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Two nucleon forces are studied using a technique with which a detailed account of the nucleon recoil
during meson emission and absorption may be given. The nucleon motion is treated relativistically.
The method is applied to the neutral scalar meson field. It is concluded that the conventional static
approximation gives results for this case which are not misleading. It is pointed out that the concept of
potential energy is not always applicable in such problems, its validity depending not so much on the
“separation” of the nucleons as on the character of the wave function for the state of the system concerned.

I. INTRODUCTION

ALCULATIONS of the two nucleon forces to be
expected on the basis of meson theory have
generally included the following assumptions:

(1) Itis permissible to calculate the potential energy
of the two nucleons due to the exchange of mesons; the
motion of the two nucleons in this potential is then to
be worked out as a second step (adiabatic approxima-
tion).

(2) Relativistic effects in the motion of the nucleons
may be neglected.!

However, considerable doubt has been expressed as
to the validity of both of these assumptions and it
appears reasonable to ask to what extent the well-
known objectionable features of the resulting theory
can be modified in a calculation of a more general nature.

The present formalism permits a direct computation
of the binding energy of a two nucleon system without
the introduction of the concept of potential energy. The
nucleons are considered to obey the Dirac equation.

The formalism is roughly equivalent to a weak coup-
ling theory. It is developed for the case of a neutral
scalar meson field with scalar coupling. A lowest state
of finite binding is obtained, together with spin de-
pendent terms not unlike those that may operate in
the deuteron. Quantitative agreement is not obtained.

II. NEUTRAL SCALAR THEORY

The Hamiltonian density is

H=Yp*Hp¥p+ YN HyVn+y(— At 1)y
+g(Yp*BYp+YN*B¥N)Y. (1)

Here ¥p and ¥y are the four-component wave field
operators of two independent nucleon fields, labeled P
and N; Hp and Hy are the corresponding Hamiltonian
operators for free nucleons. ¥ is the wave field operator
of the meson field whose quanta have mass u; 8 is
the conventional Dirac matrix, and g is the coupling
parameter. We also use h=c=1; we will introduce

! Investigations by L. Van Hove, Phys. Rev. 75, 1519 {1949),
G. Araki, Phys. Rev. 75, 1101 (1949), and K. M. Watson and
J. V. Lepore, Phys. Rev. 76, 1157 (1949) have dealt with the
influence of the relativistic nucleon properties on the two nucleon
interactions. In these researches the adiabatic approximation is
made or implied.

wp=(p2+k)} and Ep= (M2+P2)} where w; is the
energy of a meson of momentum %k and Ep is the energy
of a nucleon of momentum P.

In the adiabatic approximation, ¥p*8¥p is replaced
by 6(r—rp); the other terms in H are treated accord-
ingly. The last term is treated as a perturbation and
its second-order effect is calculated in a system which
in zero order has nucleons at rp and ry and no mesons.
The meson operator is

YD) =T QL) (e A e ®5). (2)
k

The summation is over the eigenvectors of momentum
in a cube of side L. Ax and Ay* are annihilation and
creation operators, respectively. The result is the
“Yukawa potential”’
2 ,—uR
AE® = _E° .
47 R

With u~300 electron masses and (g?/4m)~0.3 this has
about the right range and depth to account for the
binding of the deuteron in its triplet state. There is no
explanation, however, of the triplet-singlet splitting.

We modify the attack in the following way. We take
for the wave functional of the composite system

with R= |rp—1y]|. 3)

V= 3 [apn(PNij+opm PNk}l (4
PNkij

The brace {P:N7} is the functional representing the
presence of a nucleon with momentum P in spin state ¢
and a second with momentum N in spin state j. The
second brace represents a state in which, in addition,
a meson of momentum k is present. The coefficients a
and b with their indices are the probability amplitudes
for these particular configurations in the composite
system. If it were legitimate to neglect the possibility
that two or more mesons were ever present we would
have

Y Clapy! ™+ |bpmc2]=1. (5)
PNkij

We will in fact make this assumption. This is slightly
less restrictive than the weak coupling approximation
because we do not assume that the &’s are small com-
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pared to the a’s. Further, we do not assume that the
various a’s are given by some zero-order distribution;
instead the a’s and b’s are now co-determined by the
equations of motion. The convergence of the approxi-
mation method is to be tested by making a second cal-
culation in which terms in (4) are included which allow
for the presence of two mesons.

If now H is the space integral of H above, we write

HY=Ev, 6)
where E is the energy of the system. We get
> apn(Er+Ex) (PNi)

(PN#j)

+ ¥ bpne(Er+Ex+awr) {PiNk)

(PNijk)

+ ¥ apn(PrNyek|Hy PiN) {PrNek)

(PN P1Nuijrs)

+ X

(PN P:N]ijfsk)

bon(PrNy| Hy| PN’k) (PyNye)

=E ¥ [apn{P'Ni}+bpm(PNKk}]. (7)
(PNijk)

Here H, is the third, or interaction term in H. It
appears above in various matrix elements for transitions
from an initial state, specified on the right, to a final
state specified on the left.

By taking scalar products with appropriate func-
tionals we get the pair of coupled equations

apn(E—Ep—Ey)
= ¥ bpwu(PNe|Hy | PyiNyK),

(P1N1gjk)

bp (B~ EP1— ENy— )

)]
= Z a;zg'z(PliNl]k{HllPzaNzﬂ).
(P2N2aB)

The ’s may be eliminated to get what amounts to an
integral equation for the a’s. In doing this we use the
following substitutions:

(a) The matrix element of H; may be written as
g(2L%;)~#X (8 function of momentum variables) X (spin
matrix elements).

(b) We choose to calculate in the center of mass
system. That is, we set

apn=apd(P+N).
We now get
1 g
) D
E—2Ep xii) wL?
xaif_x(P'lBPlP—k‘><P'lﬂ~lP—k’)
E—EP—R_EP"O)k ‘
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9)
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The sum on the right has had deleted from it terms
which correspond to the emission of a meson followed
by its absorption by the same nucleon. Such a term is
associated with the self-energy of a single nucleon. To
exclude such processes from our calculation of the
interaction between two nucleons will lead to no error
if we calculate only to order g2. However, higher order
corrections to the interaction energy would have to
include an effect of the self-energy; that is, the self-
energies of interacting nucleons are somewhat different
than the corresponding quantities for well-separated
nucleons. This effect is the analog of the Lamb shift in
the hydrogen spectrum.

The sum on the spin indices ¢ and j goes over the
values 1 and 2 only, corresponding to positive energy
states. Processes in which nucleon pairs appear can
make no contribution to the interaction to order g2.
This was in fact anticipated by the form chosen for (4).

The evaluation of the spin sum gives

[1 A-B
DADBl- (Ea+M)(Ep+M)

(Bi|B|A7)=

igii-(AXB)
. o
(Ea+M)(Ep+M)

where Dy=[2E/(M+E4)]* and ¢¥ is the indicated
component of the Pauli spin matrix vector. We sub-
stitute the above, at the same time suppressing the
superscripts on the ap¥ coefficients, hence treating these
coefficients as products of two two-component matrices.
We get

1 g 1 1
=E—2Ep ; wp L3 Dp?D% _y E— Ep—Ep_y—w;
P-P—k)+iop- P—k)XP
[1_ (EptM)(Ep o+ M) ]
[1~P- P—k)+iox- (P—k)XP
(Ep+ M) (Ep s+ M)

ap

]ap_k. (1)

It is instructive to note at this point that the adia-
batic approximation discussed earlier is equivalent to
the non-relativistic approximation applied to (11). If,
throughout, we neglect P and % compared to M, and if
we set Ep=M+P?/2M and E=2M —«?, where & is
the binding energy of the system, then

M g2
>

- P24 g2

ap _, (12)

ap
L3uwy?

there being no coupling between different spin states.
The transition to continuous %k values is obtained by
replacing the summation by (L3/8#®) times the three-
dimensional integral.
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We introduce the fourier transform of ap:

U(S)=fd3k exp(ik-S)ay;

) (13)
ak=—fdasexp(—ik-S)U(S).
8md
Now
M P-S
UES)=t— f dape_x.p(’_)
8w k24 P?
= Y Uy expll—i- (B=K)]
8 wi? yepmy , (14)

(= A)U(S) = (*M/8x%) U (S) f &k exp(ik+ S)/ax?

=g*MU(S)[exp(— pS)/4mS].

This is an ordinary differential equation to determine
the binding energy, «*. It is identical in form with the
Schrodinger equation of motion obtained in the second
step of the adiabatic approximation, hence the eigen-
value, «2, is the same. The function U(S) is not a wave
function, however, since its integrated square is less
than unity. The bracketed quantity is the “Yukawa
potential” which we see has at least the formal proper-
ties of a potential in a conventional Schrédinger
equation. If «? is regarded as given, then this equation
fixes the value of (g2/4w)~0.3, as discussed earlier.

Next we improve the approximation by keeping k
to all powers and in addition keeping the first power of
(P/M). It is convenient also to use the total spin
angular momentum

o= (opton)/2, (15)

whose 2 projection can have the values (1,0, —1). Now

—-M g d%k
ap= R
K2+P2 87r3 kakZ(M—Ek—w;,-)
Pek+ioekxP
X[H——————~]ap_k. (16)
M(M+E)

The term P « k in the bracket is a relativistic correction
to the non-spin dependent interaction and we strike it
out; the term involving ¢ is the interesting one. Fol-
lowing the procedure of (13) to (14), we find

Mg? a*k ke S

(D) U(S)= — 4 f exp(ik+ 8)
87 kak2(M"‘Ek_wk)
[1 o+ kXgrad
M(M+E,)

]U(S). an

The integral involving the 1 in the bracket is negligibly
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different from the right side of (14). We equate it
simply to g2M U (S)e=#S/4nS. The second term can be
written as

—(g®/2M)o-gradF(S)X[—i gradU(S)], (18)
where - Lo S
M 3 ke
F(S)=—-—-f exp( ) . (19)
8md Erop(wr+Ei— M)

Now if we set gradF(S)=(S/S)F'(S) and define an
operator L= —4SXgrad, then the second term of (17)
becomes

—(&/2M)[F'(S)/S1(e-L)U(S). (20)

As far as the determination of «* is concerned, this is
equivalent to a conventional spin-orbit potential intro-
duced into the adiabatic approximation. In fact (20)
is just the Thomas relativistic spin-orbit coupling,
associated with the motion of a spinning vector in an
accelerated coordinate system. Inglis first suggested in
1936? that this coupling, well-known in atoms, applied
as well to the motion of nucleons. It was pointed out at
the time? that such a coupling could be derived purely
from arguments of covariance if the nucleon could be
regarded as moving in an assigned potential field. The
above derivation of (20) may be regarded as a generali-
zation of this proof to the case where the internucleon
interactions are determined by the exchange of scalar
mesons.

In the limit M—w, F(S) becomes simply the
Yukawa potential, [e~#S/47xS]. In this limit the
equivalent potential (20) exhibits a 1/.5? singularity. Its
ratio to the leading term is of order (M.S)~2 Now the
lowest eigenfunction, Uy(S), of (17) in the absence of
the spin-orbit term, has the shape of the usual deuteron
wave function as derived from the adiabatic approxi-
mation. Its range or width is of the order of twenty
times larger than M~'. Consequently if the term (20)
is treated as a perturbation it is evident that its effect
on the system in displacing and splitting energy levels
will be small. This term will act only on states having
non zero spin angular momentum and orbital angular
momentum. Consequently, thinking of it as a per-
turbation, its observable effects in the two nucleon
system are small. These considerations are essentially
unchanged if one uses the exact form of F(S), namely
(19), which is less singular at S=0 than S~ In fact,
it is F’(S) which exhibits the singularity S, but the
deviation of F(S) from the Yukawa potential occurs
only in a very small region which is negligible for the
above arguments.

Returning briefly to (16), we remark that if we
improved the approximation further by keeping terms
in (11) bilinear in the nucleon spins, we would obtain
terms in the equivalent potential identifiable with the
spin-spin interaction and also the “tensor force.” How-

ever, this part of the potential would bear to the leading

2D. R. Inglis, Phys. Rev. 50, 783 (1936).
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term a ratio (M.S)™* and would, therefore, produce
effects (quadrupole moment, singlet-triplet splitting)
which would be quite negligible.

Now the singularity S—3 of the approximate ex-
pression for [ F'(S)/S7] suggests the question of whether
the system might tend to collapse to a very small
radius to take advantage of this large potential energy
which can be attractive in at least some states. Of
course, the probability for this catastrophe seems to be
reduced by the fact that the exact expression for F(S)
is less singular than the approximate one. But this con-
sideration is actually beside the point. If trial functions
U(S) are being studied whose radius is of order M~
or less, then it is no longer valid to neglect higher
powers of P/M as we did in deriving (16). This neglect
is in fact equivalent to the assumption that U(S) has
only Fourier components of momentum small com-
pared to M. Now if we cannot make this neglect then
we also cannot derive the Schrodinger Eq. (17) and
we cannot speak about a potential energy, even an
equivalent one.

What we must now consider is whether the eigen-
function corresponding to the lowest eigenvalue of (11)
is characterized by strong high Fourier components
(P>M). What we will do is assume a trial function
which does have this character (“narrow”), calculate
the trial eigenvalue from (11) using a variational pro-
cedure and compare this with the eigenvalue obtained
from (14) for the “wide” function.

Rather than minimize the energy, E, it is equivalent
and more convenient to minimize the coupling constant.
We have

2
(_g__.) = f d3P0p2(E'— ZEP)—[ff dsPd3kap
83

1 1
Dp2Dk2wk_p‘E—Ep—Ek—wk_p
{1 Pek+iop-kXP }
(Ep+M)(E4-M)
Pek+ion-kXP
-{1— }ak]- (21)
(Ep+M)(EA4M)

For a trial function we select

X

ap=Ce%r (22)
whose Fourier transform is
(8wC/p)
UlS)=———-. (23)
(S p?)?

The spin variables associated with ¢: need not be
exhibited if by the expressions op, oy, etc. we now mean
the matrix elements of these operators between initial
and final spin states.
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We assume p&KM~), and correspondingly that the
significant values of % in (22) run to magnitudes much

greater than M. Under these conditions (21) can be
simplified to the form

g2
<§)= f d*P-ap*(+2P)

—[ff dSPd3k4|kajp|'P+k+liP—“!

Pk op-kXP
Pt Pk

P'k U'N'kXP
X(l—— —{—i————)ak]. (24)
Pk Pk

Both numerator and denominator can be evaluated
analytically. For the denominator the substitutions
y=P+k, x=P—Fk, A=|P—Kk| are convenient. The
result is

& 3xC?/ p*

8r8 [(20°C%)/3p 1+ op-ox(41n2—3)]

(25)
9
= ——[1 - 0.230p 'GN]'—I.
27

op-oy is +1 for a triplet state, —3 for a singlet. In any
case the value of g2/4r is greater than 16.6, in contrast
to its value of 0.3 as obtained for the “wide” trial
function. It is, therefore, evident that there will be no
collapse of the two nucleon system and that the dis-
tribution a; will be essentially identical with that given
by the eigenfunction of Schrédinger’s equation for the
Yukawa potential.

Of course the trial “narrow” function (22) is speciali-
ized in belonging to an S state. If, however, we had
used a trial function corresponding to higher angular
momentum, but again with a width much less than
M1, we would have found trial eigenvalues of the
order of (25), and therefore much higher than the one
given by the “wide” function.

We conclude that when relativistic effects are taken
into account in the neutral scalar theory the relation
between binding energy and coupling constant is the
same as in the adiabatic approximation. Further there is
only an extremely small splitting between a “singlet”
and a “triplet” state.

It is clear that relativistic effects will be considerably
more important in theories such as the pseudoscalar
or vector, where spin-dependent interactions occur in
the leading order of the non-relativistic approximation.
The application of the above methods to such theories
is being studied.



