value for Pq. waves on y when co)~&.

On doing so we obtain from (50.1)

with pgOQ.
When p,)0 the formula (58) gives the factor of

increase G~~ of a growing Aux in passing from the plane
x,(0 in A to a distant plane xq&0 in B.

Gt~ can never be zero since p, is always finite and
since, in (56), M, i cannot be equal to either M, 2 (for
P, WO) or to M 3 (which is real).

With (b) we can similarly for a sufficiently large
distance set AM=0 and so obtain a similar, simple
approximate expression for the ratio G~~. Also a neces-
sary and sufhcient condition for a perturbation in A to
give rise to a positive ffux Pb in 8 is, by (44) and the
boundary conditions, that

I IA il'+
I
A 2I'I~.+ IA.3, 'M.3=4x& 'P~ (59)

Similar results hold true for an E2 wave which grows
in A.

Among the random perturbations which can occur
at the plane x=x, in the medium A there can arise

Complex roots of (24.0) occur when
I VI((1,

~„)0 and approximately $) rr„, i.e. , for Ei waves (63)
when

I QoI &s&&~, and for E~ waves when &o(co ',

where cv„&o
' are defined in (52).

When
I
V, I«1 we deduce from (62) and (63) the

following approximate necessary and sufFicient condi-
tions under which growing energy Quxes in A can pass
into B:

With
I
U, I«1 and Vb 0, Ei grow——ing waves

can pass when co,)co) cog and
I
0

I
and E2 (64)

growing waves can pass when ~ '& co) cog'.

Case III: V =0, V~NO

Here we deduce, from (53), that:

With V,=O and Vq/0 a part of the waves in
A (with frequencies a&) ~,') can pass into B.
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The values of fo and f~ are those given by Smerd, '
H being the magnetic field above the center of a sunspot
with a maximum field at the spot of 3600 gauss.

With this spot the curve for f,' has a valley X in the
region between 10' and 10' km and a peak M at
x= 1.1)&10' km with the corresponding frequency

fear
=44 Mc/sec.

In the language of the magneto-ionic theory of
propagation f is the frequency of the extraordinary
wave and f,' that of the ordinary wave for which p= 0
in a medium with no electron drift. tt As the literature
on solar noise often uses these terms it is necessary here
to relate them to the E& and E2 waves considered in the
present theory with the electrons drifting. In Appendix
2 it is shown that we may term the E& waves extra-
ordinary and the E2 waves ordinary.

Folloming a mell-known method of approximation
we may consider the sun's atmosphere as composed of
a succession of uniform strata each diBering slightly from
the preceding one.

%e shall now suppose that throughout the sun' s
atmosphere above the spot the electrons drift relatively
to the ions with a vertical velocity V which is a con-
tinuous function of the distance x.

Since very little is known concerning V, we are
at liberty to adopt various hypotheses about it and then
compare the theoretical consequences with known
observations.

As an example we shall adopt the following hypoth-
esis concerning V in the regions bounded by the lines
PP', QQ' and RR', in Fig. 4, which are at the respective
distances

xp= 2X10', xg= 2)&10', xg= 7&(10' km.

These lines will be named the lines P, Q, and R, respec-
tively.

~
V~((1 everywhere;

V) 0 in the region P to Q;
V(0 in the region Q to R;

V negligible near Q and beyond R.

~ (67)

ft The term ordinary is sometimes used exclusively for that
wave for which, when propagated transversely to the magnetic
6eld, f=f0 when p=0. The current terminology is unfortunately
somewhat confused.

5. ESCAPE FROM THE SUN OF CIRCULAR WAVES
GROWING IN THE ATMOSPHERE ABOVE A

LARGE ISOLATED SUNSPOT

%e will now apply some of our theoretical conclusions
to the waves which can arise by growth of random
transverse perturbations in the sun's atmosphere above
the center of a large sunpot on the equator.

For this purpose four curves are drawn, as in Fig. 4,
with x the distance above the sun's surface as abscissa
and fo, fH, f, f ' as ordinates, where fo, f~ are respec-
tively the corresponding el.ectron density frequency and
the electron gyro frequency (in cycles/sec. ) and

Let fp, fI', fq, fq', fx, fx' denote the pairs of fre-
quencies given by (66) which correspond to P, Q, R,
respectively.

On applying (60) and (48.1) we see that in the region
P to Q there can be growing waves which proceed
outward and that these are E& waves. By (63) each
such wave grows only in the regions for which its fre-
quency lies below the curve for f,'

All these E2 waves with frequencies f&fo will, by
the usual considerations of ray propagation in the
magneto-ionic theory, be able to pass into the region
near Q where V is negligible. They lie in the band of
frequencies fp' to foq where foq is the value of fo cor-
responding to the distance xg.

By (53) or (65) a part of the waves in this band can
pass into the region between Q and R and then into
the region beyond E, thus escaping from the sun. All
these escaping E2 waves have grown solely in regions
below x= 10' km. Their frequencies lie in the band 1300
to 56 Mc/sec.

Similarly by (60) and (48) there can be growing waves
in the region Q to R and these are necessarily E& waves.
By (63) they grow in the regions bounded by the curves
for fH and f Then, b.y (64), these waves can pass into
the region beyond R and so escape from the sun. Each
of these escaping E~ waves has grown in some part of
the region above x=2X10' km. Their frequencies lie
in the band fq to fs, i.e., 88 to 19 Mc/sec.

The lower frequency limit foq for E2 waves which was
adopted above is based on a ray treatment of propaga-
tion (with no electron drift) which assumes that when

fo f then @=0——and as a result E2 waves cannot pene-
trate the region concerned. The universal correctness of
this treatment and its consequence has been called into
question by Saha and his co-workers' and it appears
also to be at variance with certain observations of
Toshniwal, ' Harang, ' and Newstead. ' It is therefore
possible that the lower limit of the E2 band is set by
(64), i.e., by fq' This entails. replacing the frequency
56 Mc/sec. given above by 36 Mc/sec.
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FIG. 5. Curves giving the refractive index p and rate of growth
of intensity d& for an escaping E& wave of frequency 200 Mc/sec.
under hypothesis (67) with V=3)&10 cm/sec.

~ M. N. Saha et al. , Nature 158, 549 (1946); Ind. J. Phys. 21,
181, 199 (1947).

e G. R. Toshniwal, Nature 135, 471 (1935).
7 L. Harang, Terr. Mag. 41, 143 (1936).
8 G. Newstead, Nature 161, 312 (1948).
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As another example we shall take the hypothesis corn-
plementary to (67), namely:

~
V~ ((1 everywhere;

V(0 in the region P to Q;
V) 0 in the region Q to R;
V negligible near Q and beyond R.

(68)

ff I.e., 10' in about one-quarter of a wave-length,

By reasoning as before we obtain the following
results: E2 waves in the band 36 to 13 (or 10) Mc/sec.
grow in the region Q to R and escape from the sun. R&

waves in the band 9900 to 88 Mc/sec. grow in those
parts of the region P to Q which lie between the curves
for fig and f and also escape. Of these the Ei waves
with frequencies between 6000 and 600 Mc/sec. grow
in the relatively small regions (below 5 X10' km) where
the fH curve lies very close to the f, curve. A simple
calculation shows that the lengths Ax of these regions
are approximately

f.'/tan8,

where tane is the slope of the f~ curve; therefore Dx is
of the order of 20 km for f about 4000 Mc/sec.

This distance is about 0.004 times the distance over
which the E2 waves of frequency 200 Mc/sec. (for
example) in the complementary situation (67) can
grow. It may therefore result that the latter waves
escape with much larger intensities than the E~ waves
of frequencies between 6000 and 600 Mc/sec. in the
situation (68). To decide this question definitely it
would be necessary to use the exact statement (62) in
the place of the approximate ones (63) and (64) and
make an. estimate of the fraction of the energy Qux

which escapes. This will not be attempted here.
These results are summarized in Table II.
An example of an E2 wave which can grow and escape

in the situation (67) is illustrated in Fig. 5 by the curves
representing the refractive index p, and the rate of
growth of intensity d&, in decibels/km, for a frequency
of 200 Mc/sec. and a drift velocity of 3X10' crn/sec.
These show that the wave grows in the region between
x= 2)(10' and x=SX10' km at diGerent rates between
9X10' decibels/km$$ and zero and has wave-lengths
between 43 and 300 meters.

It will be seen from Table II that in each region of
growth the escaping E~ waves lie in a higher frequency
band.

Also by (48.1) when E2 waves are observed to escape
we may conclude that V&0 in the regions where they
grew. Similarly when E& waves are observed we may
conclude that if

~

V
~
((1 then V&0 in the regions where

they grew. In the language of the magneto-ionic theory
these conclusions may be expressed as follows:

When ordinary circular waves escape then the
electrons in the regions of growth must drift (69)
outward.

When extraordinary circular waves escape the
corresponding electrons, if not too fast, must (70)
drift inward.

Also from (20.1) we deduce the following:

According as the sunspot is a positive or nega-
tive pole, the escaping ordinary waves are re-,

(71)spectively LH or RH and the extraordinary
waves are RH or LH.

These theoretical conclusions for a large sunspot may
now be compared with observation.

During a period of sunspot activity in February,
1946, Appleton and Hey' found that the observed
strong solar noise was most intense when the sunspot
concerned was near the central meridian. During the
period of activity in the following July they" observed
that the solar noise was circularly polarized.

The work of Pawsev, Payne-Scott, and McCready"
and of Allen" shows that peaks of power received on
200 Mc/sec. coincide with the passage of large sunspot
groups across the meridian.

Similar observations have been reported by Ryle and
Vonberg'~ who, on 175 Mc/sec. , also found the respon-
sible solar waves to be largely circular. These observa-
tions show that in general the strongest solar noise is
emitted normally to the sunspot group from which it
originates.

The observation by Martyn, " that on 200 Mc/sec.
the dominant polarization of the waves from a large
northern group of sunspots changed from RH to LH
as it crossed the meridian, does not contradict this
view.

Dr. Pawsey has very kindly supplied the following
as yet unpublished information. During the eclipse of
November 1, 1948, Christiansen, Yabsley, and Millsttg
observed the following facts on a wave-length of 50 cm:

(1) Strong noise came from small areas located near visible
sunspots or near places at which a visible sunspot existed one
solar rotation earlier.

(2) The noise radiation from these areas was notably circularly
polarized.

(3) As the edge of the Moon's disk crossed these areas the RH
waves and the LH waves alternated in becoming the stronger.

These observations are consistent with the view that
strong circular waves were traveling outward from
each spot (visible or invisible). They are also consistent
with the theoretical conclusion, given in Section 1, that
wave growth is increasingly favored by orientation of
the direction of propagation toward the common
direction of the drift and the magnetic field.

9 E. V. Appleton and J. S. Hey, Phil. Mag. 37, 73 {1946).' E. V. Appleton and J. S. Hey, Nature 158, 339 (1946).
'1 Pawsey, Payne-Scott, and McCready, Nature 157, 158 (1946).
1 C. W. Allen, M. N. R. A. S. 107, 396 {1947).
'3 M. Ryle and D. D. Vonberg, Nature 158, 339 (1946).
'4 D. F. Martyn, Nature 158, 308 (1946).
gtt All of the Radiophysics Division of the Australian Council

for Scientific and Industrial Research.
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Ryle and Vonbergi5 also found that out of sixteen
observations of polarization at 175 Mc/sec. nine cor-
responded to ordinary waves, three corresponded to
extraordinary waves, and four were inconclusive. Ac-
cording to (69) and (70) the corresponding electron
drift would be outward for nine of these observations
and inward for three. Also under our hypotheses (67)
and (68) the nine observations would relate to ordinary
waves growing in the chromosphere or lower and the
three observations would relate to extraordinary v aves
growing in the corona near or below 10' km.

In

Martyn�'s

observations mentioned above the
(northern) negative sunspots would have preceded the
positive spots in their passage across the meridian. It
therefore follows from his observations and (71) that
the dominant waves concerned were ordinary. Also
under our hypothesis (67) they would have grown in
the chromosphere or lower. His own theoretical view
was contrary to this conclusion.

Bolton" found on 100 Mc/sec. that the dominant
waves from a southern group of sunspots changed from
LH to RH as they crossed the central meridian. By
(71) and (67) these also would relate to ordinary waves
growing in the chromosphere or lower.

Ke may therefore conclude that under the hypothesis
(67) most of the strong circular waves, the polarization
of which has been determined, were ordinary waves and
originated in the chromosphere, or lower, with the
electrons drifting out of the sunspots concerned.

The consequences of our two hypotheses may also be
compared with the observations of Appleton and Hey'
made in February, 1946. They found that the noise
intensity increased rapidly with the wave-length
between 2 and 5 meters and then decreased betv een 5
and 12 meters. Table II shows that under hypothesis
(68) no waves between 88 and 36 Mc/sec. , i.e., 3.4 and
8.3 meters, escape; sn this hypothesis is here excluded.
But under hypothesis (67) the observed waves between
2 and 3.4 meters would have been ordinary ones which
have grown in the chromosphere, those between 3.4 and
5.3 (or 8.3) meters would have been a mixture of ordi-
nary and extraordinary waves and those between 5.3
(or 8.3) and 12 meters would have been extraordinary
waves which have grown in the corona.

The scarcity of observed strong, circular solar waves
of frequencies below about 20 Mc/sec. is explained
under hypothesis (67) by the fact that according to
Table II the lowest possible frequency for an escaping
wave is then 19 Mc/sec.

When the region Q, where V changes sign, occurs
near the top of the chromosphere then under hypothesis
(67) the frequency band of the ordinary waves would
lie entirely within the band of the extraordinary waves,
but under the hypothesis (68) they would separate
widely, with the ordinary band below the extraordinary
band.

+ M. Ryle and D. D. Vonberg, Proc. Roy. Soc. 193, 98 {1948).
"See J. L. Pamqey, J. Inst. Elec. Eng. (to be published).

These results and the corresponding ones which can
be similarly derived for smaller sunspots may be used
to guide future observations of solar noise.

For a more exact study of the rate of growth and
attenuation of waves in the solar atmosphere it is neces-
sary to consider in greater detail the eGects due to the
collisions of electrons with other particles. This should
be done in general for x(2)&10' km and in particular
for Ei waves of frequencies near the local gyro-frequency
f&r in higher regions. One such effect is that in regions
where V is negligible the E& waves of the lower fre-
quencies would tend to be strongly absorbed.

From all the foregoing theoretical and observational
results we may conclude that observed strong circular
solar noise of wave-lengths less than 15 meters can
originate from random disturbances in diferent regions
of the solar atmosphere over sunspots whenever the
electrons in those regions have a drift motion relative
to the positive ions, e.g. , when a constant (or slowly
varying) electric field exists with a component parallel
to the spot's magnetic field. That such an electric held
can occur has been shown by Giovanelli. "

This conclusion is a particular example of the theory
previously published" that in general abnormal solar
noise may be attributed to growing waves which can
arise when static electric and magnetic helds are present
in the sun's atmosphere.

It also appears possible that the observed waves with
frequencies above 60 Mc/sec. have been mainly ordi-
nary waves which grew in the chromosphere by inter-
action with electrons drifting outward, and that those
with frequencies below 60 Mc/sec. have been mainly
extraordinary waves which grew in the corona by
interaction with electrons drifting inwards.

This suggests that other possible causes of the drift
are: (a) Electron emission from low regions over the
sunspot, and (b) greater absorption of outgoing radia-
tion by electrons than by ions. either when free or
when being freed from one another.

These suggestions of course need closer examination.
It is interesting to note that our conclusion that

ordinary waves can escape from the lower regions of the
solar atmosphere is in agreement with Saha's' view;
but, unlike the latter, it is substantially independent of
the question whether an ordinary wave in the magneto-
ionic theory can penetrate the region in which fo f. ——

Summing up, we can see how the single hypothesis
that the electrons in a sunspot have a drift motion leads
us, through Maxwell's equations and generally accepted
data about the sun's atmosphere, to conclusions which
are in good agreement with many of the well-established
facts about strong solar noise and which do not appear
to disagree with the remainder.

An important feature of this theory is that it does
not require us to invoke large temperatures of an order
exceeding 10' K.

» R. G. Giovanelli, M. N. R. A. S. 107, 338 {1947)."V.A. Bailey, Nature 161, 559 {1948).
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8
F=c-'(uXh)„„G=r—(logAr)p, .

Bx
(73)

For the case (C 11) we obtain from (72) the following
relation between the components along Ox:

where

8
-', —U, '+vU, = (e/m)(E, +F,) L, —

Bx

(uT Xh r )Av,

8
L= -', —(N. ')A,+G.

Bx

(74)

(75)

(76)

This is in contrast to the theory published recently
by Ryle" in which, among others, the following two
hypotheses are adopted: (1) An electric field exists;
(2) this electric field causes the electrons near sunspots
to have mean temperatures of from 10' to 10' 'K and
sometimes to 10" K.

The erst hypothesis alone is sufFicient, on our present
theory, to account for strong, circular solar noise.

The second hypothesis may or may not be true, but
it does not appear to be necessary.

Also recently a theory has been proposed by Haeff'
which resembles the present one in that it too makes
use of growing plane waves, In that theory the electrons
are supposed to be divided into two or more streams
with difI'erent but parallel drift velocities, and mag-
netic fields are not considered. The resulting growing
waves are longitudinal with no Poynting Aux or
polarization" and the theory gives no information on
the process by which these waves give rise to the ob-
served radiation which is necessarily accompanied by
a Poynting Aux. Also in order "to interpret the observed
data on the intensity of solar radiation and its spectral
distribution" in terms of his theory HaeG makes a
large number of special assumptions. Of these the
assumptions that the current density at "the surface
of the Sun" is about 10 ' amp. /cm' and that the mean
electron velocity is about 2X10' cm/sec. lead to an
electron density near the sun's surface which is about
10 ' times the correct value according to Smerd.

6. ULTIMATE LIMIT OF A GROWING FLUX OF
RADIATION

When the transverse perturbations become larger it
is necessary to take account of the non-linear terms,
depending on time, which occur in the fundamental
Eq. (6).

On taking mean values in time of all terms, with the
perturbations periodic in time and propagated along
the x axis, this equation yields:

U.(f)Up/f)x)+ (u.(f)u/f)x) )A,+vUp

= (e/rip) (Ep+c—'Up XHe+ F)—Gi, (72)
where

P arises from the transverse perturbations and I.
arises from the longitudinal ones.

On using (13) and (21) it is easily found that

P (I&VI'+1)Ie, I'd~, (77)
~ p 8pr¹ec

where
3f =f +sp I er I'=

I
"I'+I"I'.

Since e(0 it follows that for the growing components
of the transverse perturbations (which ultimately
dominate the others) we have

P.&0. (78)

NpeF, = —(f)p'.,/f) x). (80)

(For small perturbations this can also be deduced
from (77) and (79) combined with (13).)

With perturbations growing in the direction of Ox

it is evident that p„ increases with x and so, by (80), it
follows that F,)0, which confirms (78).

Thus, with large growing perturbations the radiation
pressure gradient acts on the stream of electrons so as
to reduce their mean velocity of drift U, .

Similarly from the nature of the term L in (74) we
see that U, is reduced by the growth of longitudinal
waves.

Hence it follows that ultimately a k~neHc steady state
in the medium is reached in which U is so small that,
on account of the energy lost by collisions of electrons,
the transverse perturbations cease to grow.

The ultimate value reached by P will depend on
circumstances. Thus, if initially v) U and a suitable
random longitudinal perturbation did occur, this could
lead to growing longitudinal perturbations and then P
might not be able to attain a large value. On the other
hand, if r were small or if the initial perturbation were
not longitudinal, then when v is small, P would
ultimately approximate to the reversed static electric
field —E,.

Thus the ultimate intensity of the growing waves
could at the most be such that the eGect of their radia-

From (74) and (78) we see that as the transverse per-
turbations grow, they impose on the electrons a notable
mean force eP which opposes the velocity of drift U,
and so tends to reduce it.

It is interesting to note that this opposing force eP
can also be regarded as arising from the gradient of the
mean Maxwellian pressure p„due to the growing
transverse perturbations. For if

p-= 1/8x((l er I'+ Ihr I'))"

then it can be deduced without much difficultyllll that
in the situation considered here

"M. Ryle, Proc. Roy. Soc. 195, 82 (1948).
2' A. V. Haec, Phys. Rev. 74, 1532 (1948); 75, 1546 (1949).
"V. A. Bailey, Phys. Rev. 75, 1104 (1949).

()() For example, from Eqs. (6.3) and (7.6) in R. Becker's
Theoric der EJektrisQiit (B.G. Teubner, Leipzig, 1933),Vol. II, pp.
34-37.
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tion pressure gradient on the electrons approximately
balances that of the static electric field.

We may also consider the situation in which some or
a1.1 of the electrons are ejected with an initial drift
velocity U& and the static electric field is zero. Then we
can readily deduce that, with v small, the initial drift
kinetic energy of the electrons is ultimately converted
into oscillatory kinetic energy and radiation of trans-
verse wave energy. This sets an upper limit to the
intensity of the growing transverse waves.
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APPENDIX 1

Tn a frame of reference which is at rest relative to the positive
ions and with the axis Ox in the direction of the drift velocity U,
the dispersion equation in the relativistic E.M.I. theory, for a
wave of the form A expI i(cA —Llx —Lmy) j turns out to have either
of the following forms:

XP' —(P'Q, '+QP) PRZ I'+ (P'SQ,+Lm Q„)'Z(c'P p2+ rZ) =0; (1A)
XL-~-(p Q. +Q~}Z 3-t-p (SQ„-L~Q,}

+c~(Z+P2R }Q jZ{c~Pp +~Z}=0, (2A)
where

X=p~R —wc~(Z+p R }—po~ —ip'vR,
P- pR(Z+ p,~}—ip.z,
Z=c'L' —aP,

p = (1—V/c'}~,
R=o)—ULl,
S=Ll —o) U'/c',

(l, m, 0) =direction cosines of the direction of propagation,
O= {—e/p~pc)H„Qp= Q„~+Qp,
pp=4~Xp~/~p,

the rest-mass of an electron,
Xp= the rest-density of the electrons.

When
~ U~ approximates to the velocity of light, (lA) ap-

proximates to

IR (1—v.c ~) —ivRI IR{2+pp)—ivZ I =0,
which does not yield growing waves.

When U'«c', ~&&c' and the frame of reference is changed by
rotation about Os until Ox is parallel to the direction of wave
propagation, (1A) is transformed to the following approximation
for the equation of dispersion of a wave of the form
A exp[i(art —Ig) ):

XF —VRZF+(LQ —c~~U Q)'Z(c2pp~+rZ} 0, (3A)
where

X=R'—7L~—po~ —ivR,
Y =R(Z+pp') —ivZ,
Z =c2L2

R=eo —U,L,
Q = (—e/mpc)Hp,
pp'= 4~Xpe'/m p.

Equation (3A) differs from Kq. (12), in Section 1, only by
quantities which are of the second or higher orders of smallness in
U and v.

In the case (C11), when

Q.=Q, Q„=O, Q, =O, l=1, m=0,

(2A) becomes

X(I 2—p~Q2Z }-O.
This yields the approximate Eqs. (17) and (18) when U'«c~ and
~«c'.

The detailed derivation of the formulas (1A), (2A) and (3A)
will be given in another publication.

APPENDIX 2

The use of the terms ordinary and extraordinary, which is
current in the magneto-ionic theory of wave propagation, is not
in general feasible in the electro-magneto-ionic theory.

As the literature of solar noise often contains these terms we
shall here show how, nevertheless, they can be related to the E~
and E2 waves dined in our present special case (C11).

The ordinary wave as usually de6ned, with V=O, is that which
is the less affected by the magnetic 6eld; since

M'= 1—g/(1 —k„q}

the ordinary wave therefore corresponds to k q&0. Hence by
{20) the ordinary and extraordinary waves correspond to our E&
and E& waves respectively when V =0. These identi6cafions may
be retained when V&0.


