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The solution of the problem of diffusion of imprisoned resonance radiation obtained by Chandrasekhar is
worked out in detail in the second approximation. Decay constants, characteristic roots and eigenfunction
coefficients necessary for an explicit solution are tabulated for both large and small optical thicknesses.
A comparison is made between computed and measured decay constants for the Hg 2537A resonance line.

1. INTRODUCTION

IFFUSION of imprisoned resonance radiation has
been the subject of both experimental and theo-
retical investigation and can be explained simply in
terms of excitation of atoms. In escaping from a gas of
atoms in their normal state, radiation at the frequency
of a resonance line of the atoms will be absorbed and
emitted many times. This transfer of excitation from
atom to atom delays the escape of the resonance quanta
from the gas because they are “imprisoned” within
each atom for an average time equal to the mean life
of the excited state. The escape of resonance quanta,
therefore, can be considered statistically as a decay of
atoms in the excited state, and it can be analyzed as a
diffusion process, if the frequency dependence of the
atomic absorption coefficient for the resonance line
o(v) is approximated by assigning a constant value o
over a given frequency interval Av such that

f o(v)dv=ohv. )

The equations of radiative transfer and radiative equi-
librium for this diffusion process were first formulated
and solved approximately by Milne.! Chandrasekhar?
has analyzed this problem in a similar manner obtaining
solutions in finite approximations. The solution in the
first approximation, which is essentially equivalent to
Milne’s solution, is worked out and presented in detail.

In this paper Chandrasekhar’s solution in the second
approximation will be presented in a similar manner,
including tabulation of decay constants of the exponen-
tial decay of excited atoms, characteristic roots and
dominant eigenfunction coefficients necessary for an
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LE. A. Milne, J. Math. Soc. London 1, 40 (1926).

explicit solution. Also the decay constants for the
Hg 2537A resonance line, as calculated in the first and
second approximations and in other investigations, will
be compared with laboratory measurements.

2. CHARACTERISTIC ROOTS AND DECAY CONSTANTS
FOR THE SECOND APPROXIMATION
The characteristic equation (reference 2, p. 360) in the
second approximation is

1 a; as

© 1+ (uk)? 1+ (uok)?

where the Gaussian weights a1, a» and divisions u1, e
have the values

0:=0.652145, u;=0.339981,
02=0.347855, pp=0.861136,

and where w takes one of its eigenvalues w®™ or (™
with m=1, 2, ---, ». The characteristic roots of (2)
corresponding to these eigenvalues consists of the real
roots k1™ or ;@™ and the imaginary roots ks ™ or
ks ™, Using the definition of 8,; (reference 2, p. 361),
we have

012%™ = tanp ky ™,

2

0120 ™ = tan—tu b, O™
0124 ™ = tanlpoky* ™, 019%™ =tan sk ®™,  (3)
09y (b = tanh—lﬂlkz(l, m)’ 0910 m = tanh‘l”lkz(oy m),

Similar definitions for 6,2*™ and 622*™ are not valid
since
uokat™>1; gk @™ >1 4)

for all values of m. Therefore the equations which de-
termine the eigenvalues of w (reference 2, p. 361) take
the modified forms,
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2S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950), p. 354.
424



DIFFUSION OF RESONANCE RADIATION 425
TABLE I. Decay constant, characteristic roots and dominant eigengunction coefficients appearing in the
second approximation solution for large optical thicknesses.
Decay constant* Characteristic roots Dominant eigenfunction coefficients Optical thickness r; for
(0m) —1)/oltm  —log (2(_‘:%7.__1) Riltm) Eallm)
or or or or
(@M —1) /p0.m) —log( 1(3,%),..:)—1) R fa0.m) R —1og‘(—'—"“1'+‘“m ) 1) ©,2)
1.0000< 107 6.00000 0.00173205 1.9720 0.6367 1795.20441 906.182 e
3.1623X 1078 5.50000 0.00308008 1.9720 0.6366 1012.00442 509.289 1019.28
1.0000X 108 5.00000 0.00547723 1.9720 0.6366 571.35874 286.107 572.904
3.1623X 107 4.50000 0.00974064 1.9720 0.6366 313.18413 160.569 321.832
1.0000X 10~ 4.00000 0.0173222 1.9720 0.6366 183.41917 89.9873 180.669
3.1623X 10 3.50000 0.0308096 1.9718 0.6365 104.55968 50.2903 101.274
1.0000 1073 3.00000 0.0548215 1.9712 0.6361 59.92813 27.9597 56.6157
3.1623X107¢ 2.50000 0.0976786 1.9695 0.6349 34.65068 15.3897 31.4710
1.0000< 102 2.00000 0.174780 1.9641 0.6315 19.97762 8.3009 17.2882
3.1623X 1072 1.50000 0.317058 1.9468 0.6218 11.46733 4.2842 9.2386
1.0000X 1071 1.00000 0.60235 1.8902 0.5981 6.43080 1.9942 4.5979
3.1623X 107! 0.50000 1.3605 1.7071 0.5480 3.71399 0.6919 1.850

* (w1 —1) /0D =0,

which is satisfied by w©®™, These equations are for a
slab of gas of infinite extent and a total optical thickness
Of 2T1.

It is simpler to solve (5) or (6) together with (2) and
(3) for 7, for assigned values of the decay constants
(@®m™—1)/w®&™ or (w®m™—1)/w®m rather than
solving for decay constants for assigned values of the
optical thickness. The results, together with charac-
teristic roots, are tabulated in Table I for large values
of 7, and in Table II for small values of r,, using a

sufficient number of values of m to give the final solu-
tion of the problem the same order of accuracy as the
tables. This accuracy is better than =5 in the last digit.
The decay constants are given in units in which the
mean life of the excited state is unity.

3. NORMALIZED EIGENFUNCTIONS AND THE
SECOND APPROXIMATION SOLUTION
The orthogonal, normalized eigenfunctions used in
the final solution of the problem are in the second
approximation (reference 2, p. 362)

Y (7) = A, cosk, M1+ (45 /A, coshhy® 7] 0
TasLE II. Decay constant, characteristic roots and dominant eigenfunction coefficients appearing in the
second approximation solution for small optical thicknesses.
Decay constant* Characteristic roots = Dominant eigenfunction Optical thickness 7, for
coefficients
(wtm) —1) /wm)  Jogewt.m) ky(tm) kallm)
or or or or
D4, D4 ,0

(@ @m) —1) /0m)  Joge.m) k1(0.m) ka0.m) o IU‘;‘)l ¢ I(‘:')’ 1) (, 2) ,2) o, 3) a, 3) (0, 4) (1, 4)
0.100 0.6024 1.8902 0.5981 0.001611 1.9942 cee
0.150 se 0.7766 1.8476 0.5815 0.005919 1.4435 s
0.200 0.09691 0.9464 1.8046 0.5695 0.01113 1.1177 s
0.250 ce 1.1192 1.7620 0.5601 0.01720 0.8975 s v
0.300 1.2998 1.7203 0.5507 0.02283 0.7354 1.9473 cee
0.350 1.4912 1.6803 0.5432 0.02704 0.6117 1.6694 s
0.400 1.6979 1.6425 0.5369 0.02976 0.5121 1.4426 s s
0.450 1.9222 1.6074 0.5317 0.03084 0.4305 1.2537 2.0699 cee
0.500 2.1686 1.5750 0.5277 0.03082 0.3613 1.0930 1.8162 eoe
0.550 cee 2.4432 1.5456 0.5248 0.02901 0.3035 0.9535 1.5957 ose ]
0.600 0.39794 2.7541 1.5189 0.5221 0.02662 0.2528 0.8303 1.3995 1.9701 s
0.650 s 3.1137 1.4949 0.5199 0.02368 0.2083 0.7194 1.2227 1.7275 e LR
0.700 3.5413 1.4733 0.5173 0.0202 0.1690 0.6185 1.0597 1.5046 1.9481 see
0.7500 4.0692  1.4539 0.5147  0.0168 0.1336  0.5254 0.9094  1.2973  1.6822  2.0681
0.7750 v 4.3881 1.4449 e .o e e e Y e 1‘9120 e
0.8000 0.69897 4.7559 1.4364 0.512 0.013 0.1019 0.4375 0.7653 1.0967 1.4262 1.7567 2.0870
0.8250 5.198 1.4283 1.6023 1.9038
0.8500 5.7235 1.4206 0.509 0.010 0.0730 0.3502 0.6238 0.8987 1.1729 1.4475 1.7220
0.8750 6.3942 1.4133 oo oo 1.2899 1.5371
0.9000 1.00000 7.2862 1.4064 0.2646 0.4789 0.6952 0.9104 1.1262 1.3417
0.9250 oo 8.5698 1.3997 oo see e oo 0.9526 1.1351
0.9500 1.30103 10.6848 1.3934 0.1707 0.3168 0.4644 0.6110 0.7583 0.9051
0.97500 1.60206 15.3743 1.3874 0.1137 0.2155 0.3180 0.4199 0.5223 0.6244
0.98750 1.90309 21.9273 1.3845 0.0774 0.1488 0.2206 0.2920 0.3639 0.4355
0.993750 2.20412 31.1398 1.3831 e 0.1037 0.1543 0.2047 0.2552 0.3056
0.9968750 2.50515 44,1302 1.3824 0.0725 0.1082 0.1438 0.1794 0.2150
0.99843750 2.80618 62.4742 1.3821 s 0.0761 0.1013 0.1265 0.1516
0.999218750 3.10721 88.3976 1.3819 soe 0.0714 0.0892 0.1070

* () —1) /w1 =0,
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and
YO (1) =B ™ [sink," ™74 (B> /B,™) sinhk, ™77, (8)
where by the boundary conditions (reference 2, p. 362)
Ay /A, = —cosfy, 4™ cos(B11 ™+ k4™ 7y) /cosha ™ cosh(fay ! ™4 kst 7)) )

and

iBg(M)/Bl(m) = — COSHH(O‘ m sin(ﬁu“" m)+k1(0' M)Tl)/COShggl(o' m) sinh(@-_:l("- rn)+ kg(o‘ '")T]),

and by the normalizing conditions

1 sin2k, ™7y [A™P
1+ —'rl: ] [T1+

sinh2k, "‘)n}

(10)

4[A2(""][k1”~ ™ sinkyh ™ 7y coshks®™ 7y ka(h ™ cosky ™7, sinhks "‘)71] )
11

(Aym) 2,0 m Ay m 2y m)
A,
and
1 sin2k, @™z [iBy™ P sinh2k,® ™1,
By ok _[E(;;] [T_ 2y

(kl(l, m))2+ (k2(l, m))Z

1By ko™ sink,© ™7y coshka® ™ 71—k @™ cosky ™7y sinhky© ™ 1,
e } o

Bl(m)

The expansions in terms of these eigenfunctions of the
mean intensity J(#, 7) and the number of excited atoms
per cm3 N (4, 7) constitute the final solution of the prob-
lem. These expansions (reference 2, p. 362) in the second
approximation are

J7)= 5 attmytn(r)
m=1
Xexp]{ — (wl ™ —1)t/wttm )

+ f: a0 my @ m (1)

m=2

Xexp{— (0@ ™ —1)t/w®m} (13)
and
N, T)= Z a(hm gy myd, rn)(T)
m=1
Xexp{ = (wh ™= 1)t/ ]
+ f: @ (0 m) (0, M0, m) (1)
m=2
Xexp{— (@@ —1)t/w®m}, (14)

where the summation of Y(™(7) starts with m=2,
since ¥ 1(7) is identically zero. These solutions are for
the time interval £>0 where =0 marks the cutting off
of all radiation incident on the gas and hence the start-
ing of the diffusion process. Examination of Tables I

(kl(o, m))2+ (k2(0, m))2

and II shows that for a given 7i, the decay constant
(w®P—1)/w®D is the smallest, and so the term con-
taining ¢*P(7) in (13) and (14) will dominate for
sufficiently large values of ¢, this domination being more
pronounced for large values of ;. Hence ¢*V(7) will
be designated the dominant eigenfunction, and its
associated decay constant, the dominant decay constant.

The coefficients of expansion ¢®*™ and a®™ are de-
termined by equating J(¢=0, 7) to the mean intensity
J(r) obtained from the solution of the stationary
Schuster problem for the time interval /<0. In the
second approximation this solution for the steady state
conditions when radiation is incident on the gas, gives
(reference 2, p. 363)

J(7)=Lor—2L; sinhk® 7+ L,, (15)

where
E®=1.972027

is a root of the characteristic equation (reference 2,
p. 363). The coefficients in (15) as determined by the
boundary conditions (reference 2, p. 363) are

Lo=31©[0.228020 exp{—k©7,}

—4.466748 exp{k©@r,} ]/L*, (16)
Ly=31I®[0.521155]/L* a7
and

Ly=11©, (18)
where
L*=(0.2280207,40.389506) exp{ —k©r,}
— (4.4667487,43.100033) exp{£©7,}, (19)
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and I is the intensity of the isotropic radiation in-
cident at 7= —7; Expressions for the coefficients of
expansion can be obtained in the usual manner, em-

T1
a(Lm):f J () em™ (r)dr=2LyA4,™

—-71

and
sinkl(”' m) T
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ploying the orthogonality of the eigenfunctions and
substituting J(7) for J(¢=0, 7). These coefficients of
expansion are

sink; - ™1, Ao\ sinhkyt ™y
I
T
kl(l' m) ‘4 1(m) kg(l' m)

T1 COSklm’ m)Tl

(20)

71
a0m =f J (WO ™ ()dr=2L,B,™ -
_ (kl(ﬂ, m))‘l

kl(f). m)

[iBg("‘)][sinhkg‘o' ™z 7, coshky® m)rl]}

Bym (By(0m)2

b, (0,m)

k@™ cosk, @™ 7 sinhk©® 7, — kO sink,® ™, coshk @7,

+4L13x(”)[

(k(O))2+ (kl((), m))Z

Bl(m)

The coefhicients of the dominant eigenfunction in the
expression for J(t, r) have been obtained in terms of
IO using (9), (11), (18) and (20), and the results are
included in Tables I and II.

4. DECAY CONSTANT FOR THE MERCURY
2537A RESONANCE LINE

Zemansky® and Alpert et al.* have measured the
dominant decay constant for the Hg 2537A resonance
line in the normal time scale

B=An(wt0—1)/w (22)

whece A is the Einstein coefficient for spontaneous
emission. These measurements were made for several
values of N, the number of absorbing atoms per cm?,
which is related to the optical thickness by the ex-
pression

T1=2%Nodl,

(23)

where / is the geometric thickness of a mercury vapor
cell, and ¢ is the mean absorption coefficient as de-
fied by (1).

Determining the correct value of o for diffusion of
resonance radiation, however, is not a simple matter of
determining a line breadth Av from the Doppler breadth
and fine structure splitting, as such calculations give a
value for o several times too large. As Zanstra® among
others has pointed out, Doppler shifts arising from
thermal motions of the Hg atoms will produce non-
coherent scattering of the resonance radiation, and this
will speed up the diffusion process since the probability
of escape for a resonance quantum at the center of the

3M. W. Zemansky, Phys. Rev. 29, 513 (1927).
( 4 Al)pert, McCoubray, and Holstein, Phys. Rev. 76, 1257
1949).

5H). Zanstra, Bull. Astronom. Insts. Netherlands X1, No. 401
(1949).

[iBg(m)][kQ(O‘ m) COShkg(O' m)Tl sinhk(‘”n— k© sinhkg("' m)Tl COShk(o)Tl] } ( )
- (21

(BO)2— (fy(0.m)2

line is much less than the product of the probability
of its being scattered to the wings and the probability
of escape at the scattered frequency. This phenomenon
will qualitatively explain the necessary reduction in o,
but a satisfactory quantitative theory is still needed.
An approximate method for determining o is provided
by Zemansky® who has equated a diffusion coefficient
derived by Kenty? to Ai/4N%* which appears as a
diffusion coefficient in Milne’s! theory. In obtaining his
diffusion coefficient as a function of N, / and atomic
constants, Kenty has taken account of incoherent

A5

4.0~

Log p

35+

1 1 ! 1
150 155 16.0 165
Log N

Fic. 1. Logarithm of B, the dominant decay constant for the
Hg 2537A resonance line in reciprocal seconds, as a function of the
logarithm of N, the number of absorbing atoms per cm? in a cell
1.95 cm thick. The thick solid curve represents computations using
the second approximation; the thin solid curve, computations of
Holstein; the broken curve, computations of Zemansky using
Milne’s theory. The black circles represent laboratory measure-
ments by Zemansky.

6 M. W. Zemansky, Phys. Rev. 42, 843 (1932).
7 C. Kenty, Phys. Rev. 42, 823 (1932).
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scattering due to thermal motions. However, as Hol-
stein® has pointed out, the use of such kinetic theory
concepts as a mean free path and a diffusion coefticient
in this calculation of ¢ is not completely satisfactory in
describing accurately the diffusion of imprisoned reso-
nance radiation, where the atomic absorption coefficient
varies considerably with frequency. Holstein has cir-
cumvented these difficulties by analyzing the diffusion
process in terms of the probability of a resonance quan-
tum going a given distance between successive absorp-
tions. The averaging of this probability over the
resonance line takes account of incoherent scattering
due to thermal motions, and this averaged probability
is used in an equation of radiative equilibrium which is
solved approximately by variational methods for the
decay constant. However, Zemansky’s method for
calculating ¢, which gives the right order of magnitude,
is used in this paper.

The optical thicknesses obtained from (23) for the

8 T. Holstein, Phys. Rev. 72, 1212 (1947).

BAILEY

values of .V and / involved in the laboratory measure-
ments of the decay constant are large, ranging from ten
to one hundred. In this range logB as calculated by the
first approximation is less than one percent larger than
logB as calculated by the second approximation. In
Fig. 1, values of logB are plotted for various values of
logN and for /=1.95 cm, as calculated for the second
approximation, as calculated by Zemansky® using
Milne’s theory and as calculated by Holstein.® The
measurements of Zemansky?® for the same value of /
are also plotted. Better agreement between measured
and calculated decay constants have been obtained
with the improved measuring techniques of Alpert
et al.* The discrepancy between measured and calcu-
lated values of logB for large values of logN can be
explained in part by the effects of collisional broadening
which have been neglected in the computations.

It is a pleasure to express my appreciation to Dr.
S. Chandrasekhar for suggesting this problem and for
helpful discussions concerning it.
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The theory, previously published, of plane waves in an ionized
medium pervaded by static electric and magnetic fields is shown
to predict wave amplification, and consequent electromagnetic
noise, in certain frequency bands. It is then developed in detail
for the case in which the static fields are both parallel to the
direction of wave propagation and the perturbations are trans-
verse to this direction.

It is shown that for any given frequency and electron drift
velocity there are two trios of such waves, E, and E, waves, all
circularly polarized; the E, and E, waves are oppositely polarized.
It is found that any transverse perturbation temporally pre-
scribed at a given plane can be split up into two such trios which
can then be considered independently.

Necessary and sufficient conditions are then found under which
a growing flux of energy carried by E; or E, waves can pass

1. INTRODUCTION

N two previous publications!+? the general equations

which specify the dispersion and polarization of
plane waves in an ionized medium, pervaded by static
electric and magnetic fields, have been derived. This
theory may be conveniently referred to as the electro-
magneto-ionic theory of wave propagation and more
briefly as the E.M.I. theory. As a limiting case it
includes the well-known magneto-ionic theory (M.I.

1V. A. Bailey, J. Roy. Soc. N.S.W. 82, 107 (1948).
2V. A. Bailey, Australian J. Sci. Res. A, 1, 351 (1948).

normally through the boundary between two different ionized
media.

The theory is applied to show that under simple hypotheses
about the drift of electrons in the atmosphere above a large
sunspot strong circular waves can arise by growth of random
transverse perturbations and can then escape from the sun. The
consequences of two such hypotheses are compared with known
observations of solar noise and used to interpret them.

It is concluded that the general hypothesis that electrons in a
sunspot have a drift motion leads to results which are in good
agreement with many facts about strong solar noise and which do
not disagree with any others.

The ultimate intensity which a growing perturbation can attain
is also discussed.

theory) and its application is in general subject to the
same conditions of validity as the latter.

We shall here apply the E.M.I. theory to the im-
portant solar phenomenon of emission of strong cir-
cularly polarized radio noise by a large sunspot.

As it appears that the Australian publications referred
to above are not yet readily available in the United
States and elsewhere, a summary of the E.M.I. theory
is given here in the approximation which neglects the
motions of the positive ions.

In Appendix 1 we also give the relativistic form of the



