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preted as supporting Feenberg's suggestion that the
plateau which Dempster had drawn in the region j.80—
210 should be shifted to the region 108-I24.

A detailed discussion of the eHect on the packing
fraction curve of the present measurements and others
in progress will be given in a later paper.

The authors wish to express thanks to Mr. Clifford
Gieselbreth for help in constructing electrodes and to
Mrs. Mary Woodcock. for preparing the figures for
this paper. They also appreciate Professor Stearns'
generosity in allowing them the use of the Astronomy
Department's comparator.
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Staggering of term values of odd isotopes with respect to those of the even ones is discussed. The validity
of the static picture of nuclei as applied to their interaction with electrons is examined. It is found that
the partial excitation of nuclei by atomic electrons results in polarization e6'ects which lower the energy by
amounts comparable to the observed irregularities and staggering. Correlations of observed shifts with the
formation of stable shells are also discussed in a tentative way.

NOTATION

+=wave function of nucleus and atomic electrons or electron.
jV; =nuclear functions; Xo=nuclear ground state; Xl =nuclear

perturbing state.
H=II~+H'+H'=Hamiltonian of the whole system.
E;N =energy of nuclear level.
E= total energy.
E,.=E EP
(r, s) ~ Cartesian and spin coordinates of electrons taken col-

lectively.
cp; de6ned by 0 =Z;X;p;(r, s).
|Nt =go, q=yg, H; =(E;,O'E;).
Operators: IIo=lI'+Boo', II&——H'+II, &'.

(f, g) =radial functions for P.
(I&, g„)=radial functions for q.

6
G=rg Gy=rgy x= 6
—U=potential energy of electron inside the nucleus (approxi-

mated by a constant).
~o=Eo+&, I'&=Ej+ U; a=nuclear radius.
r=f!g rp/gq.
V=Hol' (approximated by a constant).
8 de6ned by —2V/I (Eo—Ei)'+4V'j&= sin8.
k~, k2= the two possible values of 2x&(wave number for y inside

nucleus; values of k&, k& are obtainable from Eq. (3.6).
zg =kga.
z2= k2a.

$~, $2 are de6ned by Eq. (3.2).
e'=awe/k, y=Ze'/kc.
p = (1-v')'
a(ay) —=y, & (a+au) —y (a+Su).
A =mass number.
B,E=change in the electron's energy b,E caused by A~A+bA.
s=S~/aU.
OR der ed by Eq. (6.S}.
Ko de6ned by Eq. (6.7); no= value of k~ for V=0.
a de6ned by Eq, (7}.
n= principal quantum number.
8=quantum defect.
F=relath istic correction factor for electron density at nucleus.
%=ratio of electron density at nucleus to that for a free electron.

~ Assisted by the joint program of the ONR and AEC.

p =momentum of electron in units mc.
C(E) coeKcient of lowest power of r in formula for linear density

of s electron for unit linear density at r= ~.
S(r) =wave function of s nucleon in ground state.
zN =charge of nuclear particle interacting with electron.

I. INTRODUCTION

T is usually supposed that the hyperhne structure of
" ' spectroscopic terms can be understood suSciently
well by considering only the static features of the
nucleus. A marked exception has been pointed out by A.
Bohr who found that the deuteron has to be considered
in terms of its constituent parts rather than as a static
system. Conditions in the deuteron are somewhat
exceptional because the whole nuclear charge is carried
by the proton, while in heavier nuclei the charge on any
one of the nuclear protons is a small fraction of the
whole. The centering of the electronic wave function
on a proton is not likely to be as important in these
cases. It appears, nevertheless, that the static picture is
not necessarily a good one and may be inadequate in
discussions of isotopic displacements of spectroscopic
terms. In the usual theory' of these displacements the
change in nuclear radius which is held responsible for
the effect is only a small fraction (~1/600) of the whole
radius. The change in potential energy between the
electron and the nucleus is correspondingly small in
comparison with the whole deviation from Coulomb
energy which is expected from customary nuclear
models. It would not be too surprising, therefore, if
other eBects than changes in the nuclear radius were
found to be important. One such efkct has been sug-
gested by Brix and Kopfermann' in connection with

' G. Racah, Nature 129, 723 (1932};J. K. Rosenthal and G.
Breit, Phys. Rev. 41, 459 (1932); G. Breit, Phys. Rev. 42, 348
(1932).

~ P. Brix and H. Kopfermann, Zeits. f. Physik 126. 344 (1949).



SPE CTROSCOP I C ISOTOPE SHIFT 39i

anomalies in the isotopic displacements for Sm and Nd.
Kopfermann's suggestion that these anomalies are
caused by the deviation of the nuclear charge distribu-
tion from spherical symmetry is not literally tenable in
the form stated by him because nuclei of spin 0 must
have spherical symmetry. The essential idea is applic-
able, however, because the value zero for the total
angular momentum can be secured by having the wave
function in the form of a linear combination of space
coordinate and spin functions none of which correspond
to zero angular momentum. The charge distribution
couM be reasonably supposed to be determined by the
space coordinate factors and the deviation from
spherical symmetry which corresponds to these is
independent of the magnetic quantum numbers. Thus,
e.g. ,

/=3 (u)S g
—uoSp+u gSp)

with N~, Np, u ~ and Sy Sp, S i standing for space coor-
dinate and spin functions of angular momentum 1 with
magnetic quantum numbers 1, 0, —1, respectively, is
a wave function for a state of resultant angular mo-
mentum zero. The charge density is obtainable from

which is spherically symmetric. The charge density for
a spinless state described by one of the I can have a
quadrupole moment, however, and the mean electro-
static energy of the electron can be affected by a devia-
tion from spherical symmetry of the charge distribution
of the states N~, ep, I ~. In order that this revision of
Kopfermann's attempt to correlate anomalies in the
isotopic shift with quadrupole moments be applicable
to nuclei of zero total angular momentum, it is necessary
to suppose that the coupling of the space coordinate
functions to the sum of the spins does not affect the
charge distribution. This is true for the wave function
as it is written above. It will be remembered, however,
that such a wave function is modified by spin-orbit and
spin-orbit-spin (tensor) forces which are often supposed
to be large in nuclei. ' A dilemma seems to present itself
at this point: One must either discard the view that
large spin-orbit interactions are responsible for shell
structure or else one must consider the connection
between the isotope displacement and the occurrence
of quadrupole moments as accidental for nuclei of zero
spin. It is not clear, however, that the conditions of
nuclear structure which are favorable for a large quad-
rupole moment are necessarily dissociated from irregu-
larities in the average electrostatic energy of the electron
which may exist quite apart from the direct geometrical
effects on charge distribution associated with the
existence of a quadrupole moment. Kopfermann's
assumption of equal progressions in total volume of
nuclei independently of their shape is an appealingly
simple one. It cannot be considered, however, to be a
necessary consequence of nuclear theory. Other possible

I M. G. Mayer, Phys. Rev. 74, 235 (1948).

sources of irregularities in the isotopic shift deserve
consideration as well, therefore.

Another interpretation of Kopfermann's viewpoint
brought out in a discussion by Dr. A. Bohr is that the
nucleus has an intrinsic angular momentum and
quadrupole moment with respect to an axis de6nable
by internal coordinates and that the condition of zero
spin arises from a factor in the wave function containing
the polar coordinate angles of the spin axis. But also on
this view Kopfermann's explanation implies an absence
of dynamic interaction between the rotation of the
spin axis and the internal coordinates, in addition to
the constant volume assumption. %'hile these hypoth-
eses have plausibility their validity appears to require
justification.

The isotopic shift of heavy elements shows a striking
difference between even and odd isotopes of elements
with even Z. The odd isotopes behave as though their
volume were anomalously small in the language of the
volume effect explanation. An increase in nuclear
volume amounts to a decrease of the attraction between
the electron and the nucleus and the staggered position
of the term values of the odd isotopes suggests that
there might be some specific source of attraction between
an electron and the nucleus of an odd isotope. It will
be recalled here that the direction of the effect is such
as though for the odd isotopes the nuclear radius were
somewhat smaller than wouM be expected from the
observed term values of the even ones. On a naive view
the smaller stability of odd isotopes suggests an ab-
normally large nuclear radius, in accordance with the
virial theorem. It is perhaps conceivable that an odd
neutron dangles more or less on the outside of the
nucleus without affecting the proton charge distribution
to a large degree. Such an explanation appears a forced
one, however, because the question arises as to why a
pair of neutrons should not behave similarly to a single
one. It appears natural to investigate the order of mag-
nitude of polarization effects of a nucleus by atomic
electrons because such efFects should lower the energy
and because the observed density of nuclear levels for
odd isotopes is usually larger for odd isotopes than for
even ones. &' It is found in the estimates presented that
the polarization effects can conceivably be large enough
to have an influence on the phenomenon and may pos-
sibly be one of the main contributing factors.

II. GENERAL EXPANSION

The wave function 0' will be expanded in terms of
products of a normal orthogonal complete set of nuclear
functions X;.The coeKcients of the X; are functions of

4 A. C. G. Mitchell (private communication); also Kern,
Mitchell, and ZafFarano, Phys. Rev. 76, 94 (1949); Brolley,
Samson, and Mitchell, Phys. Rev. 76, 624 (1949);Mitchell, Mei,
Maienschein, and Peacock, Phys. Rev. 76, 1450 (1949), and other
papers.

~ Pollard, Sailor, and Wylie, Phys. Rev. 75, 725 (1949);Davison,
Buchanan, and Pollard, Phys. Rev. 76, 890 (1949); L. D. Wylie,
Phys. Rev. 76, 316 (1949); R. J. Creagan, Phys. Rev. 76, 1769
(1949), and other papers.



8 REIT, ARF KEN, AN D CLEN DEN IN

the electronic coordinates. These functions are denoted
here by q;. The expansion is

O'=Z jV;s1;(r, s),

where r, s denote the Cartesian and spin coordinates of
the electrons, The Hamiltonian is represented as

H= HN+H'+H', (1.1)

where superscipts X, e refer, respectively, to the nucleus
and electron. The operator BN contains no electronic
coordinates and spins. Similarly B' is free of nuclear
quantities. The total energy of the system is denoted
by E so that

(H—E)% =0.

The functions X; satisfy the orthogonality relations

(A';, 1V;) =8,1.

The eigenvalues of H~ corresponding to the X; will be
designated by E;~ so that

(H" E")1V =0—
The E,+ will be referred to as the energy values of
nuclear levels i. As in all perturbation calculations the
spectrum of the unperturbed problem is afFected by the
choice of the complete set of functions in terms of
which the expansion is made. The energies E,& thus
depend on the choice of the operator B~. This arbi-
trariness may be supposed to be not very serious,
however, in the present problem because the forces
exerted on a nuclear particle by the electrons are not as
efFective as those originating in other nuclear particles.
The operator BN may include, for instance, some of the
electrostatic potential produced by the electrons in the
nucleus. It will be seen, however, that the calculation
as carried out below will bring in such efFects of its
own accord so that the results are largely independent
of additions to H~ and corresponding subtractions from
H orH

Substitution of the form of 4' given by Kq. (1) into
the complete wave equation gives

where
(H' E,) v1;+Z,H, ,'y, =—0, (1.5)

(1.6)

is the energy left over for the electrons when the nucleus
is in the state i. Here

H~/= (.V;, H'1V;),v

with the understanding that

designates a scalar product in the space of nuclear
variables only, i.e., with the convention of treating the
electron variables as fixed parameters. The B;,' are
functions of the electronic variables. They have the
significance of matrix elements of H' for a dynamic con-
sideration of the nuclear system and a static considera-

tion of the electrons. Equation (1.5) gives in a sense the
reaction of the nuclear system on the electronic one. If
the non-diagonal H; could be neglected one would
have only the correction terms —H; to the E, which
correspond to a picture of the nucleus in which its efFect
on the electrons is describable by a static field. In fact
for this approximation

(H'+H, E;)y, =—0, (1 8)

so that for each i there is an efFective Hamiltonian
H'+H, which determines E;, q;. The energy of the
system is in this approximation

E=EP+E;= (00;,V;, Hvp„X;)/(y;A';, 00,$;), (1.9)

as is readily verified from the previous formulas. This
energy is independent of the breakup of H into H~, H',
H' except insofar as this breakup afFects the wave
function 00;1V,. Since the right side of Eq. (1.9) is the
expectation value of H, it is approximately independent
of the choice of y;X; in accordance with the Ritz vari-
ational principle. The errors in the energy E involve
the errors in the wave function only quadratically.
The approximation of Eq. (1.8) gives in a sense a
static picture of the action of the nucleus on the elec-
trons, for it corresponds to the elimination of an explicit
consideration of internal nuclear coordinates and a
picture of an efFective Hamiltonian H'+B' containing
electronic coordinates only. From a calculational view-

point the present paper is concerned with estimates of
some of the inaccuracies resulting from the application
of Eq. (1.8).

The effect of the non-diagonal terms in Eq. (1.5) can
be taken into account with sufFicient accuracy by a
perturbation calculation which is practically identical
with the standard second-order calculation of the
energy. This fact will be first established by an exami-
nation of a special case for which an explicit solution
can be worked out.

III. TVfO NUCLEAR LEVELS; ONE ELECTRON

In the present section the inhuence of only one
excited nuclear level will be considered. The con-
sideration of the electronic system will be simplified
also by taking into account only one electron and
bringing in, therefore, some contributions to the energy
which have to be modified so as to be in agreement with
the exclusion principle. The state X0 will denote the
nuclear ground state, 'V~ the perturbing state. The
corresponding functions 000, 011 will be now called f, 00.

The coupled equations are

Hpf+H01 'P Epf Hlp P+H1'P El P

where

Hp=H'+Hpp', H1=H'+H11'. (2.1)

The functions P, pp are four-component functions for
Dirac's electron. In order to simplify calculation it will

be assumed that: (a) H01' does not operate on the
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(Gl
G=rg, G„=rg„, (2.2)

there results the convenient equation

1 pg' —m, 'c4+V' —(S+P,)V ~
+

dr2 c'h' ( —(So+ f&,)V 812 m'c4+ V—2~

electronic spin coordinates which is the case for electro-
static interactions, (b) inside the nucleus Hp is of the
form of Dirac's electron Hamiltonian with a constant
potential energy, (c) it is sufficiently accurate to replace
Hp» and H»p' by a real constant V through the nuclear
interior and zero outside the nucleus. The calculation
will be carried through as though IIp=H». The latter
simplification does not restrict the range of applica-
bility of the results because the di6'erence between II»
and Hp is equivalent according to (b) to a difFerence
between E» and Ep.

The radial wave functions for P will be designated
by f, g in the customary manner [see Eqs. (12.3a)] and
those for pp by f„,g„.

In terms of the abbreviations

where the c;; are the elements of the matrix occurring
in Eq. (23).

By means of the equations listed, one can obtain y at
r=u in terms of y„at the same point. On the other
hand, the boundary condition at ~= ~ when applied to
g, f and go, f~ determines y and y„at r=a for an
assumed E. With these values of y and y„, Kq. (3)
determines the energy. ' A complete solution along these
lines is not necessary, however, because the variation
of y„with E is important on a much coarser scale than
that within which there is any question as to the value
of E. The value of y„ is essentially determined by the
nuclear excitation energy E» —Ep~ and the change in

y caused by V can be used to estimate the energy
change by comparison with the corresponding change
for the central field problem.

Expanding in V' and retaining only terms of first
power in V' one has the approximation

y=(hc/44)(i 1/4422 ) {1+(baal/f 1)+f bl/(t 1 ]+1 )
+V /(&211 &222 )+ (hc/44) [1 $251/($14211 )—1'b2/F22'+ V't'2/(all'F22')]/D I, (4)

where

where

go Ep+ U, Ill =——El+ U. (2 4)
and

D=all'y, (hc/b)i —
2, (4.1)

U=Ze2/&2. (2.5)

By straightforward calculation it is found that the
region 0&r&a gives the following connection between

y=f/g, (2.6)

Here U is the negative of the potential energy between
the electron and the nucleus. The nuclear radius is
denoted by a. As an approximation U is taken to be
zero for r&a. For r&a it will be approximated by

i;=(n;)v=o, i'=(n')v=o, (2=1, 2)

b, = —2 V2(P, ,+mcl)/(Ep —E,)2
(4.2)

(4.3)

The quantities

b)1——[cotzl —(zl/sin'zl) ]zl V'Sp /
[(Pp' —m'c') (Pp —Pl)], (4.4)

&f2= [cotz2 —(z2/sin'z2)]z2V Pl/
[(PP—m'c')(Pl —Po)], (4.5)

where

y.-f./g. ,

y= (~+Ay.)/(&+ by"),

(2.7)

(3)

42= —(hc/&1) &»1&»2,

P &» (4211 c+&212 s)+&t 1211 &

'r=pt ( 4421 s+4J22 c) &» 1222
&

b (a/hc) (4111 4422 4412 ) ~

(3.1)

1, $,= k,&2 c—ot(k,a), (2= 1, 2) (3.2)

are the first-order changes in $1, $2. Here the z;=k;a,
with k; taken for V=O. It was found that Eq. (4) is a
sufficiently good approximation to Kq. (3) and that
eGects of higher powers of V' are, therefore, not serious.

Substitution of numbers gives

y——0.205[1+0.00012V' —0.0016V'/
(1+4 98yo)] (4.6)

where V is expressed in mc' and the following values of
parameters have been used

cl 1
——(S'pp —m'c4+ V')/(c'h'),

22 (@12 m2C4+ V2)/(C2h2)

C12= col= V(@2+11)I(c'h') &—
(3."I)

2» (2»1 &»2)/2 21~ (211+2»2)/2 (3 3)

4411 =El+me, 4422 =So+me, 4412 = 4421'= V, (3.4)

s= sine= —2V/[(E, —E,)2+4V2]»,
c= cosa = (Ep—El)/[(Ep —E,)'+4V']», (3 5)

kl =cll+ c12 tall(e/2) k2 = c22 C12 tan(e/2); (3.6)

with

a=1.5X(208)»X10 "cm,
U= 82e2/a= 26 Omc'& E.p mc2& El——mc'/2. ——

These values of the parameters are intended to represent
conditions for Pb' .

The change in y caused by V may be compared with
that produced by cutting oG the Coulomb potential at
r=a. The cut-oB will be supposed to be made in such
a way as to replace the Coulomb energy in 0&r&c by
the constant value —Zep/a. One finds for the cut-off

' G. Breit and G. E. Broom, Phys. Rev. 76, 1307 (1949).
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A(5y) —0.00032. (5 4)

If, instead, one employed the number 0.130, obtained
by direct application of Eq. (5.1), one could estimate
A(by) as 0.130/624=0.00021, which agrees approxi-
mately with Kq. (5.4) but underestimates the effect.
The crudeness of the latter estimate is caused by the
change in the shape of the electronic wave function
inside the nucleus which is produced by the cut-o8. For
E~=0.5 with a Coulomb fieM in u&r& ~ the value of
y„may be estimated approximately to be —2. Using
this value and requiring that the efFect of V' in Eq.
(4.6) be equal to one-half of the amount in Eq. (5.4)
one obtains for V the value 1.6 nsc'. The sign of the
change in y produced by either sign of V is positive
while the cut-ofF of the Coulomb potential increases y
as in Eq. (3.4). The effect under discussion is seen to
oppose the nuclear volume efFect, in accordance with
expectation.

If instead of y„=—2 one had used a value corre-
sponding approximately to the vanishing of the de-
nominator in Eq. (4.6}one would have obtained a much
smaller value of V. Such a value of y„corresponds to a
stationary state of the electron in the condition de-
scribed by the wave function p. Thus, for example, the
straight cut-o8 gives according to Eq. (5.1) the value
—0.204 which makes the denominator very small and

Geld

[y(a)]-~-.«= —(v/3) —v'(2+ v/&')&'/45+'" ' "=../a, ,=z"/a. .
For the solution of the Dirac equation in a Coulomb
field one has, on the other hand,

[y(a)]o.„(, b= —[y/(1+ p)]
X I1+2ya'i[(2p+1)(p+1)]+" I (5 1)

p= (1-v')'

For the values of the parameters employed in Eq. (4.6)
these formulas give —0.334 as the value of y(o) for the
straight cut-off field and —0.204 for the unmodified
Coulomb case. The change caused by the cut-oG is
0.334—0.204= 0.130.

It is not fair to use this change as a criterion of
sensitivity of energy to changes in y because the experi-
mental energy shift, on the nuclear volume change
picture, is more closely related to changes in y produced
by changing the nuclear radius. The value of y at the
increased nuclear radius a+ha undergoes the change

~(~y) =y.+,.(a+So)—y.(a+be)
[ (2—ya'—/15)+1]y(ba'/3a') you'/—3a', (5.2)

in accordance with Kqs. (5), (5.1). For Z=82 this
formula gives

6(8y)—0.199ba/u. (5.3)

If the nuclear volume is supposed to be proportional to
the mass number A then 8a/u= 8A/3A and for a change
of A from 207 to 208 one obtains

this value would have to be reproduced by the branch
of the wave function which is regular at r= ~ if the
level is a stationary one. Such a condition corresponds
to a resonance of the nuclear excitation energy with a
jump of the electron to a lower energy level. It would
be incorrect to make use of it because nuclear levels
have larger spacings than those between optical energy
levels while the x-ray levels are occupied, so that
transitions into them cannot take place. The unoccu-
pied shells which are left in the building up of
the periodic system do not have the azimuthal quantum
number 1.=0 or i. Transitions to the unoccupied levels
may be assumed to be improbable, because the wave
functions do not penetrate to the nucleus. The value
y„=—2 is very difterent from those corresponding to
approximate resonance and the effect computed above
is, therefore, not especially concerned with forbidden
transitions to occupied electron states. In order to have
greater certainty concerning this point calculations by
the standard second-order perturbation formula have
been carried out and the results are presented in
Section IV. The application of the second-order per-
turbation method for approximate calculation is jus-
tifiable because the approximate Eq. (4) agrees with
Eq. (3}reasonably up to V= 10 mc'.

The estimates made in the present section do not
take into account the fact that negative energy states
of the electron are occupied. This is clear from the fact
that there is in principle no difFerence between the
occupied atomic electron shells and the occupied
negative energy states. While of little value for direct
quantitative application they are included in this paper
because they indicate the approximate validity of the
second-order perturbation theory and also because their
approximate agreement with other estimates is an
indication that the eGect of pair theory is not too
pronounced.

V~3A a t &V'lan
4kq

w bA Ze's~ Ej—E
(6)

IV. SECOND-ORDER PERTURBATION ENERGY

The second-order energy will be first estimated in a
model which neglects the Coulomb interaction outside
the nucleus. The crude character of this procedure is

partly ofFset by calculating the volume efFect for the
same model and expressing the answer in terms of the
ratio of the two efFects. The normalization factor of the
initial electronic state cancels out as a result. The object
of this calculation is more that of locating the energy
region which contributes principally to the eGect rather
than of obtaining a precise number for the effective
value of V.

The ratio of the second-order perturbation energy
E&" to the change in the electron's energy 8,E caused

by a fractional increase 8A/3A in nuclear radius can
be expressed in the following form:
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where

s= 8,.E/hU= ) (fp'+go ")r-'dr,
0

(6 1)

with fp, gp denoting the radial functions for the ground
state. The normalization convention regarding integra-
tion over angles is such that

Jl (fo'+go') 'd=-1. (6.2)

The remaining undefined symbols in Eq. (6) will now
be explained. The change in energy 8,E is supposed to
be produced by a change bv' in U through the distance
a and the value

is used with
bU= (Ze'/a)(ba/a)

ga/a = bA/3A.

(6.3)

(6 4)

pC

&X¹3it'= (ffo+ggo) Vr'dr,
4p

(6.5)

where the normalization constants E, Eo are introduced
by

These relations give the first-order change in energy
for a straight horizontal cut-oB of the Coulomb poten-
tial. At this point there is an apparent inconsistency in
the model because the eHect of the Coulomb potential
is omitted for the wave functions. The inconsistency
does not involve anything more than the approximation
of substituting wave functions outside the nucleus for
Z=O for those with the true Z, affecting somewhat the
relative weights of difI'erent parts of the continuum.

The matrix element 5R for the continuum is defined
by

Computation for Eo=mc', Ei——mc'/2 and otherwise
for the same values of the parameters as in Section III
yields for V the approximate value 1.7 mc'- if it is
desired that the eEect of V be —,

' of the absolute value
of the volume e6ect. The contributions from E&180 mc'-

have been neglected and the number is, therefore, an
overestimate for V. Only the contributions to the
integral arising from the continuum have been taken
into account so that the exclusion principle does not
affect this part of E(". Most of the effect comes from
high excitation energies of about 50 mc'.

This fact would seem to indicate that the energy
change is not sensitive to the position of perturbing
nuclear levels of moderate excitation energy. Calcula-
tions described in Section V show, however, that the
model used underestimates the importance of the
smaller electron excitations.

V. EFFECT OF COULOMB FIELD

The e6ect of the Coulomb field at electron distances
r&a has not been considered so far. This produces an
increase in the contribution to E(" from the region of
excited electron states close to ionization. The situation
can be understood qualitatively in terms of discrete
states just below ionization. For a screened nuclear
field, with effective internal and external charges Z, Zo
the non-relativistic electron density for s states at r =0 is

p(0) =ZZp'/[pranp(n8) '7,—

where aH is the Bohr radius and 8 the quantum defect,
which is assumed to be independent of the principal
quantum number e. The spacing between adjacent
levels is

(rgo)=&Vo sinKpr, (r&a),
(r'(f'+g'))4. = 1

(rg) = 1V sinKr, (r(a).
The values of the quantities are obtainable from:

(6.6)

~=Zo'e'/[aH(r4 g) 'j—
The density at the nucleus per unit energy range of
electron states is, therefore,

4P'(0)/AE= (Z/aH) (m/pris') (8)
s=a/2 —spcp/2kp+(h' 'c/)a[Kpaspcp/2 —spo

+ (Kpa)'/2]/(Pp+ mc')' (6.7)

Kp = [(Ep+ U)' m'C4)~/hc, —so ——sin(Kpa), cp ——cos(Kpa),
1/X'= [E/(E+mc')](1+C') sin'(Ka), (7)

K= [(E+U)' m'c4$&/hc, —(7.1)

(P mc') (E+mc') &— 1 1
C= cotKa ——+—, (7.2)

(E+mco) , (E mc') — Ka Ka

P=E+U,

On the other hand, in the absence of the Coulomb 6eld,
the corresponding quantity for states having momentum

p ls

pEdE/(2rr'c'8, ') (8.1)

relativistically. Formula (8) underestimates the density,
being non-relativistic. The appropriate correction factor
taking account of relativistic e8ects will be called I'.
The ratio of the Coulombian density to that for a free
electron will be called (R so that according to Eqs. (8),
(8.1)

Pi'c'/a
m(E) =

(E+mc') (So+me')

P+mc Eo+mc'
X (Kpa)SCo+ (KQ)SpC Sso

E—Eo E

s= sin (Ka) ) c= cos(Ka) .

(7.3)

(8=24rF(0/p)(Z/an). (8 2)

For small values of P this ratio increases. Allowing F to
have the value 2 the value of (R following from the
above estimate for p = mc/2, Z= 80 is —20. An omission
of the e6ect of the large concentration of electron
density per unit energy range is seen to underestimate
the influence of the low excitation states of the electron
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and to give an underestimate of the e8ect of low nuclear
excitations in comparison with the high ones.

The effect of the Coulomb 6eld is calculated here
relativisticaBy but with the omission of effects of devia-
tions from the Coulomb law at small distances. Argu-
ments can be produced to indicate that the latter eGect
is not serious up to E=10 or 20. The calculation as
made applies to a model which precludes the possi-
bility of an isotopic nuclear volume eGect due to static
causes but allows for nuclear polarization effects. The
solution of Dirac's radial equations along standard lines
due to Dirac, Gordon, ' and Darwin' and the application
of standard relations of these solutions to %hittaker's
confluent hypergeometric function gives for small values
of r

(»f)'+ (»g)'= C(E)»2 p, (9)

where & and p are given by Eqs. (5), (5.1), and

C(E)= (2p) p[1+(p/E)]~ I'(p+ )20/I'(2p+I)
~

e~' (9.1)

with
(9.2)

(9.3)

The normalization is such as to give unit average linear
density for large», i,e., such that ((»f)'+(»g)') =1. The
unit of energy is here mc2 and that of length is )2/222t, .
The momentum in units mc is designated by p. Higher
powers of » are omitted in Eq. (9). The expression on
the right of Eq. (9.1) has been obtained by an inde-
pendent calculation along the lines mentioned. It can
also be obtained from Eq. (40) in Fermi's classic paper"
on P-ray theory, which makes use of Hulme's work" on
Dirac's equation. In comparing Eq. (9) with Fermi's
result, account must be taken of the following circum-
stances: (a) Fermi's problem includes the consideration
of both spin directions while in the present work only
one spin direction enters; for this reason a factor &~

must be applied to Fermi's expression in the com-
parison; (b) in P-ray theory the emission of electrons
in p» states has to be considered while in the present
problem only s~ states perturb the initial state. The
eG'ect of the latter circumstance is to bring in a factor
2E/(E+ p) to be applied to C(E). The origin of this
factor is as follows. Prom the symmetry properties of
Dirac's radial equations one finds that a change of f
into g, g into f, E into E—and» into —» —changes the
equations for s» into those for p». Since the argument
of the hypergeometric functions is 2(1—E')»», a change
of the sign of r is equivalent to changing the sign of p
and leaving r unchanged. The quantity r is thus un-
changed and the factor 1+p/E is replaced by 1—p/E

"P.A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928}.
'%. Gordon, Zeits. f. Physik 48, 11 (1928).' C. G. Darwin, Proc. Roy. Soc. A118, 654 (1928}.' E. Fermi, Zeits. f. Physik 88, 161 (1934). Equation (9.1) may

also be derived from the normalized wave functions of M. E. Rose,
Phys. Rev. 51, 484 (193/)."H. R. Hulme, Proc. Roy. Soc. A133, 381 (1931}.

for p» states. Summation over s» and p» states replaces,
therefore, 1+p/E by 2 and this replacement is
equivalent to multiplication by 2E/(E+p). Finally
there is a factor 42» to be applied to the right of Eq. (9)
because in the present calculation ((»f)'+(»g)')=1
while in Fermi's the corresponding average is 4m. Since
it is possible to derive Kq. (9) in this way, further
details concerning mathematical relations need not be
gone into.

For the same convention concerning normalization
one can compare Eq. (9) with the corresponding ex-
pression in the absence of the Coulomb field. The ratio
of the two is

(E+1)(E'—1) I'(2p+1)
(9.4)

XJ C(E) iE2—Ei 'dE, (9.8)

where Xo is a normalizing factor for the bound state
which will be eliminated by comparison with the
volume eGect on the isotope shift. The latter will be
approximated by the value of the 6rst-order perturba-
tion energy caused by cutting down the negative of the
Coulomb energy from the value p/» to the constant
value y/u within 0(»(a and changing the nuclear
radius from u to [1+(1/3A)]a for isotopes with mass
numbers A, A+1. The distortion of the wave function
by the nuclear potential well is neglected in the present

for the case of small distances, keeping only the 6rst
non-vanishing power of r. The elements of special
interest have values of Z approximately equal to 80
so that y=0.6, p=0.8 may be used. For large E the
complex I'-function approaches I' (0.8+0.6i), for small

p the 0 becomes infinite. It is found by numerical trial
that for the crude object in hand one obtains a satis-
factory representation of

~
I'(p+2o) ~2 by means of

Stirling's formula so that

C(E)~22p+1&+2p 1(E+~)E2p—2—
X[V(2p+1)] 'P/[1 —exp( —22»o)] (9.5)

and

@=LE/(E+1)]p '»" 'C(E) (96)

Since p enters as p in Eq. (9.5) and as p ' in (R the
quantities C(E) and (R vanish and become infinite,
respectively, at low electron energies. The inhnity of
R at E= j. enhances the importance of low electron
excitations and is in agreement with the estimates at
the beginning of Section V. Employing the schematic
representation of the interaction of the electron with
the nucleus by means of a constant V, and approximat-
ing the wave function for the normal state of the electron
by the term in the 6rst non-vanishing power of r, one has

f2= &2[(1 I)/—(I+I)]—»»' '& go=&2»' ', (9&)

E~ = —(2/2»)1V2 V (1+p) [u2P+'/(2p+1)]2
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qualitative considerations. The resultant change in E
is called 8+. One fmds

~.E= [2vi»fo'/o(1+ p)r~™/(2p+1)j(&a/a) (9 9)

where (, )=(,"), ("&)
=(rs, r), (r&rp).

and hence

E&"/b,E——(sV'js y) (3A/hA) [u'&+'j(2p+ 1)j
X) C(E)iEx—E} 'dp. (10)

For y=0.6, p=0.8, rh/wc=1. 5A» 10 "cm, r= 1/43.5
substitution gives in round numbers

E&"/b,E——(V'/6200) ~ C(E) }Eg —Ej 'dp (10.1)

a,nd for small p

(V'/6200)C(E)=(V'/910) (E+0.8)E "P/
[1—exp( —3.8E/p) j. (10.2)

The bracket with the exponential has a value close to
unity. The approximations of Kq. (10.2) yield a simple
estimate of contributions to the right side of Kq. (10)
from the region 1&E&10.The region from E=1 to
E=2 contributes

~(V'/910) }2+ (Er+0.8) In[(2 —Eg)/(1 —Er)]},
and for E between 2 and 10 with E~—1 the contribu-
tion is ~V'/29. If E~—0.9 then the contribution from
E= 1 to E=2 is V'/150. For E&10 the parameter
2pr which is the argument of the hypergeometric function
becomes too large to make the omission of all but the
first term in the hypergeometric series a crude approxi-
mation. According to these numbers a single nuclear
level with an excitation energy between 0 and ~200 kev
would cause, on account of contributions from E=2 to
E=10 alone, a value of ~E&'»/b, E~ =$ if one takes

~ V}=(28/2)»=3. 8.
The values of (R which follow from Kqs. (9.4), (9.6)

are about 25 for E=2, 10 for E=10.For higher E the
expression for R is only applicable to conditions at
smaller distances than the nuclear radius r=c. It is
nevertheless of interest that even for E=SO the for-
mulas give R—5.

VE. MONOPOLE EFFECT

The interaction of the electron with the nucleus has
been represented in Eq. (2) by H»' which has been
replaced schematically by the constant value V through
the nuclear interior. Estimates of tj" have been obtained
above by comparison with experiment. The values
obtained will now be compared with expectation. In
making the comparison the experimental indication of
the largeness of effects for s» and p» will be used as a
guide. The Coulomb interaction between an electron
and a nuclear proton can be considered as being ex-
panded into spherical harmonics in the usual manner,

e'/~ r—rp~ = (e'/r&)[1+(«/r&)f'&(cosO)+ - ],

The 6rst term in this expansion wi11 be referred to as
the monopole term. It can give transitions between an
s~ atomic state of the electron and the continuum of s~

states; it also gives transitions between p» and p» states.
Both of these types of transitions are of immediate
interest because the experimental evidence appears to
be pointing to the proportionality of the isotope dis-
placement and the density of the electron probability
at the nucleus. The dipole term containing P& gives
transitions between s» and p» electronic states and is of
interest also. It turns out, however, that the effects of
penetration of the electron into the nucleus are not
marked for the matrix elements between s» and p» states
on account of a cancellation of sects for the first non-
vanishing power of r for the Coulomb field. These
eGects are not readily distinguishable from those for
electron states which do not penetrate to the nucleus
and they are very small for the part of the continuum
corresponding to ionization. For a Coulomb 6eld the
matrix element vanishes with the nuclear radius at
ionization. It appears safe to conclude that the s», p»
matrix elements do not have much to do with observed
phenomena and that the main eGects of interest arise
from the monopole term. The eBect of the latter depends
on whether the nuclear wave function is considered to
be an antisymmetrized product of single particle central
6eld functions or a linear combination of such products.
Estimates will first be made for wave functions which
are antisymmetrized products, i.e., products of two
determinants; one for neutrons and one for protons.
Since the interaction energy is a sum of operators each
of which contains quantities referring to no more than
one nucleon, it suKces to consider the excitation of only
one proton at a time. The matrix element of the energy
is then the same as though the electron were interacting
only with that proton. The spherical symmetry of the
monopole excludes all transitions involving changes
either in the azimuthal or magnetic quantum numbers.
Only angular averages of the cross-product proton
density enter the result. The calculation is the same in
form for the excitation of protons or n-particles since
the charge e enters only through the combination z~e',
where z~ ——1 for protons or 2 for O.-particles.

Interactions of this type are strongly decreased by
the orthogonality of wave functions with the same
value of the azimuthal quantum number. This ortho-
gonality confines the contributions to the matrix
elements to electron positions inside the nucleus. An
application of the completeness relation to the sum of
squares of matrix elements yields an upper limit on the
effective value of this sum. The upper limit appears then
in a form containing only the wave function of the
ground state. The main result of the transformation is
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expressible as

,

~ Ho '(r)w(r)dr =
~

w —
I wdu

~
du, (11)

((
)

P =ci(I, II)+ci(III, IV),
f'= ci'(I, II)+ci'(III, IV)

(11.3)

stand, respectively, for the ground state and perturbing
excited state. The symbol (I, II) represents an anti-
symmetrized product of two single particle wave
functions. The notation is similar for (III, IV), the
single particle functions I, II, III, IV are mutually
orthogonal and are not necessarily central field func-
tions. For a fixed position of the electron the matrix
element of the electron-proton electrostatic energy
consists of two parts containing, respectively, cl*ci' and
c&*c&' as factors. The orthogonality of P to P' implies
c~*c~'———c~ c2' and the result is expressible therefore
in terms of one of these quantities. As an approximation
each of the states I, II, III, IV is regarded as localized
in a narrow range of values of r centered in the neigh-
borhood of the four values r&, ~ ~, r&z, respectively.
This estimate yields

I
V

I

=
I
ci*ci'1(2p) '("/a)

&([riii"+riv" ri'~ riii~—]/a'~.—. . (11.4)

Here ~c,*c&'~ can be as large as 2 and favorable condi-
tions for a larger

~
V

~

than in the previous estimate are
obtained by making rishi, riv large in comparison with
ri, rii. For such conditions and for p=0.8 the value of

where the accent on the summation sign indicates
omission of n=0 and

du =S'(r)dr, w(r) = e' r'&/[2p-(2 p+ 1)7, (11.1)

while 5(r)//r stands for the wave function of the nuclear
particle in the ground state. For the lower energies in
the continuum the spatial dependence of electronic
density can be approximated by r'&+'. One 6nds that

(V').i&~s&-'(e~/a)'/L(4p+1)(2p+1)2j. (11.2)

The evaluation of the right side was made by approxi-
mating 5 by a constant within the nucleus. This
approximation is immaterial in view of the smallness
of the whole eGect which can be inferred from the fact
that the right side of Eq. (11.2) is approximately
s~'(mc'/1'/)', for p=0.8 and a= 1.5&(10 "A& cm. The
monopole eGect for the antisymmetrized product
approximation to the nuclear wave function is seen to
be very small unless one allows s& to have a value of
about 17. Such a value is dificult to reconcile with the
central field approximation which was the starting
point of the present estimate.

Larger values for the expected monopole eGect are
obtained if one considers the possibility of linear com-
binations of antisymmetrized products of single particle
central field functions. For example, let

~
V

~

is approximately

~
V

~
=0.62(e'/a) (rp/a)'& (11.5)

Here rp stands for a suitably taken mean of r&zi and
riv The value of

~ V~ obtainable in this manner is
sensitive to the choice of rp and a. It appears appro-
priate, therefore, to consider first the range of possible
values for these parameters. The value of a=1.5
)&10 "A&cm represents the effective nuclear radius
for the charge as a whole. The value of the numerical
constant 1.5 can be varied by interpreting the theory
of n-decay in diGerent ways. This uncertainty is not
very important for the present purpose since the right
side of Eq. (11.5) is mainly sensitive to the ratio r&/a.
The value of a will be therefore taken as given suf-
ficiently well by the value 1.5 for the constant in the
formula for a. In order to have a large value for the
right side of Eq. (11.5) one needs a large rr/a. The
question arises as to how large rp can be in comparison
with a. It would appear that one could modify the
Coulomb barrier of the Gamow, Condon-Gurney theory
at the nuclear boundary without serious consequences
on the comparison with experiment. A few protons
could be pictured as being somewhat outside the
sphere r= a, therefore. It appears fair to add to a about
2.8)&10 " cm, since the range of nuclear forces is of
this order of magnitude. On this basis one has for
A =208 the value V=rric'/3. 3 which is still too small.
If instead of protons one considers n-particles then one
obtains an additional factor 2 for V so that V=mc'/1. 6.
Four such perturbing levels are equivalent to a single
one with V~mc'/0. 8, which is sufficient to explain the
odd-even isotope staggering eAect on the basis of dif-
ferences in nuclear level systems in a wide energy range
(30 mc') but not sufficient for an explanation by differ-
ences in level systems between 0 and 5 Mev. For the
latter one needs an additional factor of roughly 4. To
obtain it one could invoke interactions with larger
units than an n-particle or else wave functions of the
type

p= c (I,, II,, III, IV )+c (I, II,, III, IV ), (11 )P'= ci'(Ii, IIi, IIIi, IVi)+ci'(Ii, II2, III&, IV&).

It is difficult to exclude such possibilities but there
appears to be no binding reason for assuming them. The
fact that the packing fraction has a minimum for A 50—which is smaller than any of the mass numbers for
which the isotope eGect has been observed —could be
used as an argument for considering the temporary
existence in the nucleus of groups of particles much
greater than an n-particle. The large mass of such
groups would interfere with the explanation if it
depended on the conditions treated by means of Kqs.
(11), (11.2) because in this case the eBect is caused only
by radial Auctuations of charge. The large mass cloes
not interfere, however, under circumstances discussed
by means of wave functions such as in Eq. (11.3) with
the understanding that I, II, III, IV now apply to the
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larger aggregates. While large factors could arise in
such a picture it is not proposed here as more than a
speculation. It is nevertheless difFicult to exclude the
presence of an efI'ect depending on low nuclear excita-
tions.

If the monopole eGect were estimated only for initial
states describable in the central field approximation,
i.e., by determinantal wave functions, an upper bound
on the expected shift could be set by means of the fol-
lowing consideration. The initial single particle states
can be arranged into two classes according to spin
direction. The operation of the exclusion principle can
be considered separately for the two classes. For each
class there is only one particle in an orbital state. There
are no matrix elements of the monopole energy between
states with diferent orbital angular momenta L or
different magnetic quantum numbers. The exclusion
principle does not interfere, therefore, with the con-
tributions from proton states within an occupied shell.
If the shells of nuclear particles are supposed tem-
porarily to correspond to diferent values of I. the sum-
mation of the squares of matrix elements can be arranged
in independent parts, each part corresponding to one of
the initial single particle states. A part of the sum
belonging to one of the states does not depend on what
other states are occupied initially. The whole sum is,
therefore, less than the number of protons times con-
tributions such as considered in Eq. (11). If there are
several shells for the same I, the sum is decreased
because in Eq. (11) all non-diagonal matrix elements
are taken into account while the squares of these ele-
ments which correspond to the initial and 6nal states
being occupied do not occur in the sum for the anti-
symmetric 6ve function. One may take, therefore, for
Z=80, the value 80& mc'/17= inc'/1 9 as an upper
bound for

~ V~ of the monopole effect if the wave func-
tion of the initial state is approximated suSciently well

by a determinant having as elements single particle
central field functions. It will be noted that this value
of

~
V~ is smaller than that indicated by the staggering

of the isotopic shift even if one admits the possibility
that excitation to higher nuclear energies ( 20 Mev)
might be qualitatively diferent for even and odd
isotopes. It will be seen later that the dipole e6ect
cannot account for an appreciable part of the staggering
e6'ect. It appears, therefore, that one could perhaps
claim the inadequacy of a central 6eld nuclear model if
the staggering eGect should not be explicable in some
other way than as a polarization efFect. In the present
state of the subject it cannot be claimed that some
other explanation will not prove adequate and the
mutual exclusiveness of the two possibilities is men-
tioned only as a matter of record.

The situation just discussed is not changed materially
by taking the square of the wave function S' in Eq.
(11.4) to have the form (n+1)r"a " ' and adjusting
n to give a maximum of the effect. This generalization

introduces an extra factor

(n+1) (2p+1)'(4p+ 1)/[(2p+ n+ 1)'(4p+ n+1)]
on the right side of Eq. (11.2). A straightforward cal-
culation for Z=80 gives n= (—1+5~)p —1=0.005
which is so close to n=0 that the difFerence caused in
the expected eGect is negligible. The value of V' is
readily found to be insensitive to n in the range from
—0.5 to 2.0, the eGects on the upper bound for V' being
of the order of 20 percent. While the function S has
favorable properties for giving a large effect it is not
much more favorable than other possibilities which
provide for a large range of variations of charge density
within the nucleus.

Since it is unlikely that the conditions for approaching
the upper bound are realized in nuclei, the monopole
eR'ect may be supposed to give rise to appreciable
polarization efI'ects only if the central field picture of the
nucleus is inadequate. While it is probable that this is
true in some sense it is not clear from the previous dis-
cussion that the types of modi6cation made use of in
Eqs. (11.3), (11.4) are probable. The main reason for an
increase in the expected eGect by these modi6cations is
the occurrence of matrix elements which are diagonal
in single particle states. Furthermore the wave func-
tions in Eq. (11.3) would not give a large effect if it
were not for the assumption that two of the single
particle states correspond to locations close to the
periphery of the nucleus and two other states to locations
in the interior. These assumptions are in a sense arti-
6cial and have been made above in order to see under
what conditions the polarization effect can become
comparable with the experimentally observed irregu-
larities in the isotope shift.

VII. DIPOLE EFFECT

In this section the effects of dipole matrix elements
are considered and the contributions to the second-
order perturbation energy from diferent parts of the
continuum are estimated. The dipole eGect arises from
the second term in the expansion of

~

r—r~~ ' in terms
of Legendre functions.

The needed expressions may be obtained in the fol-
lowing way. The four-component wave functions for the
s and p~ states with magnetic quantum number m can
be conveniently represented as

(12)

(—i[(re)/r]gQ")

where S is a two component spin function with mag-
netic quantum number m. This spin function is a one-
column matrix with two rows and is treated like the spin
functions of a single electron in non-relativistic theory
which are usually denoted by n and P.
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Since one is interested only in averages over all
relative orientations of the angular momentum I of a
nuclear particle and the angular momentum vector j
of the electron the detailed consideration of individual
matrix elements can be avoided. One 6nds readily by
means of Eq. (12) for the py electron that

Z„ l(s, plx, /r Ip, p')I =(I,„/3)', (12.1)

(f'f.+g*g.)d =( ')' (12.1a)

(amc'aI, „/3)'. (12.3)
'~ B. L. van der Waerden, Die Gruppentheoretische 3fdhode in

de' Que@eetel;henrik (Verlag Julius Springer, Berlin, 1932), p. 78,

The x; denotes either x, y, or s and r is the usual elec-
tron-nucleus distance. The magnetic quantum number
in the s state is designated by p, that in the p~ state by
p,
' and the sum over all p' is taken. It will suKce to

know the sums occurring in Eq. (12.1) rather than
individual matrix elements.

The interaction energy of a nuclear proton with the
electron contains the dipole interaction term

(e'r&/r&') cosO
= (e'r&/r&')[xxp+yyp+ssp)/(rrp), (12.2)

where r~, r& stand, respectively, for the smaller and
greater of the two distances r, rp. Arguments similar
to those used in demonstrations of spectroscopic
stability show that the average over the magnetic
quantum number M of the nuclear proton of the
expression

Zol(I. , 3E; s, yl(r&/r&') cosOIL', M', p, y') I',

where Q stands for L', M', p' can be expressed as the
average over M of

~el(» I Ixlr'l p ~') I'I(L 3IlxplL' ~') I'

where E. stands for L', M', p, ', x, y, s. Using familiar
forms for dipole matrix elements" the second part of
expression (12.2a) for L'=L+1 gives rise to

Z, l(L, mix IL+1, m')I
= (L+1)(2L+1)-'I(rp) z, z+.j I', (12.2b)

where 5 stands for M', x, y, s and (rp) r, z+& is the matrix
element of the proton distance r~ taken between two
states having the same magnetic quantum number
but diGerent azimuthal quantum numbers I., I.+1.
Substituting Eqs. (12.1) and (12.2b) into Eq. (12.2a)
gives

(I.,/3)'f(L+1)
I (rp)z„c,+iI'

+Ll(rp)z, z gl'}/(2L+1). (12.2c)

The integral over r inside the nucleus is negligible and
has been omitted. Employing the completeness relation
and assuming the nuclear particle to be at r~= a, the
surface of the nucleus, expression (12.2c) becomes

The a enters in converting lengths in Eq. (12.2) to
Is/mc. The quantities f„g, and f„, gp are the solutions
for k= —1, +1, respectively, of the radial Dirac
equations. The choice of signs is such as to make

rf= e», rg= ps, (12.3a)

where y~, q2 are Gordon's' radial functions.
As in the monopole case, the square root of this mill

be equated to a constant nuclear perturbing potential,
V, integrated over the nucleus. Solving for V one obtains

a

V= nmcsaI, p 3 (ff,'+g, g, ')r'dr ~ . . (12.4)
0

In Eq. (12.4) and the following, the prime is used to
indicate functions in the continuum when it is desired
to distinguish them from the functions for the bound
state. To get the expression for V corresponding to the
perturbation of a py electron by the continuum of sy
states, one need only interchange the subscripts s and p
in Eq. (12.4).

The approximation used in the monopole case does
not apply in this case because

f./g. = f /g. = —L(1 s)/(—1+~)—3' (r=o) (12 5)

Hence the coeKcient of the 6rst power of r in the
integrand f f„+g,gp is zero and a more exact treatment
is required. For convenience the bound electron is
assumed to be described by the wave functions for an
electron at ionization. This is justihed by the strong
localization of the integral at small values of r. The
shape of the wave function is insensitive to the energy
in this region on account of the dominance of potential
energy. The functions are taken to be ""the usual
Bessel function expressions at ionization. The normaliza-
tion factor is taken so that

rf= (x/2) &yI s(2(2 ry) &) . (12.6)

To facilitate computation, p in this section is taken as
0.75 instead of 0.8. From the form of Eq. (12.4) it is
seen that the normalization of the s function is im-
material, the comparison being made with the per-
turbation by the continuum of s states. The solution of
the radial equations obtained by Gordon' can be
written in the following form for the continuum

N.(f.+Cg.)=N, D~ i )/(1 iy/p)—)(f.+4-g.)
= rr 'e '""F(p+io+1, 2p+1, 2ipr), (12.7)

N„(f„iggp) = N, [—(p+—icr)/(1 iy/p)5(f—, igg,)—
=rr 'e *"'F(p+io) 2p+1, 2ipr)'. (12.8)

The quantity g indicates L(E—1)/(F+1))&. In these
formulas the normalization factors for s and p states
are not as yet related to each other. Adjusting nor-
malization to give unit linear density at large r, the
connections between (f„g,) and (f„,gp) available in

"G. Brelt, Phys. Rev. 38, 463 (1931).
~4 G. Breit and L, A. WiOs, Phys. Rev. 44, 470 {1933).
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I,~=O, (E.=E~). (13)

Here it is understood that the Coulomb law holds
strictly. One can satisfy E,=E„exactly either in the
discrete or in the continuum. One has the matrix equa-
tion of motion which relates matrix elements of the
force and momentum by

—(Ze'r/r') „=(i/h) (E„E„)y—„„, (13.1)

where n, m designate energy states in general. Applying
this identity to s and p~ states one sees that the left
side of the preceding equation contains as a factor the
quantity I,„while on the right there occurs the product
of a vanishing energy diGerence and a finite matrix
element of the momentum. It is also possible to demon-
strate Eq. (13) by means of Eqs. (12.9) and an identity"
due to G. E. Brown. However, as will be seen later,
consideration of the derivatives of the wave functions
with respect to energy indicates that 8 V/8 I E,—E„I is
large and possibly infinite at IE, ErI =0. It ha—s been
verified that I,„increases very rapidly with IE, E„I. —

Using the first terms in the power series expansions
of f and g from Eq. (12.6) and fixing on the normalizing
factor for the continuum by means of Eqs. (9) and
(9.7), there results from Eq. (12.4)

V=0.801z~I,n/LC(En)lt (13.2)

for an s~ electron perturbed by the p~ continuum while
for a pg electron perturbed by the sy continuum,

V=2 12z~In./LC(E. )(E.—p)l(E.+p) j' (13 3)

The quantity s& is the charge on the nuclear particle.
Assuming interaction with nuclear alpha-particles as
will be done here one has a zN of 2. Since C(E) is readily
calculated one needs only evaluate I,~ to find V.

The Bessel function expressions for f and g defined by
Eq. (12.6) were used for the wave functions describing
the bound electron. Using up to 10 terms in the hyper-
geometric series occurring in Eqs. (12.7) and (12.8),
f~ and g~ for the continuum were calculated to beyond
the first maximum of rg„. Employing a suitable reduc-
tion" of Dirac's equation the wave functions were
extended by means of JWKB solutions. These con-
tinuum functions were then conveniently normalized
to unit linear density by considering the asymptotic
forms. The normalization coefBcients were checked by
noting that f„and g~ behaved properly for small r by
comparison with C(E). From these values of f~ and g»

"G. E. Brown, Proc. Nat. Acad. Sci. N, 15 (1950}.

Eqs. (12.7) and (12.8) give

f.=(E' p'—) 'I:vf.+(E 1)—gnj (12 9)
g.= (E' p—') 'L~g. (E—+1)f.j,

with the help of

(f,'+g„')/(f, '+g, ') = (E p)l—(E+p), (r= 0). (12.9a)

It will now be shown that

f, and g, were calculated by the use of Eqs. (12.9). The
integrals I,~, I~, were then evaluated by numerical
quadrature with a probable error of about five percent.
The values of V from Eqs. (13.2) and (13.3) for z~=2
are given in Table I for various energy combinations.
The numerical quadratures used for Table I were made
from the nuclear radius a on to ~.The results are very
insensitive to the choice of the lower limit.

Comparing with the calculations of Section V it is
seen from Table I that the eGective V's for the dipole
interaction and z&= 2 are relatively small. A calculation
based on the relation

I
'"!~ I=( '/ ))"I —

I
'( / ) ..' ( )

1

and

By/BE= —(rg)2)t r'(f2+g')dr
0

(14)

~g/&E=g(r)~ Ly+(E+1+v/r)~y/~Ej«(141)
0

In the second a Bessel function expansion" is employed

'g Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936}employed
a similar expansion in the calculation of Coulomb wave functions.

shows that for Eq ——0.9 (a single nuclear level at 50 kev)
the staggering eGect due to the dipole term is about
three percent of the top slice volume eGect. This figure
includes an integration up to E= 100. If only the range
E= 1 to E= 10 is taken then the corresponding number
is 1.5 percent. This result is comparable with values in
Table I and the estimate V=3.8 obtained soon after
Eq. (10.2). Since this V corresponds to 50 percent of the
volume eGect on the top slice basis one would estimate
for 1.5 percent a V of 3.8/L50/1. 5]&=0.66, which is
approximately the value in Table I.

The figure 1.5 percent was obtained by quadrature
based on the calculation of the integrand. The value
three percent which was stated for the eGect up to
E= 100 is not considered to be nearly so reliable since
the integrand was not evaluated from E= 10 to E= 100.
The relative smallness of the eGects under consideration
makes this contribution have only a secondary interest.

Calculations on perturbations of p3/Q states by the s
continuum have been made. It has been found that as
the energy of the s electron is increased the effective V
decreases rapidly and that these perturbations are
much smaller than those of p~ states. At E,=2 the
effect on the Ps~z state is ~xz of that on the Py state.

As a check on the accuracy of the wave functions for
the continuum and to get an indication of 8V/BE,
(E= 1), the energy derivatives of the s-wave functions
at E=1 were computed by two independent methods
(derivations included in Appendix). In the first, the
quantity y f/g was used. One obtainse
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and there results

(f)/ =L(/3v) —( /2)jf
+D2r/3)+(r'/3y) jd(rf)/dr (14.2)

and

B(rg)/BE = L(2r2/3 y)+ (Sr/3)+ (1/2 y) —(2p'/3y) ]rf—(r/6y)d(rf)/dr (.14.3)

The normalization is such that

B(y, g, f)/BE=0, r=O . (14.4)

Applying Eqs. (13.2) and (13.3) to the energy de-
rivative of I,„ the presence of such factors as 2r'/3y in
Eq. (14.3) causes the integrand to diverge at large r.
While screening may keep the result 6nite it appears
that the curve of V es. E starts o6 with a steep slope.
This may be of importance in estimating the magnitude
of the dipole polarization effect for low lying nuclear
energy levels.

An upper bound can be set on the expected dipole
effect by means of the f sum rule, if the nuclear excita-
tion energy of the perturbing levels is decided on.
According to the f sum rule the sum of the f values is
equal to the number of protons. One has for any energy
range the inequality

Z
~
r„„~'&(3/4n)(h/mc. ) ~

c/ „„r~ (m/M)Z

where the sum on the left is taken over the energy
range that is under consideration. Account is here
taken of the fact that in the f sum there occurs a can-
cellation of effects owing to omission of transitions
between occupied states. The f sum rule consideration
may be expected to be of signi6cance mainly for excita-
tions corresponding to an average condition rather than
one of exceptionally low excitation. Taking 20 Mev,
somewhat arbitrarily, for the excitation energy and
Z= 80 one finds from the previous equation

(~r ~)&1.56X10 "cm

which may be compared with a=0.89X10 " cm, the
value used in the calculations in this section. The ratio
of the two is 1.75.

It should be mentioned that all of the values used
here are overestimates because of the omission of the
factor

(Z&M2 —Z2Mg)/t Z&(Mg+M'2) j,
which has to be included as a correction for the motion
of the residual nuclear mass M2 having charge Z2e when
one considers the e6'ective dipole moment due to charge
Z&e with mass M~. Kith a view toward the application
in Section VIII, all the protons will be combined into
(Z~, M~) and all neutrons into (Z~, M2) giving a cor
rection factor of 128/208=0. 61 to the effective matrix
element V for Pb"'. Since the value of (~r ~) was
obtained on the basis of protons rather than alpha-
particles there is a further factor ~ for V. Combining
these factors one has a net factor 1.'?5X0.61&(0.5=0.52.

These estimates indicate that the whole effect will not
be more than (0.52)'&(3 percent=0. 8 percent of the
theoretically expected effect on the top slice method.
If the mean excitation energy were taken as 2.5 Mev
so as to correspond to the calculation in which con-
tributions of the second-order perturbation energy have
been summed from E=1 to E=10 the effect would be
increased by a factor 8 on account of the effect of the
energy ratio on (r'). It would be decreased because the
value 1.5 percent rather than three percent was ob-
tained in the estimate by numerical quadrature from
E=1 to E= 10. One would obtain at most 4X0.8=3.2
percent of the top slice volume effect expected on the
A& nuclear radius approximation. The nature of this
estimate is such as to exaggerate the expected value of
the frequency shift except for the probable overestimate
of the volume efI'ect.

VIII. DISCUSSION

Extensive experimental material on the isotope shift
of Hg, Pb, and Pt is available through the work of
Schuler, Kopfermann and many other investigators.
The staggering of the term values of odd isotopes in Hg,
Pb, and Pt is in such a direction as though the nuclei
of the odd isotopes exerted relatively more attraction
on the electron than the even ones. This fact is in agree-
ment with expectation since the odd isotopes are less
stable and since they have a larger density of nuclear
levels close to the ground state. Quantitative com-
parison in Hg is difIicult because of differences in the
indications concerning the magnitude of the staggering
effect as obtained from different lines. It is convenient
in this connection to express the comparison in terms of
a unit of isotope displacement which will be referred to
as an isotopic unit. This unit will be defined as one-half
the separation between term values of the nearest pair
of even isotopes if one is discussing the term value of an
odd one. Figure 15 of Schueler and Keyston" indicates
for X2536 a polarization effect of about one-third of an
isotopic unit for Hg~' and about 0.9 for Hg'". For
X6072(7 'Sq —8 'Pq) the staggering of Hg" and that of
Hg"' is about 0.6 isotopic unit. For X6716(7 'So —8 'P&)
the staggering is according to the same 6gure of
Schueler and Keyston about 0.75 and 0.55 isotopic unit
for these two isotopes.

It appears possible that for )2537 there has been
some interference among the components of the hyper-
fine structure pattern inasmuch as the separation
between isotopes 198 and 200 is appreciably smaller for
this line than between 200 and 202 while the interval
between the centroid of the pattern of isotope 199 and
198 is anomalously small. The well-known difhculties
of hyperfine structure measurements on an isotopic
mixture make one doubtful concerning the reality of
some of the discrepancies. Additional experiments
especially with the now available separated isotopes

'7 H. Schueler and J.E. Keyston, Zeits. f. Physik. 72, 423 (1931).
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Z4
tmc'1 tmc']

1
2
6

10

Iap, Ipe
t(A/mc) ~]

0
1.92
3.4
3.8

V
tmc~l

0
0.61
0.47
0.36

0.38
1.10
1.31

0.48
0.46
0.35

would be helpful in providing a more certain basis for
theoretical speculation. There is a possibility that some
of the discrepancies are the result of a diGerence in the
staggering eBect caused by difFerences in the behavior
of di6'erent terms with respect to the participation of
perturbations by st and py continua. lt is also not clear
theoretically that this participation of continua will

produce similar eGects for difI'erent isotopes.
There is some indication in the work of Schueler and

Keyston on )2537 that the separation between Hg"'
and Hg~ is larger than that between Hg"' and Hg' '
or that between Hg'~ and Hg"'. For the other lines in
their Fig. 15, however, the phenomenon does not
appear as clearly. DiGerences in the behavior of even
isotopes are not excluded by the polarization eGect
explanation but it appears premature to speculate on
this point also.

For Pb the observations of Schueler and Jones, "
Rose and Granath, "Kopfermann" again show decided

staggering of odd isotopes with respect to the even
ones. Here only one odd isotope (207) is present. Taking
the mean of results obtained from 11 lines measured by
Rose and Granath, one obtains for [(207)—(206)]/
[(208)—(207)]—0.59&0.06 where 0.06 is the probable
error. Here (206) means the term value of Pb"', (207)
the centroid. of term values of Pb~'. This speaks for a
speci6c staggering eGect of 0.26 of an isotopic unit
which is somewhat smaller than the vat.ue assumed in
making estimates of V. There is again considerable vari-
ation of the [(206)—(207)]/[(207) —(208)] ratio be-
tween diferent lines. It may be premature to claim too
much on the basis of this fact since some variation
wouM result as a consequence of experimental error.
Diiferent effectiveness of the s~, Pl continua for dif-
ferent terms would not be in contradiction with such a
variation, however. There are observations on only
three even isotopes of Pb. The sparing between Pb~'
and Pb' 6 is somewhat smaller than that between Pb"'
and Pb"' according to Schueler and Jones" and ac-
cording to observations of Watson and Anderson, "and

"H. Schueler and E. G. Jones, Zeits. f. Physik 75, 563 (1932)."J.L. Rose and L. P. Granath, Phys. Rev. 40, 760 (1932).
~ H. Kopfermann, Zeits. f. Physik 75, 363 (1932}.
~ %.%.%atson and C. E. Anderson (private communication);

Manning, Anderson and Watson, Phys. Rev. 78, 417 (19SO).

TABLE I.Values of equivalent interaction energy matrix element
V for various excitation energies E„E„ofthe electron. Only py
electrons covered here.

Manning. ~ This fact may possibly be related to the
supposed closing of a stable sheila of 126 neutrons in
Pb'. The stable shell can be expected to be less
polarizable and the addition of the 126th neutron could
lead, therefore, to a larger than usual apparent volume
effect.

For Pt (Z=78) there are measurements of Jaeckel
and Kopfermann, '3 Jaeckel24 and by Tolansky and
Lee" The ratio [(194)—(195)]/[(195)—(196)] is 0.82
for X5369 and 0.5 for )5391. There is no apparent
reason for considering the staggering to be greater than
0.5 of an isotopic unit and it may be much smaller since
a smaller value is indicated by )5369 for which the
whole pattern is more open. The displacements between
the even isotopes are approximately equal to each other
with possibly a tendency for the ratio [(194)—(196)]/
[(196)—(198)] to be slightly less than unity.

The observations of Schueler and Schmidt" and of
Brix and Kopfermann' on Sm (Z=62) show a large
anomaly for the even isotopes. A related phenomenon is
present in Nd according to Klinkenberg. "Explanations
pf this phenomenon have been discussed by Schueler
and Schmidt, Klinkenberg, Feather, "and by Brix and
Kopfermann. Klinkenberg brought out the fact that
the specially large separation occurs between isotopes
with a number of neutrons %=88 and %=90 for both
Z=62 and Z=60. Feather points out that the new
assignment of a-activity to Sm'" is not in striking con-
tradiction to expectation from the occurrence pf
o.-activities for radioactive elements with Z=84. He
further points out that for Sm the isotopes 144, 148,
150 can be considered as tightly bound while 152, 154
are regarded as loosely bound. The volume pf Sm'I' and
pf Sm' should be anomalously great, therefore.
Similarly according to Feather the volume of Nd''0 may
be expected to be anomalously great because Nd'~is
lppsely bound. On the other hand, Brix and Kopfermann
suspect connection between the shape of these nuclei
and the quadrupole moment of Eu. As has been men-
tioned in the Introduction, the explanation of Brix and
Kopfermann cannot be maintained in its original form
if the nuclei in question have a spin 0 because the
charge distribution is then spherically symmetric. A
connection with the occurrence of quadrupole moments
for neighboring nuclei may, nevertheless, exist as has
been also discussed in the Introduction.

If the anomalies in Sm and Nd are to be explained as
pplarization e6ects pf the nucleus, then it seems neces-
sary to suppose that neutron shells with %=90 are
especially tightly bound in the sense of having smaller
polarization eBects for %=90 than E=88. Such a view
does not 6t in especially well with Feather's evidence

~ T. E. Manning, Phys. Rev. 76, 464A (1949).
~ B.Jaeckel and H. Kopfermann, Zeits. f. Physik 99, 492 (1936)."B.Jaeckel, Zeits. f. Physik 100, 513 (1936).
'~ S. Tolansky and E. Lee, Proc. Roy. Soc. A158, 110 (1937}.
~6 H. Schueler and Th. Schmidt, Zeits. f. Physik 92, 148 (1934).
~~ P. F. A. Klinkenberg, Physica II, 327 (1945}.
~ N, Feather, Nature 162, 412 (1948).
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which indicates loose binding in Sm for %=90, 92 and
Nd for %=90. The confIict between the views is
perhaps not a derided one because looseness of binding
in Feather's sense has to do with the energy available
for n-emission which is not simply related to relative
polarizability of isotopes. The latter depends not only
on binding but also on the character of the wave func-
tion as in Eq. (11.3). No de6nite claim can be made for
the polarization picture on the basis of the isotope shift
in Nd and Sm. The anomalies in these shifts can be
explained more easily on the nuclear volume picture,
as has been pointed out by Feather.

Returning to the general subject of orders of mag-
nitude of the polarization needed for the explanation of
the isotope eftect, it is of interest that Goldhaber and
Teller" consider it likely that the (y,n) reactions indi-
cate the possibility of exciting nuclear "dipole vibra-
tions" of an exceptionally strong type. In their picture
the neutrons move in a direction opposite to that of the
protons. Such a vibration corresponds to a larger
effective charge s~ than is needed in order to make the
dipole terms important for the isotope shift.

The expectation of Goldhaber and Teller that there
should be resonance absorption for p-rays by C" and
Cu~, has not been confirmed by the experiments of
Gaerttner and Yeater. ~ On the other hand, Lawson and
Perlman" obtain results for the total cross section
which fit Goldhaber and Teller's view. Kubitschek
and DancoP' find in a study of a large number of
elements that there is evidence in y-ray capture of
frequent emission of p-rays carrying nearly the whole
available energy. These observations appear to speak
against a purely statistical treatment of the distribution
of nuclear energy levels and the possibility of large
matrix elements for the higher energy y-transitions.
This evidence regarding nuclear polarization is not in
contradiction with the thesis of Teller-GoMhaber. The
experiments of Gaerttner and Yeater do not necessarily
exclude the general features of the Teller-Goldhaber
view. A strong damping of resonance absorption by
(y,n) processes can reduce the effect and the "rest-
strahlen" type of vibration is perhaps not taking place
in as extreme a manner as originally proposed. Without
more definite evidence it appears only fair to draw
attention to the relationship which the supposed nuclear
dipole vibrations can conceivably have to the odd-even

staggering phenomenon.
The discussion at the end of Section VII on the dipole

efFect made use of the f sum rule consideration. The
occurrence of the vibrations of Goldhaber-Teller at high
energies makes the larger of the two estimates (~three
percent) improbable because this estimate assumed a
concentration of contributions to the second-order per-

turbation energy from the 2.5-Mev nuclear excitation
region, while experiment and the theory of Teller-
Goldhaber speak for the concentration of a large part
of the f sum at much higher energies. The experimental
situation for the heavier elements discussed by Gold-
haber and Teller is not quite clear however and the
present argument is not certain before the f sum con-
tributions in nuclei are more thoroughly known.

While the manuscript of the present paper was being
prepared there appeared a new and very thorough
theoretical discussion of the experimental material by
Crawford and Schawlow. "They employ the point of
view that the features of hyperfine structure originating
in the coupling of electrons to the nuclear spin may be
used to determine the normalization of the electronic
wave function close to the nucleus. This is done much
more carefully by Crawford and Schawlow than pre-
biously and the results are, furthermore, more signifi-
cant because of the availability of direct measurements
of nuclear magnetic moments. Crawford and Schawlow
conclude that the ratios of the isotopic shift for diGerent
spectroscopic terms are in fair agreement with the
volume eGect theory. The A& law gives, however, an
expected isotope shift corresponding to the addition of
two neutrons which is too large by a factor of about 2
if the protons are assumed to be uniformly distributed
through the nuclear volume. Crawford and Schawlow
suggest that the explanation for the smallness of the
observed eGect might lie in nuclear shell structure along
the lines proposed by Mayer, ' Feenberg and Ham-
mack, "and Nordheim. "A partial cause of the efFect
may be nuclear polarization. High electronic excitations
do not distinguish markedly between details of the
nuclear level systems and would be expected to cause
e8ects varying approximately regularly with the neutron
number E.

The nuclear shell structure has to do with com-
paratively high stability when a certain number of
nucleons of the same type exists in the nucleus. The
e8ects are reasonably pronounced on a scale of the
binding energy of the last neutron. This fact does not
necessarily imply, however, a significant consequence of
shell structure regarding the volume e8ect because the
stability of sheDs is not a marked phenomenon on the
scale of the whole nuclear binding energy. For an
n-particle compared with a deuteron there would
indeed be a strong eGect. In the heavier nuclei, however,
the conditions can hardly be expected to be as clear cut.

The probable implication of the existence of shell
structure is that a certain quota of nucleons has been
admitted to available quantum numbers. Such a con-
dition does not have to go with spatial rigidity of the
shell. The degree to which shell structure is of im-

"M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948)."E. R. Gaerttner and M. L. Yeater, Phys. Rev. 76, 363 (1949).
31 J. J. Lawson and M. L. Perlman, Phys. Rev. 74, 1190 (1948).
~H. E. Kubitschek and S. M. Banco', Phys. R,ev. 76, S31

{1949).

~ M. F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310
(1949).The views expressed in this reference are further supported
by Schawlow, Hume, and Crawford, Phys. Rev. 76, 1876 (1949).

~ E. Feenberg and K. C. Hammack, Phys. Rev. 75, 18/7 (1949).
~~ L. W Nordheim, Phys. Rev. 75, 1894 (1949).



SPECTROSCOP I C I SOTOP E SH IF T 405

portance for the volume effect appears, therefore, to be
uncertain.

It should be pointed out that in the present paper the
estimates of the ratio of the polarization effect to the
volume effect have been made on the basis of a volume
effect corresponding to the A& law and the top slice
(protons on the outside) picture. According to the
Crawford-Schawlow reductions and the supposition
that the nuclear spin part of the hyperfine structure gives
a suKciently good calibration of the wave function close
to the nucleus one has to conclude that the observed
isotope effect corresponding to the addition of two
neutrons is smaller than the one used in the present
paper, as has been previously mentioned. It will also
be recalled that the estimates of the staggering effect
have been made on the basis of low lying nuclear levels
which emphasize contributions from the low energy
part of the electronic continuum. So far as an evalu-
ation of the importance of these contributions is con-
cerned, it is immaterial whether the smallness of the
effect of tmo neutrons is caused by polarization or by
static charge distribution conditions. In either case the
relative importance of the theoretically expected effects
for odd-even staggering can be considered as having
been conservatively presented in the discussion of ex-
perimental material since one could claim that it is at
least twice as great on account of the too large unit of
isotopic displacement which has been used.

The smallness of the observed shift corresponding to
the addition of two neutrons increases the probability
that nuclear monopole effects contribute to the stag-
gering phenomenon. Instead of

~

V
~

=3.8 at the end of
Section U it would suffKe to have

~
V~ =3.8/ %=2.7.

The equivalent
~
V

~

= 1/0.8 estimated for n-particles in
connection with Eq. (11.4) taking into account four
levels can be increased to

~
V

~

=2.7 either by increasing
r, from 2 to 4 or by using more levels. When it is
considered that the discussion of the experimental
material does not call for as high a value as ~~ for
~8E&"/b&~ and that the estimates in the present paper
exaggerate the volume effect by employing the top slice
cut-off rather than the uniform charge density model it
appears possible that the monopole effect can account
for the observed staggering.

In order to bring the dipole effect up to the observed
values for the staggering one would have to increase the
charge s& by a factor of ~(40/3)1=3.6 corresponding
to a staggering effect of 40 percent of the regular and
to a top slice volume effect of twice the regular isotope
shift. The corresponding s~ 7.2. Such a value of 2~
cannot be used without considering the Z~Mp —Z2M~
factor and the sum rule considerations at the end of
Section VII. The factor 2 between the volume effect
theory and observation changes the 3.2 percent which
has been obtained by the f sum rule consideration with
the main excitation energy at 2.5 Mev into ~6 percent.
The discussion of the paper of Goldhaber and Teller
which has been attempted indicates, however, that

even this number is probably an overestimate of the
effect. At this point the writers would like to express
their indebtedness to Professor E. Teller for a helpful
discussion of the GT paper so often referred to and for
pointing out the apparent absence of the "dipole type"
vibrations at lower frequencies.

The irregularities in the spacings of the even isotopes
of Pb having been briefly mentioned. A tentative
explanation of these has been previously attempted. 3'

At the time the "magic numbers" for nuclear particles
were not known and the conditions of stability of
nuclear particles were reasoned about from the view-
point of Gamow's picture of a potential valley. Since
Pb~ is decidedly stable it was supposed, that it was
located near the bottom of the valley and that, there-
fore, the step from Pb"' to Pb~ should contribute less
to stability than the step from Pb"4 to Pb~'. Accord-
ingly, the nuclear radius was expected to increase
somewhat more in the 206 to 208 step than in the one
from 204 to 206 in apparent agreement with ob-
servation.

From general arguments of stability the polarization
picture would lead to the opposite result for such
changes in the energy. A decrease in the binding energy
of the last neutron in the 206—208 step may be expected
to give a larger attraction of the electron by the nucleus
as though the nuclear radius increased by an anoma-
lously small step. According to the table at the end of
the second volume of the book by Rosenfeld" the
binding energy per nuclear particle in Mev for these
isotopes is 7.825 for 204, 7.827 for 206, and 7.819 for
208. According to these numbers Pb's is relatively
more loosely bound, in spite of the closure of the magic
number shell consisting of 126 neutrons. In this case
the volume effect explanation agrees better with the
irregularity of level spacing than the polarization
picture. On the other hand, the binding energy per
nucleon is 7.820 Mev for Pb"' according to the same
table. Here the volume picture suggests on anomalously
large radius and the corresponding volume anomaly
might be expected to have a direction opposite to that
observed. While the (208—206)/(206 —204) ratios speak
against the direct applicability of the polarization view
it is hardly justifiable to employ binding energies per
nucleon as the deciding criterion since the protons
rather than neutrons are instrumental in the process
and since a tighter neutron configuration does not
necessarily imply a stiffer arrangement of protons.
Experiments on the isotope shift of Pb'" would be
helpful and improved knowledge of binding energies of
the isotopes of Pt, Hg and other elements showing the
spectroscopic isotope shift would contribute also.

The example of Pb~~ shows that the binding energy
per nuclear particle, which is practically as large for
this isotope as for Pb~, cannot be used as the only

3' G. Breit, Phys. Rev. 46, 319(L) (1934)."L. Rosenfeld, Nuclear Forces (Interscience Publishers, Inc. ,
Neer York, 1948).
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criterion either on the volume e8ect theory or from the
polarization viewpoint. The agreement of the direction
of the (208—206)—(206-204) difference with that ex-

pected from binding energies and a naive application
of the volume eBect theory does not exclude the pos-
sibility that the difference is in part due to the avail-

ability of excited states in Pb"' which might contribute
to larger polarization of this nucleus than that of Pb'"
and which might conceivably have its origin in the
fact that shell closes for 126 neutrons. A study of the
level systems of these isotopes will have to be made in

order to reach a decision concerning the relative im-

portance of these effects. At present it appears to be
impossible to exclude the combined operation of the
two possible causes of the anomaly in this as well as
in the cases of isotopes under discussion below. It may
be of interest also that the masses of the even Pt iso-

topes as listed by Mattauch are 198.044, 196.039,
194.039 indicating a greater instability of the 198isotope
than that of the other two. The observed isotope shift

is greater for the 198—196 interval than for that between

196 and 194. Here again the volume effect explanation
fits the facts more naturally. The errors listed by
Mattauch are of the order of the difI'erences under dis-

cussion, however. The situation is similar for the 150-
148 spacing in Nd as has been discussed in relation to
the Sm phenomenon.

Summarizing, it appears that the dipole eGect is

probably too small to be of real interest, that the
monopole effect possibly can be made large enough if

the departures from the central 6eld approximation to
nuclear wave functions are assumed to be suSciently
drastic; the even-odd isotope shift staggering fits the

monopole calculations rather naturally especially if it
is supposed that differences in densities of perturbing

energy levels in the region of a few Mev are not com-

pensated for as the nuclear excitation is increased to
10 or 20 Mev; irregularities in positions of even isotopes
are not necessarily in contradiction with the polarization
view but do not 6t it especially naturally. There is a
possibility that the small value of the observed isotope

shift is in part caused by a partial cancellation of the
volume eGect by that of the polarization.

The authors would like to express their indebtedness
to Professor %. W. Watson for informing them of the
experimental results on Pb before publication, and to
Professor A. C. G. Mitchell for information on nuclear
levels of elements of medium mass number.

APPENDIX

one 6nds

Using

and

F( ) =yJ,{z}, v= 2p,
L—=d'/ck'+1/k+ 1—v'/z2

LF(') = (1/2y —y —k' /8y) J,+ {z/4y)d J,/Ck.

L/z&J, {k)j=z& I 2pd J„/zCk+ p'J, /z~ I

{A4)

(A5)

(A6)

LLz&dJ„(k)jdk j=k&I (q—1}2dJ„/z2dz
+$2v {q—1)jk —2q/z jJ„I, (A7}

it is found that

F( )(k) = $(z /24') —(y/2) jJ2p+ L(zy/3)+ (z'/48') jdJ2p/Cz, (A8)

Similarly,

G(') (z) = L(z4/9&y~) + (5k2/24) + (1/2) —(2p~/3) jJ2p—(z/12)d J2p/ck (A9}

Equations (14.2) and (14.3) follow directly from these.

Using y =fjg and combining the two Dirac radial equations one
obtains'

(E+1+y/r) y'+ (E—1+p/r)+dy /dr+ 2y/r =0. (A1)

Differentiating with respect to E and solving for By/BE one gets
Eq. (14). Equation {14.1) results from the similar treatment of
the radial equation containing Bg/Br. The normalization conven-
tion is that f, and g, have been divided by LC(E}j& so that the
6rst power of r is energy independent.

While the second method is limited to E=1, it gives precise
values at all r and is somewhat more convenient than the pre-
ceding method for large r. Substituting rf=F, rg =G, and
r =z'/8y, the radial equations may be rewritten

L(d/ck)+ (2/k) jF+$(2y/z)+k{E —1)/4y jG=0,
P(d/ck) —(2/z) jG—f(27/k)+k(E+1)/4y)F =0.

It is from this form of the Dirac equations that Eq. (12.6) may
be obtained. Expanding F in powers of (E—1),

F F(0)+{E 1)F(l)+.. . (A3)
and letting"


