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On the Di8usion of Imprisoned Resonance Radiation
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The solution of the problem of diffusion of imprisoned resonance radiation obtained by Chandrasekhar is
worked out in detail in the second approximation. Decay constants, characteristic roots and eigenfunction
coef5cients necessary for an explicit solution are tabulated for both large and small optical thicknesses.
A comparison is made between computed and measured decay constants for the Hg 2537A resonance line.

&. INTRODUCTION

~DIFFUSION of imprisoned resonance radiation has
been the subject of both experimental and theo-

retical investigation and can be explained simply in
terms of excitation of atoms. In escaping from a gas of
atoms in their normal state, radiation at the frequency
of a resonance line of the atoms will be absorbed and
emitted many times. This transfer of excitation from
atom to atom delays the escape of the resonance quanta
from the gas because they are "imprisoned" within
each atom for an average time equal to the mean life
of the excited state. The escape of resonance quanta,
therefore, can be considered statistically as a decay of
atoms in the excited state, and it can be analyzed as a
diffusion process, if the frequency dependence of the
atomic absorption coefficient for the resonance line

{T()) is approximated by assigning a constant value {r
over a given frequency interval hs such that

jt 0(v)dv= {Th) . (1)

The equations of radiative transfer and radiative equi-
librium for this diffusion process were first formulated
and solved approximately by Milne. ' Chandrasekhar'
has analyzed this problem in a similar manner obtaining
solutions in finite approximations. The solution in the
first approximation, which is essentially equivalent to
Milne s solution, is worked out and presented in detail.

In this paper Chandrasekhar's solution in the second
approximation will be presented in a similar manner,
including tabulation of decay constants of the exponen-
tial decay of excited atoms, characteristic roots and
dominant eigenfunction coefficients necessary for an

af a2
+

1+()1)k)2 1+()22k)2
(2)

where the Gaussian weights af, a2 and divisions p, ~, p,2

have the values

af.=0.652145) P, f,
=0.339981,

ay= 0.347855, IM2= 0.861136,

and where ~ takes one of its eigenvalues au(' & or eu(' '
with 2)2=1, 2, , ~. The characteristic roots of (2)
corresponding to these eigenvalues consists of the real
roots k~(' & or k~( ~ and the imaginary roots ik2(' & or
ik2('m) Using . the definition of 8;; (reference 2, p. 361),
we have

8 (' &=tan 'pikf""& ~i1 ' tan p k ""'
)

8 ((, m) —tan —l~ k (l, m) 8 (0, m) tan —1~ kl(o, m) (3)
nh-'& k (& ~& g ('~~ tanh —'& k (0

Similar de6nitions for 8~~(' ) and 822(' & are not valid
since

~ k (i, m) ~ 1 ~ ~ k (0, )rt) g 1 (4)

for all values of ns. Therefore the equations which de-
termine the eigenvalues of {0 (reference 2, p. 361) take
the modified forms,

explicit solution. Also the decay constants for the
Hg 2537A resonance line, as calculated in the first and
second approximations and in other investigations, will

be compared with laboratory measurements.

2. CHARACTERISTIC ROOTS AND DECAY CONSTANTS
FOR THE SECOND APPROXIMATION

The characteristic equation (reference 2, p. 360) in the
second approximation is

cos811(™COS(811 ' +k1 ' Tl)

cosh821" ' cosh(8»&' '+k2{' 'Tl)

which is satisfied by &(' & and

c()s8 (0, m) sin(8 (o, m)+k (0, m)r )

cos812(' ) cos(812(' m)+k (' )rl)

coshk2(' )xi+ p2k2(' ~) sinhk (' ~)7 =0

(+ k (1, m))2

cos812(' "' sin(812™+k)™r))

p~k~" ' coshk2" 'Tf+sinhk~(' '7-f =0,
cosll821(o'm) Slllh(82 (0' )+k {o' )r )

(+ k (0, m))2

' E. A. Milne, J. Math. Soc. London 1) 40 (1926).' S. Chandrasekhar, Radiate Transfer (Clarendon Press, Oxford, 1950), p. 354.

(6)
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TABLE I. Decay constant, characteristic roots and dominant eigengunction coeKcients appearing in the
second approximation solution for large optical thicknesses.

Decay constant*
«~& —1(to(l, m) 1)/~(l, m) log
eo«, m)

Characterlstlc roots

&{lt«, m)

Dominant eigenfunction coe6icients Optical thickness rl for

or

(~(0,na) 1 ) /~(0 ~ yg}

1.0000X 10~
3.1623X10 '
1.0000X 10-5
3.1623X10 '
1.0000X 10-4
3.1623X10 4

1.0000X10 '
3.1623X10 '
1.0000X 10~
3.1623X10 '
1.0000X 10 '
3.1623X10-1

or

6.00000
5.50000
5.00000
4.50000
4.00000
3.50000
3.00000
2.50000
2.00000
1.50000
1.00000
0.50000

or

&fit(o, na&

0.00173205
0.00308008
0.00547723
0.00974064
0.0173222
0.0308096
0.0548215
0.0976786
0.174780
0.317058
0.60235
1.3605

or

$2(0 ~ ra)

1.9720
1.9720
1.9720
1.9720
1.9720
1.9718
1.9712
1.9695
1.9641
1.9468
1.8902
1.7071

/{0)

0.6367
0.6366
0.6366
0.6366
0.6366
0.6365
0.6361
0.6349
0.6315
0.6218
0.5981
0.5480

-~«,1&A ~(1)

I(0&

1795.20441
1012.00442
571.35874
313.18413
183.41917
104.55968
59.92813
34.65068
19.97762
11.46733
6.43080
3.71399

906.182
509.289
286.107
160.569
89.9873
50.2903
27.9597
15.3897
8.3009
4.2842
1.9942
0.6919

(o, 2)

~ ~ ~

1019.28
572.904
321.832
180.669
101.274
56.6157
31.4710
17,2882
9.2386
4.5979
1.850

+ (e&&(0,1}—I )/o&{0,1) ~Q

which is satisfied by ~('"). These equations are for a
slab of gas of infinite extent and a total optical thickness
of 2vi.

It is simpler to solve (5) or (6) together with (2) and
(3) for rz for assigned values of the decay constants
(a&""'—1)/a&"" or (cv" "&—1)/co&' "&, rather than
solving for decay constants for assigned values of the
optical thickness. The results, together with charac-
teristic roots, are tabulated in Table I for large values
of ~2 and in Table II for small values of 71, using a

sufhcient number of values of m to give the final solu-
tion of the problem the same order of accuracy as the
tab]es. This accuracy is better than &5 in the last digit.
The decay constants are given in units in which the
mean life of the excited state is unity.

3. NORMALIZED EIGENFUNCTIONS AND THE
SECOND APPROXIMATION SOLUTION

The orthogonal, normalized eigenfunctions used in
the anal solution of the problem are in the second
approximation (reference 2, p. 362)

P'™(r)=A&'"'Lcosk&" "'r+(A2'"'/A&'"') coshk2" "'r]

IABLE II. Decay constant, characteristic roots and dominant eigenfunction coefBcients appearing in the
second approximation solution for small optical thicknesses.

Decay constant+

(op«, m) 1 ) /o&{l,m) 1Ogo&(l, ta)

Characteristic roots

p1«, ea)

Dominant eigenfunction
coefBcients

Optical thickness rl for

Ol or or or

(~(o,sa) 1 ) /o&(o, m) log~(0, m) $2(0,m)
g«, 1)Ay{1)

I (&})

g(l, l)A ~(l)

I(0) (0, 2) (l, 2) (0, 3) (l, 3) (0, 4) (l, 4)

0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.7500
0.7750
0.8000
0.8250
0.8500
0.8750
0.9000
0.9250
0.9500
0.97500
0.98750
0.993750
0.9968750
0.99843750
0.999218750

0.09691
~ ~ ~

~ ~ ~

0.39794

0.69897
~ ~

~ ~ ~

1.00000
~ ~ ~

1.30103
1.60206
1.90309
2.20412
2.50515
2.80618
3.10721

0.6024
0.7766
0.9464
1.1192
1.2998
1.4912
1.6979
1.9222
2.1686
2.4432
2.7541
3.1137
3.5413
4.0692
4.3881
4.7559
5.198
5.7235
6.3942
7.2862
8.5698

10.6848
1$.3743
21.9273
31.1398
44.1302
62.4742
88.3976

1.8902
1.8476
1.8046
1.7620
1.7203
1.6803
1.6425
1.6074
1.5750
2.5456
2.5189
2.4949
1.4733
1.4539
1.4449
1.4364
1.4283
1.4206
1.4133
1.4064
1.3997
1.3934
1.3874
1.3845
1.3831
1.3824
1.3821
1.3819

0.5981
0.5815
0.5695
0.5601
0.5507
0.5432
0.5369
0.5317
0.5277
0.5248
0.5221
0.5199
0.5173
0.5147

~ ~ ~

0.$12
~ ~

0.509

0.001611
0.005919
0.01113
0.01720
0.02283
0.02704
0.02976
0.03084
Q.03082
0.02901
0.02662
0.02368
0.0202
0.0168

~ ~ ~

0.013
~ ~ ~

0.010

1.9942
1.4435
1.1177
0.8975
0.7354
0.6117
0.5121
0.4305
0.3613
0.3035
0.2528
0.2083
0.1690
0.1336

~ ~ ~

0.1019
~ ~ ~

0.0730

~ ~ ~

1.9473
1.6694
1.4426
1.2537
1.0930
0.9535
0.8303
0.7194
0.6185
0.5254

~ ~

0.4375
~ ~

0.3502
~ 0 ~

0.2646
~ ~ ~

0.1707
0.1137
0.0774

~ ~ ~

2.0699
1.8162
1.5957
1.3995
1.2227
1.0597
0.9094

~ ~ ~

0.7653
~ ~ ~

0.6238
~ ~

0.4789
~ ~ ~

0.3168
0.2155
0,1488
0.1037
0.0725

~ ~ ~

~ ~ ~

1.9701
1.7275
1.5046
1.2973

4 ~ ~

1.0967
~ ~

0.8987
~ ~

0.6952
~ ~ ~

0.4644
0.3180
0.2206
0.1543
0.1082
0.0761

~ ~ ~

~ ~ ~

1.9481
1.6822

~ ~ ~

1.4262
~ ~ ~

1.1729
~ ~ ~

0.9104
~ ~ ~

0.6110
0.4199
0.2920
0.2047
0.1438
0.1013
0.0714

\ ~

~ ~

~ ~ ~

~ ~ ~

2.0681
1.9120
1.7567
1.6023
1.4475
1.2899
1.2262
0.9526
0.7583
0.$223
0.3639
0.2552
0.1794
0.1265
0.0892

~ ~ ~

~ ~ ~

2.0870
1.9038
1.7220
1.5371
1.3417
1.1351
0.9051
0.6244
0.4355
0.3056
0.2250
0.1516
0.1070

(~(0 ~ 1) 1 ) /os(0, 1) ~Q
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'(v.)=B&'")[sink&&0 ")r+(2B' '/Bi'"') sinhkl'" Tg,

where by the boundary conditions (reference 2, p. 362)

A2&"'/3&'"&= —cos8»™cos(8&&™+k,""'r))/cosh82&&("' cosh(8, &' '+k " '&, l (9)

iB2& &/B, & &= —cos8»&0 & sin(8, &" '+ki&" )r&)/cosh82, & ' sinh(82&(0 '+k2{' " T&),

and by the normalizing conditions

1 sin2k ""'rl A ( ' '
=rl+ +

(g (m))2 2k (l, m) g (m)

sinh2k2('
rl+

2k (l, m)

A2' ' kl" m' sinkl(' rl coshk2('m)r]+k2(' m' cosk " '7l sinhk2('m'rl

and

A (m) (k (l, m))2+ (k (l, m))2

(B (m))2

sin2kl(' )ri i82' ' '-sinh2k2" )r~
Tl

g (m) 2k (0, m)(0, m)

i82( ) k2" ' sinkl" 'rl coshk2( ' ry —kl( ' cosky( ' rl sinhk2 ' 'r~

(k (0, m))2+ (k (0, m))2
(12)

J(t r) P &({,m)y(l, m) (r)
m=-I

Xexp{—(00(™—1)t/00&' "&
{

(2{0,m)y(0, m) (~)
m~2

and
Xexp{—({0&' "'—1)t/{d&' "'{ (13)

0&)'(t r) Q {l({)~(lm)P{l,mm)(r), ,

m=1

Xexp { (~(l, m) 1)t/~({m)I,
O(0, m) ~{0,m)g(0, m) (r)

m~2

The expansions in terms of these eigenfunctions of the
mean intensity J(t, r) and the number of excited atoms
per cm' X(t, r) constitute the final solution of the prob-
lem. These expansions (reference 2, p. 362) in the second
approximation are

where
J(r) =L0r 2L& sinhk&0)r+L2, —

k(') = 1.972027

is a root of the characteristic equation (reference 2,
p. 363). The coeflicients in (15) as determined by the
boundary conditions (reference 2, p. 363) are

L0 22I& &[0.228020 exp{—k&—'—&r&I
—4.466't48 exp{k&'&r&I$/L*, (16)

and II shows that for a given ri, the decay constant
({0&{»—1)/{0&"& is the smallest, and so the term con-
taining ((t&''&(r) in (13) and (14) will dominate for
sufFiciently large values of t, this domination being more
pronounced for large values of r&. Hence P&' &)(r) will
be designated the dominant eigenfunction, and its
associated decay constant, the dominant decay constant.

The coeKcients of expansion c(' ) and a(' ) are de-
termined by equating J(t=0, r) to the mean intensity
J(r) obtained from the solution of the stationary
Schuster problem for the time interval t&0. In the
second approximation this solution for the steady state
conditions when radiation is incident on the gas, gives
(reference 2, p. 363)

Xexp{ —(~&0 "—1)t/~ ' "&I, (14)

where the summation of p&'m&(r) starts with m=2,
since /&0 "(r) is identically zero. These solutions are for
the time interval t&0 where t=0 marks the cutting oG
of all radiation incident on the gas and hence the start-
ing of the difFusion process. Examination of Tables I

and

where
I.2= 2'I('), (18)

L*=(0.2280202.2+0.389506) exp{ —k&'&riI
—(4 466748ri+3 1000.33) exp{k&"r.&I, (19)
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and I() is the intensity of the isotropic radiation in-
cident at T= Ty Expressions for the coeScients of
expansion can be obtained in the usual manner, em-

ploying the orthogonality of the eigenfunctions and
substituting J(r) for J(3=0, r) T. hese coefficients of
expansion are

u« "&= J(r)&f«' "&(2)dr = 2L A2, &m&

k (l. 2», )

sink, &' )r& t'A2( )) sinhk2" &T)

+I
(m)) k (im),

(20)

p &1

o(0, m)
~ J(~)P(0, m)(r)gr 2L 21 (m)

0 j.

slnki( ' Ti Ti cosky ' T 1

(k (0, m))2 k (0, m)

iB ' ' sinhk~ ' "'Ti Ty coshkg(' Ti

2l (m) (k (0, m))2 k„(0, m}

kg" ' coski( ' Ty sinhk(')Ti —k' sinks ' 'Ti coshk" Ti
+4J P (m)

(k(0))2+ (k (0, m))2

(k(0))2 (k (0, m))2

~'B.( ) k.(' ' coshk2(' )T~ sinhk(')Ty —k( ) sinhk2(' )Ty coshk( Ty+— (21)
—~1P (m)

The coefficients of the dominant eigenfunction in the
expression for J(t, r) have been obtained in terms of
I(0&, using (9), (11), (18) and (20), and the results are
included in Tables I and II.

4. DECAY CONSTANT FOR THE MERCURY
253'7A RESONANCE LINE

Zemansky' and Alpert et at. ' have measured the
(Iominant decay constant for the Hg 2537A resonance
1ine in the mormal time scale

/=A ((0&' "—1)/0)(& '& (22)

where A2i is the Einstein coefficient for spontaneous
emission. These measurements were made for several
values of &V, the number of absorbing atoms per cm',
which is related to the optical thickness by the ex-
pression

line is much less than the product of the probability
of its being scattered to the wings and the probability
of escape at the scattered frequency. This phenomenon
will qualitatively explain the necessary reduction in 0.,
but a satisfactory quantitative theory is still needed.
An approximate method for determining o. is provided
by Zemansky' who has equated a diGusion coefficient
derived by Kenty' to A»/4$2o which appears as a
diA'usion coefFicient in Milne's' theory. In obtaining his
allusion coeScient as a function of S, l and atomic
constants, Kenty has taken account of incoherent

4,5—

40

7i=-', ÃOl ) (23)

where 1 is the geometric thickness of a mercury vapor
cell, and |T is the mean absorption coefficient as de-
fied by (1).

Determining the correct value of 17 for diGusion of
resonance radiation, however, is not a simple matter of
determining a line breadth hv from the Doppler breadth
and fine structure splitting, as such calculations give a
value for 0. several times too large. As Zanstra' among
others has pointed out, Doppler shifts arising from
thermal motions of the Hg atoms will produce non-
coherent scattering of the resonance radiation, and this
~vill speed up the diffusion process since the probability
of escape for a resonance quantum at the center of the

3 M. W. Zemansky, Phys. Rev. 29, 513 (1927),
4 Alpert, McCoubray, and Holstein, Phys. Rev. 76, 1257

(1949).
'H. Zanstra, Bull. Astronom. Insts. Netherlands Xl, No. 401

(1949).

3.0—

l50 l55
Log N

I

l65

FlG. 1. Logarithm of P, the dominant decay constant for the
Hg 2537A resonance line in reciprocal seconds, as a function of the
logarithm of N, the number of absorbing atoms per cm' in a cell
1.95 cm thick. The thick solid curve represents computations using
the second approximation; the thin solid curve, computations of
Holstein; the broken curve, computations of Zemansky using
Milne's theory. The black circles represent laboratory measure-
ments by Zemansky.

' M. W. Zemansky, Phys. Rev. 42, 843 (1932).' C. Kenty, Phys. Rev. 42, 823 (1932).
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scattering due to thermal motions. However, as Hol-
stein has pointed out, the use of such kinetic theory
concepts as a mean free path and a difFusion coefhcient
in this calculation of 0 is not completely satisfactory in
describing accurately the di8usion of imprisoned reso-
nance radiation, where the atomic absorption coeKcient
varies considerably with frequency. Holstein has cir-
cumvented these difhculties by analyzing the diRusion
process in terms of the probability of a resona, nce quan-
tum going a given distance between successive absorp-
tions. The averaging of this probability over the
resonance line takes account of incoherent scattering
due to thermal motions, and this averaged probability
is used in an equation of radiative equilibrium which is
solved approximately by variational methods for the
decay constant. However, Zemansky's method for
calculating o, which gives the right order of magnitude,
is used in this paper.

The optical thicknesses obtained from (23) for the

' T. Holstein, Phys. Rev. 72, 1212 {1947).

values of 3' and l involved in the laboratory measure-
ments of the decay constant are large, ranging from ten
to one hundred. In this range logP as calculated by the
first approximation is less than one percent larger than
logP as calculs, ted by the second approximation. In
Fig. I, values of logP are plotted for various values of
loglV and for /=1.95 cm, as calculated for the second
approximation, as calculated by Zemansky' using
Milne's theory and as calculated by Holstein. ' The
measurements of Zemansky' for the same value of /

are also plotted. Better agreement between measured
and calculated decay constants have been obtained
with the improved measuring techniques of Alpert
et a/. 4 The discrepancy between measured and calcu-
lated values of logP for large values of loglV can be
explained in part by the efFects of collisional broadening
which have been neglected in the computations.

It is a pleasure to express my appreciation to Dr.
S. Chandrasekhar for suggesting this problem and for
helpful discussions concerning it.
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The Growth of Circularly Polarized Waves in the Sun's Atmosphere and
Their Escape into Space

V. A. BAILEY
School of Physics, University of Sydney, Sydney, ANstratia

(Received May 24, 1949)

The theory, previously published, of plane v aves in an ionized
medium pervaded by static electric and magnetic fields is shown
to predict wave ampli6cation, and consequent electromagnetic
noise, in certain frequency bands. It is then developed in detail
for the case in which the static 6elds are both parallel to the
direction of wave propagation and the perturbations are trans-
verse to this direction.

It is shown that for any given frequency and electron drift
velocity there are two trios of such waves, Ei and E2 waves, all
circularly polarized; the Ei and E2 waves are oppositely polarized.
It is found that any transverse perturbation temporally pre-
scribed at a given plane can be split up into two such trios which
can then be considered independently.

Necessary and sufhcient conditions are then found under which
a growing flux of energy carried by E& or E. waves can pass

normally through the boundary between two different ionized
media.

The theory is applied to show that under simple hypotheses
about the drift of electrons in the atmosphere above a large
sunspot strong circular waves can arise by growth of random
transverse perturbations and can then escape from the sun. The
consequences of two such hypotheses are compared with known
observations of solar noise and used to interpret them.

It is concluded that the general hypothesis that electrons in a
sunspot have a drift motion leads to results which are in good
agreement with many facts about strong solar noise and which do
not disagree with any others.

The ultimate intensity which a growing perturbation can attain
is also discussed.

1. INTRODUerIOZ

N two previous publications" the general equations
~ - which specify the dispersion and polarization of
plane waves in an ionized medium, pervaded by static
electric and magnetic fields, have been derived. This
theory may be conveniently referred to as the electro-
magneto-ionic theory of wave propagation and more
briefly as the E.M.I. theory. As a limiting case it
includes the well-known magneto-ionic theory (M.I.

' V. A. Bailey, J. Roy. Soc. N.S.%. 82, 107 (1948).' V. A. Bailey, Australian J. Sci. Res. A, 1, 351 I'1948).

theory) and its application is in general subject to the
same conditions of validity as the latter.

We shall here apply the E.M.I. theory to the im-
portant solar phenomenon of emission of strong cir-
cularly polarized radio noise by a large sunspot.

As it appears that the Australian publications referred
to above are not yet readily available in the United
States and elsewhere, a summary of the E.M.I. theory
is given here in the approximation which neglects the
motions of the positive ions.

In Appendix I we also give the relativistic form of the


