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The energies and motions of grain boundaries between two crystallites are investigated theoretically using
the dislocation model of grain boundaries. Quantitative predictions made for simple boundaries for cases in
which the plane of the boundary contains the axis of relative rotation of the grains appear to agree with
available experimental data. The quantitative expression for energy per unit area for small angles is ap-
proximately [Ga/4w(1—0)]0[A —1In6] where G is the rigidity modulus, @ the lattice constant, ¢ Poisson’s
ratio, 0 the relative rotation and 4 approximately 0.23. Grain boundaries of the form considered may permit
intercrystalline slip and may act as stress raisers for the generation of dislocations.

1. DISLOCATION MODEL OF THE GRAIN
BOUNDARY

ISLOCATION models of crystal grain boundaries

have been proposed by Burgers! and by Bragg.?
It has recently been shown that these models have
certain quantitative consequences which are directly
susceptible to experimental tests, so that theoretical
and experimental investigations of grain boundaries
may furnish evidence for the presence of particular
arrays of dislocations in solids.? Of special interest are
grain boundaries between crystallites with a small
difference in orientation; we shall show that for these
the grain boundary energy can be determined as a
function of the angle of misfit and the orientation of the
boundary.

The energy of a grain boundary between crystal
grains will be a function of the relative orientation of the
two grains (this involves three degrees of freedom) and
the orientation of the boundary surface itself with
respect to the two grains (two additional degrees of
freedom). Thus a general grain boundary has five
degrees of freedom. It is always possible, at least for
small orientation differences, to join the two grains
with a suitable array of dislocations lying on the pre-
scribed plane of the grain boundary. We shall not
prove this general result here, however, but shall deal
in detail with grain boundary models for certain
specially simple cases, pointing out how the results
may be extended so as to apply more generally.

In particular we shall consider a simple cubic lattice
in which the relative rotation of the grains takes place
about the z axis and the grain boundary contains the
z axis; as a consequence, the problem is two-dimensional,
since the situation is independent of z. (Although it is
not necessary to introduce screw dislocations, which
have components of displacement in the z direction,
for the simple cubic lattice, they will be required for
body-centered and face-centered cubic lattices, and
formulas for their energies are given in Appendix D.)
The elasticity theory employed is that for an isotropic

1 J. M. Burgers, Proc. Phys. Soc. 52, 23 (1940). Proc. Kon. Ned.
Akad. V. Wet. Amsterdam 42, 293 (1939) ; see also W. G. Burgers,
Proc. Kon. Ned. Akad. V. Wet. Amsterdam 50, 595 (1947).

2W. L. Bragg, Proc. Phys. Soc. 52, 54 (1940).
3W. Shockley and W. T. Read, Phys. Rev. 75, 692 (1949).

solid and the quantitative results are only approxi-
mate except for small angles of misfit, i.e., large spacing
between the dislocations. Some features which will
arise for large angles are discussed qualitatively in
Section 4.

Figure 1 shows the grain boundary for which quanti-
tative calculations have been made. A plane making
an angle ¢ with respect to the x axis is drawn and the
two parts of the crystal are each rotated away from the
plane by an angle of 6/2. As is seen, some planes from
above and from the right must terminate on the
boundary, producing dislocations. The numbers of
dislocations of the two types per unit length of grain
boundary are readily calculated by thinking of the
planes as lines of flow. The flux of “y planes” (i.e.,
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F16. 1. The dislocation model of a simple grain boundary. (a)
Definition of ¢, the orientation of the grain boundary. (b) Defini-
tion of 6, the angle of misfit. Note that some (100) planes from
right (4+x planes) and (010) planes from above (+y planes)
terminate on the boundary. (c) Symbols for dislocations. (d)
Symbolic representation of boundary. Correction: The symbol A
should be replaced by a.
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x=constant) flowing into the boundary from above is
the flux density (1/a) times the cosine of the angle of
incidence upon the grain boundary. This leads to a net
unbalanced flux per unit length of boundary of

2 # 6sing
py=- (cosB—cosa)=- sin¢p sin—=—-—, 1)
a a 2 a

where the approximation holds for small values of 6.
This is evidently the number of +y dislocations per
unit length of boundary. Similar calculations lead to

. . .8 Gcosp
pz=— (sina—sinB)=- cos¢ sin—=
a a 2 a

(2)

for the density of 4« dislocations. In applying formulas
like these, it is advisable to choose the axes so that 0< ¢
< w/2; otherwise difficulties associated with changes in
sign of the dislocation types are encountered.

The spacing between dislocations, D, and D,, are
given by the formulas

1 a a
Dy=—= = ’ (3)
Pz # 6cose
2 cose sin—
2
1 a a
D,=—= = @)
Py 6 0 sing
2 sing sing

At distances from the grain boundary larger than D,
and D,, the crystal will be substantially unstrained.
Hence the energy per unit area of the grain boundary
will be concentrated near the boundary itself and will
be independent of the size of the crystal. These con-
clusions are verified by the integration of the stress
energy which is given in Appendix B.

2. GRAIN BOUNDARY ENERGY

There are three methods of determining the energy
of an array of dislocations: (1) Take the volume inte-
gral of the strain energy density over the entire body,
(2) integrate the work done in producing the state of
strain by the surface forces over the complele boundary,
which includes the surfaces of discontinuity, that is
slip planes, (3) determine the work done in creating the
dislocations and bringing them together against forces
of mutual attraction and repulsion. It can be shown
readily that these three methods give the same energy
and that the third reduces to the second, which is
mathematically simpler than the first, and involves
only integrating the shear stress over the slip planes;
since the external boundary, being stress-free, gives no
contribution to the work and since the relative displace-
ment of the surfaces adjoining the cut is tangential, the
work done on a slip plane is one-half the integral of the
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tangential, i.e., shearing stress, in the slip direction
times the relative displacement, which is constant and
equal to one atomic spacing. The factor of one-half
comes from the linearity of the stress strain law. The
stresses are determined from an infinite sum of Airy
stress functions each representing one dislocation.

For a case like that of Fig. 1, it is convenient to
evaluate the stress system due to the x dislocations,
denoted by S(x), separately from that of the y disloca-
tions S(y). These stress systems individually give a
stress field at large distances from the boundary.
However, the combination leads to a stress field local-
ized near the boundary, as discussed in connection with
Fig. 1.

The energy is calculated by considering one of the
v dislocations and calculating the work done on its slip
plane by S(y) and S(x). Each of these energies is simply
one-half the lattice constant times the integral of the
shearing stress over the slip plane. Although S(y) and
S(x) individually give divergent terms, these cancel
so that a finite result is obtained. It is found also that
the interaction of the y dislocation with S(x) is inde-
pendent of the relative positions on the boundary
of the vy dislocation and the set of « dislocations; conse-
quently, the work done is the same for the slip plane
of each y dislocation. The same result is true for the
x dislocations. The energy of the grain boundary per
unit length is then simply the energy per slip plane
times the number of slip planes per unit length summed
over the two types of slip planes. Since the calculations
are made for unit length along the z axis, this gives the
energy per unit area of grain boundary.

The formula for the energy per unit area of the grain
boundary derived in Appendix B is

E=E6[A—n6], (5)

where E, depends only on the orientation of the grain
boundary and the macroscopic elastic constants:

Ey=Ga (cosp+sing)/4r(1—0), 6)

where G is the rigidity modulus and ¢ is Poisson’s
ratio.* The factor (cose+sing), which is proportional
to the total density of dislocations for a fixed value of 6,
is valid only for 0<¢<w/2; within this range it
varies by 30 percent.

The quantity 4 depends upon ¢ and upon the energy
of the atoms at the dislocation itself, where some atoms
do not have the correct number of nearest neighbors
and the strain lies well out of the Hooke’s law range.
This energy may conveniently be expressed by a de-
vice used in Appendix B, the procedure being summar-

* For an anisotropic material with cubic symmetry and elastic
constants ¢11, €12, €44, the quantity G/(1—o) in (6) is replaced by
C44 /1 2(1—0'100) ¥
1‘— Uloo\a 1+a(l— 20100)
where a100=c12/(c11+¢12) is Poisson’s ratio referred to the crystal

axes and a=2cwu/(c11—c12) is the anisotropy factor. It is planned
to derive this formula in a later paper.
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ized as follows: The expression for elastic energy density
for a single dislocation varies as (1/7%) from the center
of the dislocation and this gives a logarithmic infinity
if integrated to r=0. Actually it should not be inte-
grated inside of the radius »; at which the linear Hooke’s
law breaks down. The energy inside 7; should then be
calculated on an atomic basis and added to the elastic
energy outside ;. As is discussed in Appendix B, how-
ever, for small angles of misfit precisely the same
formula is obtained for the energy if the integration is
extended to a radius 7o<r; such that the elastic energy
calculated for the region 7;>7>7r, has the same value
as the correct energy inside 7;. In terms of 7, defined
in this way the value of 4 is

sin2¢ sineg-lIn(sing)+cose-In(cose)

A = A 0
sing-+cose
with
Ao=1+In(a/2xr,). (8)

The energy of atomic misfit, which enters through 4,,
occurs in the energy E with factors, given in (5) and
(6), which are directly proportional to the total density
pz=~+ py of dislocations. This is to be expected since this
highly localized energy should contribute additively.

From (7) A— A4, as a function of ¢ is seen to be sym-
metrical about 45° and to vary between +0.13 and
—0.15. The maximum A occurs at ¢=6.5° or 83.5° and
the minimum A at 45°. The curve has a cusp at ¢=0
or 90°, where A=A4,. The variation in 4 can be neg-
lected at small angles of misfit, where the —Inf—term
dominates the energy expression. (But not near the
cusps of Section 4.)

Equation (5) will be a good approximation for the
energy in a curved boundary if the radius of curvature
is large compared to the spacing between dislocations.
Letting ds be an element of length of a curved boundary,
then the right-hand side of (5) will give dU/ds where U
is the energy per unit length in the z direction. Remem-
bering that |dx|=ds|cose| and |dy|=ds|sing|, we
then have

dU=[Ga/4r(1—0)10[A(¢)— o] |dx|+ [dy| ].

If we can neglect the variation of 4 with ¢, we see that
dU is a perfect differential, so that the energy in a seg-
ment of boundary connecting two points P and Q will
depend only on P and Q, provided that no changes in
sign of dx/ds or dy/ds occur along the curve. Thus all
boundaries connecting P and Q have the same energy
for the same angle of misfit of adjoining grains. Actually
there will be a slight preference for a 45° boundary
since this gives the minimum 4.

The quantity 7, may be determined by using several
approximate but not very accurate methods of estimat-
ing the energy in a single dislocation inside the radius 7;.
Using Nabarro’s* result for a pair of dislocations in a
simple cubic model, we calculate that 4,=0.8. This
estimate is not considered very reliable since it depends
on the assumption that the interaction between two
planes of atoms is based on a sine law of stress and
strain.’ Another estimate of A4, is obtained from the
requirement that the energy vanish when the disloca-
tions are close enough together to produce an angle of

4 F. R. N. Nabarro, Proc. Phys. Soc. London LIX, 256 (1947).
5 It is shown that a sine law fails except over a narrow range of
angles; see W. M. Lormer, Proc. Roy. Soc. A196, 135 (1949).
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F16. 3. Energy versus 6 for ¢=0 grain boundary showing twin
boundary cusp at 53° and fine structure.

misfit of 90°. This leads for ¢=0 to 4,=Inw/2=0.45.
However, this estimate is also unreliable since it in-
volves the extension of the formula to large angles
where the approximations used in its derivation are
no longer valid.

3. QUANTITATIVE PREDICTIONS

Fortunately, quantitative conclusions can be drawn
from the theory which do not involve the value of 4,.
The first of these is related to Eq. (3) which gives the
spacing between dislocations. These spacings are large
enough for small angles 8 so as to be within the re-
solving power of light and electron microscopes. We are
not aware of any electron-microscope observations of
suitable grain boundaries; however, it is very probable
that the spacings predicted from (3) have been ob-
served by P. Lacombe in connection with ‘“veining”
in aluminum.® Lacombe observes that in a single
crystal grain there are faint lines or veins which are
revealed as rows of separated etch pits under suitable
etching conditions. He has also observed that there are
small differences in orientation between the regions
separated by the veins. We have proposed that each
etch pit originates at a dislocation, where the free energy
of the stressed material will be somewhat higher than
elsewhere; the pit then grows to large size so that it is
observed optically.®? No attempt has been made to
calculate the spacings on the basis of a detailed disloca-
tion model for the actual orientation observed; how-
ever, the general order of magnitude for the angles of
10~° radians or less and the spacings of 3X10~* cm or
less are in agreement with (3) when a reasonable value
for a is used.” The behavior of the veins observed by
Lacombe is, in other respects, entirely in keeping with
the idea that they are widely spaced arrays of disloca-
tions: Under heat treatment they shift to radically
different patterns, a result in keeping with the disloca-

6 P. Lacombe, Report of Conference on Strength of Solids (The
Physical Society of London, 1948). Similar small angle grain
boundaries have recently been observed by R. Castaing and
A. Guinier in an aluminum-copper alloy. Comptes Rendus 228,
2033 (1949) and La Recherche Aeronatique No. 13, 3 (1950).

7We are indebted to Professor Lacombe for confirming, in a
personal communication, the conjecture of reference 3 that the
data studied there corresponded to a large angle for one specimen
and a large spacing for the other. Professor Lacombe indicates that

the quantitative aspects of his observations are probably in
agreement with (3).
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cation proposal. In samples 0.2 cm thick, the vein
patterns on the two opposite sides are in register to
about 42X 10~ cm, the mesh size in the vein pattern
being about 2)X10~2 cm. This suggests that the veins
represent cylindrical surfaces and are built up of parallel
elements which run perpendicularly (within 2X10-3/2
X1071=10"? radians) through the crystal. Again this
is just the behavior expected for an array of dislocations,
which must either close on themselves or terminate on
a surface. The dislocations in such an array would be
under tension and would be perpendicular to the free
surface.

The second quantitative conclusion has to do with the
energies of grain boundaries and depends only on the
energy where strains are small and linear elasticity
theory applies. The theory predicts that measured
values of grain boundary energy plotted as a function of
6 could be fitted by a curve of the form (5), the param-
eter E, being determined without approximations by
linear elasticity theory.

Recently C. G. Dunn?® has measured grain boundary
energies on a relative scale as a function of difference in
orientation, §. Dunn’s values of ¢ are not given, it being
assumed that orientation of the grain boundary has a
small effect. The specimens used were silicon iron (iron
with 3.5 weight percent silicon, body centered cubic),
with the (110) plane in the plane of the specimen. The

210
PLANES

—

¢ =4as°

Fic. 4. Grain boundary for twinning on (210) plane showing
¢=0 and ¢=45° interpretations.

8 C. G. Dunn and F. Lionetti, Trans. A.ILM.E. 185, 125 (1949)-
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grain boundary was made as close as possible to per-
pendicular to the plane of the specimen and the angle
of misfit measured between the [001] directions in the
two grains. Viewed in the plane of the specimen the
atoms are not arranged in a square lattice but in a
rectangular lattice, one side being V2 times the other.
Consequently, §=180° is equivalent to §=0°; 6=90°
constituting a considerable misfit. Dunn’s data in rela-
tive units are plotted in Fig. 2. The plot has three
striking features: a rapid rise of energy with increasing
6 in the range 0° to 15°, a maximum and relatively
constant energy in the range 20° to 30° and a dip at
about 70°. The first feature is predicted by the theo-
retical curve, Eq. (5), which has an infinite slope at
6=0. The position of the maximum of the theoretical
curve depends on 4, the best fit to Dunn’s data being
given by A4=0.231, which is the order of magnitude of
the estimates. The theoretical curve is shown in Fig. 2
to 45° and is seen to fit the data surprisingly well even
at large angles—a result which suggests that compen-
sating errors may cause (5) to be valid over a larger
range than is justified by its derivation. We shall return
to the dips at 39° and 70° in the next section.
Dislocation models for grain boundaries in the
common crystal lattices would involve screw compo-
nents and possibly half-dislocations and extended dis-
locations.® However, it is not considered worth while to

DISLOCATION ARRAYS
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® R. D. Heidenreich and W. Shockley, Report of a Conference
on St;;ngth of Solids (The Physical Society of London, 1948),
page 57.
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formulate a better theory until energies are measured
on an absolute scale for small angle grain boundaries.
If such measurements were available, particular dis-
location models could be tested by plotting the meas-
ured E/6 vs. logf. Then according to Eq. (5) the experi-
mental points should fall on a straight line!? of slope E,.
The value of E, can be calculated without approxima-
tions and depends only on the known constants of the
material and the particular dislocation model assumed.
An agreement between the calculated and measured
values would constitute strong evidence for the disloca-
tion model.

4. LARGE ANGLE GRAIN BOUNDARY

In this section we shall consider certain general
features relating to grain boundaries for large angles 6,
the remarks still being restricted to the simple cubic
model and to values of ¢ of 0° and 45° unless otherwise
stated.

Equation (5) was derived on the assumption that the
spacing of dislocations was uniform for all values of 6.
Actually this can only be the case when the spacing
determined by relations (3) and (4) is an integral
number of lattice constants; that is, dislocations must
be separated by an integral number of atomic planes.
For instance, if 6 corresponds to an average spacing of
3% planes the actual spacing will be irregular, alternat-
ing between 3 and 4. As a result the energy is not a
smoothly varying function of angle but instead has a
number of sharp minima or cusps. We shall show that
these cusps are of the 6Inf form already discussed
for 6=0. A plot of E vs. § showing the more important
cusps is given in Fig. 3. The deep cusp in the middle
corresponds to a boundary separating twins on the (210)
plane. The dashed curve corresponds to (5) and (6).
The maxima are treated in Appendix C. There will also
be minor cusps between those shown and additional
fine cusps for less than 10°,

We shall consider first the reason that cusps are
necessary at small values of 8. For ¢=90° and §=9.4°,
+y dislocations will be required once in every 6 hori-
zontal planes and no x dislocation would be required.
For a small increase of 46 in 6 from 9.4°, however, dis-
locations will be required somewhat closer so that oc-
casionally a dislocation will be spaced by 5 planes
rather than 6. Where this occurs, it will contribute, at
large distances from the grain boundary, the same
effect as adding (1/6) of a +y dislocation at each loca-
tion of a “five” spacing. For small values of 46, these
“five” spacings will occur approximately at a spacing
of a/686. For small values of 86 and large spacings, the
energy due to the stress field of these dislocations will
come from regions far from the grain boundary and
will contribute a term of the order — (E,/6)86 Indé,
since the effective strength of the perturbations is a/6.

10Tt is shown in reference 3 that Dunn’s data plotted in this

way are well fitted by a straight line—the zero intercept of the
line giving 4.
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A similar —660 Iné@ cusp will occur whenever the dis-
locations are spaced at integral numbers of planes.
In addition minor cusps will occur at spacings such as
5.5; because for such a spacing there will be a regular
alternation of five and six intervals and a deviation
from this, which would require two five spacings
to be adjacent, would add a perturbation corresponding
to a/(5+6)=a/11. This process will obviously continue
indefinitely with the conclusion that the E us. -curve
has cusps at all values of 6 which give rational values for
the ratio of dislocations to slip planes across the grain
boundary.

From a practical viewpoint the extreme fine structure
just discussed will be of no interest and will be smoothed
out by statistical fluctuations except for the larger
cusps. The most important of these occurs at §=353°,
corresponding to twinning across the (210) plane.
Figure 4 shows the arrangement of the atoms in this
case. The heavy lines represent (210) plane boundaries
and the bicrystal may be considered as made up by
bringing two grains with these (210) faces into contact.

This twin boundary may be described as made up of
arrays of dislocations in either of two ways as shown in
Fig. 5. We may start with a model with ¢=0 and in-
crease the angle 6, between (010) planes up to 53°,
at which point tan,/2=1%, corresponding to the twin
orientation, If 6, is increased to 90°, the grain boundary
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should disappear as shown in Fig. 5(d). On the other
hand, we can start back from 5(d) with ¢=45° and
produce the same series of orientations. Thus for a given
orientation of the grains and the grain boundary, two
prescriptions can be given for arrays of dislocations
which will join the grains. We shall next investigate the
difference between these two prescriptions. The con-
clusion, reached in the following paragraphs, is that
the same arrangement of the atoms can be described
as either a ¢=0 boundary or a ¢=45° boundary
and, consequently, that two descriptions are really
equivalent.

There may, however, be several atomic arrangements
which will accomplish the same joining. In Fig. 4, the
plane of the grain boundary is a reflection plane between
the two grains. A very similar arrangement may be
produced by making the grain boundary a glide plane
of symmetry. The relative stability of the two struc-
tures will depend upon the detailed nature of the
interatomic forces. For whatever structure is the most
stable, however, the equivalence of the ¢=0and ¢=45°
models will be true and the dependence of energy upon
small deviations of # and ¢ from the twin values will be
as described below.

In Fig. 4 in the upper part a set of dotted lines and
dislocation symbols are shown; these have been con-
structed in accordance with the ¢=0 model. In terms
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of flow lines this interpretation of the atomic arrange-
ment can be described by writing

p=0; c=2—d; a0,

meaning that the ¢ planes running in at the left are
thought of as continuing as —d planes to the right and
that ¢ and b planes are to be considered as representing
the same set in the undistorted crystal. This leads to a
density of dislocations of p,+ ps where the p’s are the
flux density of plane lines into the boundary. Precisely
the same atomic arrangement can be described by the
arrangement of dislocations shown in the lower part
of Figure 4 according to the scheme

o=45°;
meaning that the e planes are to be considered as

continuations of —d and b as —c. The density of dis-
locations for the ¢=45° model is seen to be

a=2—d; be2—c,

for c-dislocations
for d-dislocations.

Pe— Pb

Pd— Pa
Combining these leads to a total number of dislocations
(patpc)— (patpp) =2(pe—pa), since by symmetry
pa=p.and p,= ps. For the angle shown p.=2p,=2/a(5)}
and both models give a density of dislocations equal
to pe.

Now let 6;=90—6, deviate slightly from 53°, for
example, by increasing to 60°, as shown in Fig. 6a.
The density of @ and b dislocations will increase for the
¢=0 model so that there will be on the average more
than one dislocation per plane of set ¢ striking the
boundary. These extra dislocations will give rise to a
cusp in the energy curve about the twin angle. We shall
next show that for this case also the ¢=0 and ¢=45°
models are equivalent and shall evaluate the effective
strength of the added dislocations which produce the
cusp. For the ¢=45° model, the density of dislocations
decreases as 6; increases from 53° to 60°; consequently
there will be less than one dislocation per plane of set ¢
striking the boundary, Fig. 6(b). We shall show alge-
braically that the number of ¢-planes having extra
dislocations according to the ¢=0° model just equals
the number of ¢-planes lacking a dislocation according
to the ¢=45° model, and we shall than show geometri-
cally that these two descriptions actually describe the
same atomic arrangement.

According to the ¢=0° model, the density of disloca-
tions is 2p, and the excess compared to the density of
c-planes is thus 2p,—p.. According to the ¢=45°
model, the density of dislocations is 2(p,— p,) and the
excess of c-planes compared to this is p.—2(p.— pa)
=2p,— p; this is the algebraic proof. Figure 6(a) shows
the 60° boundary with dotted lines joining atoms ac-
cording to the ¢=0° dislocation model. In Fig. 6(b) the
atoms are joined according to the ¢=45° model. By
observing the difference between the two models of
the same atomic arrangement in the vicinity of a per-
turbation, or region where according to the ¢=0°
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model two vertical rows end on the same plane, we see
that each pair of ¢—b dislocations on the same ¢-plane
in the ¢=0 model is equivalent to a missing ¢c—d pair
on the same plane in the ¢=45° model. Although both
dislocation models represent the same arrangement of
atoms, the model consisting of the fewer dislocations is
to be preferred on physical grounds as giving the better
method of joining the grains, since the number of
atoms per plane having a missing bond is equal to the
number of dislocations.

In Fig. 6(c) we show the two surfaces which would be
formed if the 60° bicrystal were to be pulled apart.
It is seen that these are nearly perfect (210) planes
except for steps occurring at the perturbations. These
steps correspond to an offset of one (210) plane spacing
on each grain or a net normal displacement of two
plane spacings. Thus the perturbations are equivalent
to dislocations of magnitude 2a/(5)} with the slip
vector perpendicular to the grain boundary. Hence the
cusp will have the form of

[2/(5)¥]Eo(¢=0)56(41—1nd6)

by analogy with the ¢=0 calculation which has a
similar dislocation array but with strength a. The value
of A; will be determined by the atomic misfit on the
twin boundary and will be different from A4,.

Probably the most significant feature of the above
calculation is that for small angles of deviation the
energy of the twin boundary will increase with angle
almost as fast [i.e., 2/(5)¥=0.89] due to the — &6 Indf-
term as for a small angle grain boundary.

It is also evident from the general reasoning presented
here that similar effects will be produced by varying ¢.
If the orientation of the two grains is maintained at 53°
and the value of ¢ is changed from 0, the energy will
increase as —¢lng with a coefficient again nearly
equal to E,.

This last prediction of dependence of energy upon ¢
is in agreement with the observation of Lacombe!
that when two grains are separated by a boundary
consisting in part of a straight twin plane and in part
of curved boundary not along the twin plane, the etch
used will attack the curved boundary but not the plane
boundary, thus showing that large differences in energy
are produced by changes in orientation of the grain
boundary for the same orientation of the grains.

The dips in Dunn’s data of Fig. 2 appear to corre-
spond to expected cusps for the orientation of his
crystal. It was seen in Section 3 that, when projected
in the plane of the specimen (110), the lattice structure
is rectangular with an edge ratio of 1:vV2. The angle ¢
is measured between [0017] directions (short edges).
If 6, is the angle between the grain boundary and the
[001] axis of the first grain, the unit normal to the
grain boundary is seen to have components cosf; cos 45°,
cosf; sin 45°, sinf;. A similar result holds for the second

1t Report of a Conference on Strength of Solids, University of
Bristol (July 1947) published by the Physical Society, 1948.
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grain which makes an angle 6,=60— 6, with the bound-
ary. In the symmetrical case 6;=0,=6/2.

Low energy cusps occur when the two crystals are in
register on the same atom at regular intervals of a few
lattice constants. The condition that the boundary go
through lattice pointsin the first grain is tanf, = na,/ma.,
where m and 7 are integers and the atomic spacings
a, and a. in the plane of the specimen are related by
a,=V2a,. The corresponding condition for the second
grain is tanf,=V2q/p, and the two grains will be in
register on the same atom at regular intervals along the
boundary when the integers m, #, p, ¢ are related by
m*+2n*= p*4 2¢*=square of distance between common
lattice points, the lattice constant a, in the [001] direc-
tion being taken as the unit of length. The grain
boundary is the (m, m, 2n) plane in one crystal and the
(p, p, 2¢) plane in the other.

The most important cusps in energy as a function of
angle of misfit and orientation of the grain boundary
correspond to the shortest intervals between common
lattice points; for example, when m=n=p=¢g=1 the
grains are in register on every atom on the boundary
and we have a (112) twin, the angle being 6=109.4°.
This angle is not in the range of Fig. 2; however, Dunn
has recently!? obtained a value of 0.22 for the energy
on the scale of Fig. 2.

Pressure is 37 = 2r tan § (b)
(a)

F16. 7. Mechanism for slip across a grain boundary. (a) Yield-
ing of a symmetrical bicrystal with ¢=0 grain boundary to ex-
ternal shear by sidewise motion of boundary. (b) Separation of x
and y arrays on an unsymmetrical boundary by applied shear.
(c) Stress applied to bicrystal with 45° grain boundary resulting in
(d) sidewise displacement of grain boundary by motion per-
pendicular to slip planes of dislocations, permitting crystal to yield
to applied stress.

12 Dunn, Daniels, and Bolton, “On the measurement of relative
interface energies in twin related crystals,” Trans. A I.M.E. 188,
368 (1950).
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The prominent dip in the experimental data near 70°
is explained by the fact that the two most important
low energy configurations in the range of Fig. 2 both
occur at 6="70.6°. One of these configurations is a sym-
metrical (111) grain boundary with common lattice
points spaced at 2.45 lattice constants; the other con-
figuration is unsymmetrical and involves the coinci-
dence of the (110) plane of one grain with the (114)
plane of the other, with points of good fit spaced at
intervals of three lattice constants. By comparing the
arrangement of atoms on the boundary for the (112)
and (111) twins it can be seen®® that the former gives
the better fit, in agreement with the lower measured
energy.

In the range of Fig. 2 the third and fourth cusps in
order of increasing distance between common lattice
points would be expected at 50° and 87°, respectively,
where no experimental points were taken. The fifth
cusp occurs at a symmetrical (221) boundary, where the
crystals are in register at intervals of 4.25 lattice con-
stants and the angle is 39°. This explains the low point
and scatter in the experimental data at this angle, the
scatter at cusp angles being attributed to the variation
in grain boundary orientation since the energy at a
cusp increases at an infinite rate with deviations in either
angle of misfit or boundary orientation.

The 20 percent discrepancy between the points at 56°
and 57° which are not cusp angles, has a different
origin. The relative energies were calculated from a
minimum energy principle involving the equilibrium of
surface tensions at the intersection of three grain
boundaries, it being assumed that energy depends
principally on angle of misfit and that the effect of grain
boundary orientation could be neglected.® However,
when one boundary is near an energy cusp the deriva-
tive of energy with respect to orientation is large and its
neglect introduces an error into the calculation of the
relative energy of the other two boundaries. The points
at 56° and 57° were obtained from the two specimens
containing the low energy boundaries with 6 near the
70.6° cusp. In Appendix F this point is discussed in
detail and the energy uvs. angle relations are derived
for three intersecting grains taking account of the
dependence of energy on boundary orientation.

The general behavior of the energy vs. angle curve
appears to be in qualitative agreement with the ex-
tensive system of observations made by C. S. Smith
of grain boundary angles. In his study the angles where
three grains run together were measured on polished
sections of polycrystalline samples and the statistical
distribution of observed angles was studied. Even
if all grain boundaries had the same energy, so that the
three dihedral angles about the common grain edge
would each be 120°, the metallographic section would

13 C. S. Barrett, Structure of Metals (McGraw-Hill Book Com-
pany, Inc., New York, 1943), p. 315.

14 C. S. Smith, “Grains, phases and interfaces: An interpretation

of microstructure, A.ILM.M.E. Technical Publication No. 2387,
Class E, Metals Tech. (June, 1948).
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F16. 8. Motion of dislocations perpendicular to slip planes
produced by diffusion of atoms.

introduce a statistical fluctuation in observed angles.
Smith found that the statistics of the observed angles
were consistent, or at least not strikingly inconsistent,
with a single interfacial energy for the boundaries.
This at first seems to contradict the predictions made
here that the grain boundary energy fluctuates violently
and that, as indicated in Fig. 2, energies of less than
half the average should occur in about 15 percent of the
cases; the impression gained from Fig. 2 is erroneous,
however, because it shows the energy as a function of
one angle only. If any of the three angles which specify
relative orientation of the grains is large, a relatively
large grain boundary energy will be obtained. If we
assume that the grain boundary energy for a general
orientation is the sum of three functions like that of
Fig. 2, one for each angle, then we estimate that ener-
gies less than 50 percent of the average will be obtained
in only about 3 percent of the cases. Consequently,
observations of grain boundaries for grains selected at
random would show such a small percentage of low
energy boundaries that their presence would have only
a slight effect on the statistics.

5. DYNAMICS OF THE GRAIN BOUNDARY
MODEL

The dislocation model of the grain boundary appears
to have the potentiality of giving the ‘“viscous grain
boundary” behavior studied extensively by Zener and
Ké.® Two separate mechanisms are involved in shear
across the grain boundary, corresponding to motion
of the dislocations in their slip planes and motion
perpendicular to the slip planes. (The latter involves
diffusion of atoms in a way which we shall shortly
illustrate in Fig. 8.)

The two basic processes are shown in Fig. 7. A bound-
ary with ¢=0 is shown and the bicrystal is cut so that
the largest faces are parallel to the boundary. If a shear
stress 7 is applied as shown, the dislocations tend to
slide on the slip planes in the direction of the dotted

15 C. Zener, Elasticity and Anelasticity of Metals (University of

(Chi‘i:a)go Press, Chicago, 1948); T. S. K¢, J. App. Phys. 20, 274
1949).
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positions. In Appendix A we show that the force acting
on a unit length of a dislocation under these conditions
is simply 7a, so that the pressure on the grain boundary
is 7a/D,=16. The same pressure is derived by con-
sidering the deformation of the crystal. If we imagine
the left grain to be held fixed, then the work done when
the boundary moves a distance W is St per unit area,
so that the pressure is St/W =12 tanjf= 16 for small
angles. This type of motion can thus permit relative
shear of the two crystals to take place across the grain
boundary.

Figure 7(a), however, is a very special case. A more
typical situation is shown in (b). Here there are two

t
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+ RELIEF OF DISTORTION
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Fi1c. 9. Formation of a dislocation pair at a grain corner
under applied stress.

sets of dislocations and in this case if we move the grain
boundary to the right, by sliding the x dislocations to
the right and the —y dislocations down, no net shearing
motion of the crystal results. The reason for this is that
the prescription of dislocations of Egs. (3) and (4)is
just that necessary to permit the two grains to join
with a fixed relative orientation; a proof of this state-
ment is given in Appendix E. The difference between
(b) and (a) is connected with the limiting behavior
as ¢—0. As ¢ becomes very small, the spacing D, is
given by a¢/6¢. Thus D,—x as ¢—0. As the boundary
moves to the right a distance W, however, the —y dis-
locations move a distance W/ ¢ so that each y plane is
cut by (W/¢)/Dy=W6/a dislocations of y type as it
moves. Each of these produces an offset “¢” giving a
shearing motion of W4. Inspection shows that the sign
of this shear just cancels the W6 term due to the motion
shown in (a). Thus no net shear is produced by motion
of the boundary while any —y dislocations are present.
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If a shearing stress is applied to (b), the dislocations
try to slip as shown by the arrows. As a result the x
and v sets pull apart until the increasing elastic energy
of the material between them balances the applied
stress. If the angle ¢ is small, this will result in curva-
ture of the dense line of dislocations and resultant high
stress values. We shall return to the high stresses later
in this section in connection with grain boundaries as
stress raisers.

The processes which may follow the development of
the stressed situation in (b) are illustrated in a simpler
form in (c) and (d). Here we show a ¢=45° boundary
with a shearing stress system which develops no shear
in the slip planes. The shear stress system is equivalent
to a normal stress system shown as dotted arrows.
These stresses tend to squeeze out (or pull in) the extra
half-planes of atoms. The mechanism whereby this may
be accomplished will be discussed below; however, if we
assume that the squeezing out actually occurs, then the
motion of the dislocations will be as shown in (d).
Here we consider two dislocations on a grain boundary
which divides the specimen in two; actually there will
be many dislocations on the boundary. The normal
stresses on the half-planes cause one to shorten and
the other to lengthen, moving the dislocations to the
dotted positions. The dotted positions, however, corre-
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F16. 10. The force on a dislocation. (a) Single dislocation in a
cubic crystal, showing shearing stresses on planes C and C'.
(b) Plot of d=difference in displacement on C and C’ at times ¢
and 4 A¢.
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spond to a relative motion of the arrays of the two types
of dislocations; and in order to keep the grain boundary
in a minimum energy condition, the dislocations will
slip in their own planes so as to move to positions in
the dotted grain boundary which are at the same height
as their original positions. These combined motions
produce a net horizontal motion of the grain boundary
in which no dislocations cut the (110) planes which are
parallel to the top and bottom of the figure. The result
is thus a yielding to the shear of amount S=W2 tan/2
as for Fig. 7(a).

The process which can produce motion perpendicular
to the slip plane is shown in Fig. 8, which corresponds
to 7(d) turned through 45°. We suppose vacancy diffu-
sion takes place, the process being initiated by jump
(1) in the figure which permits the half-plane to grow
by one atom, a vacancy being produced next to the
advancing edge. This vacancy diffuses until it is filled
by jump 7 which shortens the other dislocation by
one atom on the leading edge of the half-plane.

The shear produced across a general small angle grain
boundary will be a mixture of effects like those consid-
sidered in (a) and (c). For large angle grain boundaries,
such as are dealt with in most experiments, the density
of dislocations will be so high and the possibilities of
alternative descriptions so many that other approaches
may be better such as those of Mott!® and Ké,'” which
consider the boundary to be a mixture of good fit and
bad fit. However, the feature discussed in Fig. 8 has one
consequence in agreement with experiment: The mecha-
nism involved is that of self-diffusion and, consequently,
the activation energy for the process will be the same
as that for self-diffusion, in agreement with the findings
of Ké for aluminum, a-brass and a-iron.!?

Even for small angle grain boundaries, however, the
theory discussed in connection with Fig. 7 is over-
simplified because it neglects the effects of screw com-
ponents of the dislocations and the possibility of half-
dislocations.!® The screw components are discussed in
Appendix D and are seen to exert forces like those of
charged wires on each other. These forces will tend to
stabilize the dislocation arrays.

The pressure on a grain boundary suggests a mecha-
nism for the creation of dislocation pairs in the interior
of polycrystals. As mentioned earlier, an applied shear-
ing stress tends to pull the boundary apart, creating
regions of stress concentration. We now show how the
distortion of a grain corner under stress could lead to
the formation of a dislocation pair at the corner. Con-
sider the right-angle corner illustrated in Fig. 9(a),
where the grain in the upper right-hand quadrant is
disoriented by a small clockwise rotation relative to the
adjoining material. The grain boundary is symmetrical

18 N. F. Mott, Proc. Phys. Soc. London 60, 391 (1948).

17T. S. K¢, J. App. Phys. 20, 274 (1949).

18T, S, Ké, Phys. Rev. 73, 267 (1948).

13 R. D. Heidenreich and W. Shockley, Report of a Conference
on Strength of Solids (Physical Society, London, 1948), p. 57.
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and runs along the 4+y and +x axes, which are rows of
+yand —x dislocations respectively. When an external
shearing stress is applied as shown in (b) the y disloca-
tions are pushed to the right and the —x dislocations
are forced downward. The entire pressure on the grain
boundary and the forces on the dislocations are held
in equilibrium by the corner, which alone prevents the
relative displacement of the two segments of the
boundary. The corner is thus a region of high strain,
the strain energy per unit applied stress being propor-
tional to the area of the boundary and the density of
dislocations. As the applied stress is increased, the
relative displacement of the two rows of dislocations
increases until the distortion of the corner is so severe,
as shown in Fig. 9(b), that it is easier energetically to
form a dislocation pair BC, Fig. 9(c), where B fills the
gap on the grain boundary and 4 and C are ejected and
move under the applied stress to the external surface,
thus contributing to the observed slip of the specimen.

In conclusion it may be pointed out that the idea of
pressure on a grain boundary due to applied stresses
constitutes a prediction from dislocation theory that
grain boundaries, and similarly veins like those observed
by Lacombe, should displace in a particular way under
the influence of applied stress.

The authors would like to express their gratitude
for suggestions and encouragement in connection with
this research to J. H. Hollomon, C. S. Smith, W. G.
Burgers, C. G. Dunn and C. Herring. We are also
indebted to Mrs. G. V. Smith and Miss D. T. Angell
for computations and other assistance in preparing the
manuscript.

APPENDIX A
The Force on a Dislocation

When a dislocation moves under the action of an external stress
field, work is done on the boundary by the applied forces. Some of
this work goes into increasing the energy of distortion of the crystal
and is recoverable, and the remainder is dissipated at the disloca-
tion as heat or acoustical waves. Defining the force on a disloca-
tion as the energy dissipated in moving the dislocation through
unit distance on the slip plane, we show, first by an intuitive ex-
ample and then by a careful analysis of the physical phenomena,
that the force per unit length on a line dislocation is the lattice
constant times the applied shearing stress in the slip direction.

In the simple example, Fig. 10, let the dislocation move a dis-
tance L from one side of a crystal to the other, producing a rela-
tive tangential displacement of the upper surface through one
lattice constant a. Letting = be the applied stress on the slip plane
the work done is raL. The elastic energy of distortion in the two
parts of the crystal above and below the slip plane is the same
before and after slip, so that all of the work has gone into heat.
Since an amount of heat raL has been produced in moving the
dislocation through a distance L, it would be reasonable to assume
that the force on the dislocation was ra.22 We shall find by a more
thorough analysis that this semi-intuitive result is correct.

If we assume that inertial effects can be neglected, then the
energy dissipated is equal to the external work done minus the

20 This reasoning is very similar to that of N. F. Mott and
F. R. N. Nabarro, Report of a Conference on Strength of Solids
(The Physical Society, London, 1948), p. 1.
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change in stored energy of distortion. The rate of change of in-
ternal energy is equal to the rate at which surface stresses are
doing work on the complete boundary of the crystal, which in-
cludes not only the external boundary but the internal surfaces
of discontinuity, or slip planes. Thus the stored energy is the sum
of the external work and the work done on the slip planes—from
which it follows that the energy dissipated is the negative of the
work done on the slip planes.

Now consider a single dislocation in a cubic lattice, Fig. 10.
Let C and C’ be the atomic planes adjoining the slip plane. The
shearing stresses on C and C’ are shown in the figure. Superposed
on this anti-symmetrical shear distribution we have the shear
stress due to the external field. Figure 10(b) is an approximate plot
of the discontinuity in displacement & across the slip plane, the
atoms being in register at the extreme right and offset by one
lattice spacing at the left, with a transition region of a few atomic
spacings at the dislocation. The dotted curve shows the dis-
continuity in displacement at a time Af later, when the dislocation
has moved a distance Ax. Clearly the limit A3/A¢ is a symmetrical
function of distance x along the slip plane. The rate of doing work
on the slip plane is the integral of the shearing stress times the
rate of relative displacement A3/A¢ of the planes C and C’. Since
the latter is symmetrical, the anti-symmetrical shear distribution
due to the dislocation itself gives no contribution, and we have
for the rate of energy dissipation

- f Addzx,
AtJe

where 7 is the external shear stress, which may be considered
constant over the atomic dimension involved, and the integral
is the area between the two curves in Fig. 10(b) which is readily
seen to be aAx. Thus, taking account of signs, the energy dissi-
pated in moving the dislocation a distance Ax is raAx and the
force on the dislocation is ra.%

In this derivation it has been assumed for simplicity that the
slip vector is at right angles to the axis of the dislocation. How-
ever, this restriction is readily seen to be unnecessary. In the
general case the force on a dislocation is 7@ where 7 is the shearing
stress in the slip direction and a is the magnitude of the slip
vector or lattice spacing in the slip direction. Thus the result
derived applies to dislocations with screw components, which are
generally required in an actual face-centered or body-centered
cubic lattice.

APPENDIX B
Derivation of the Energy vs. Angle Formula

The shear stress 7.y due to a single +y dislocation located at the
origin of the coordinate system is®
where for convenience lengths are expressed in units of “a” and
stresses in units of G/[2x(1—¢)]. The shearing stress due to an
infinite row of dislocations, Fig. 1, spaced at a distance D, along
the line inclined at an angle ¢ to the x axis is

Xn(Xn2—yn?)

o) (B.2)
n=-—o (xn2+ynz)2

where
xn=2x+nD, cose
yn=y+nD, sine.

2 It may be noted that this differs by a factor of #(1—¢) from
the result computed by J. S. Koehler using linear isotropic two-
dimensional elasticity theory (Phys. Rev. 60, 400 (1941)). This
may be attributed to the fact that Koehler does not take account
of the work done by the surface forces.

2 J S, Koehler, Phys. Rev. 60, 397 (1941).
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From (3) and (4) of Section 1, D, and D, are given by

D.=a/(8 cose)
D,=a/(8 sing).

The infinite sum (B.2) is readily transformed to

L 0y 1 1
£ 3]
n=—n OY\ 2 J Lo +2y,  Xn—1ya

Using the complex variable z=x+14y and the complex constant
s1=D,e’¥ and letting Re mean “real part of,” this becomes

i i(y—l—nD,, sin w)‘

Re 2
n=—z 0Y s+n3;
Multiplying numerator and denominator by z—#s, and adding a
constant term which vanishes in the differentiation, we have

":f L)[(:v—FnD,, sing) (z—n:l)_Dy simp] )

2—nls?

(B.3)

Re

n=-n O S

Since the terms with »# odd cancel in pairs, this can be expressed in
the form

Re

S1

9 [:.)'—-:D,, sin <p] i 3
ady

22— 52 12

N==—00 ~

The sum of the infinite series is known and is equal to
(mw/z1) cot(ms/z).28

This gives

T 9

Re [7 —— (z1y—3Dy sing) cotﬁ] (B4)
1 a)‘ 21

1

for the stress caused by the infinite set of + y dislocations. Putting
this in the form

Re {%[D_,, Cos¢ cot’-_m——i(zly—zD,, sim;)}r csc”?]}, (B.5)
~1 ~1 <1 1

we see that at an infinite distance from the line of dislocations,
where z= Niz, and .V— =, the stress approaches (7/D,) cos¢sin2¢.
A similar analysis for the dislocations with vertical slip planes
gives a stress at infinity of —(w/D;) singsin2¢. From (B.3) we
see that the sum of these is zero, so that the shear stress at in-
finity vanishes as required.?*

We shall now calculate the self- and interaction energies of the
two sets of dislocations.

The work of interaction on the vertical slip plane of one of the
-+x dislocations is found by integrating the shear stress (B.4) due
to the set of +y dislocations, the integration being taken from
x, y to x, y+R where R is very large and x and y are the coordi-
nates of the +.x dislocation, with the origin at a + y dislocation.
Making use of the fact that the equation of the grain boundary is
v=1x tang, the integral of (B.4) with respect to y gives

—(mR/2D,) cosg sin2 ¢ (B.6)

for all points on the boundary. Thus the interaction energy is the
same for all the +x dislocations. In the same way the work of
interaction on the horizontal slip plane of a +y dislocation is

I P. Adams, Smithsonian Mathematical Formulae and Tables
of Elliptical Functions, p. 129, No. 6.495, Smithsonian Institute,
Washington, D. C. (1922).

% From (B.3) it is seen that the stress due to the 4y disloca-
tions does not vanish except when sin 4¢=0 or z=3,/2. Thus in
the general case there is a net force on the +ux dislocations and the
assumed dislocation array is not in equilibrium. However, near
the boundary a small change in position corresponds to a relatively
large change in stressy so that equilibrium could be satisfied by a
slight rearrangement of dislocations involving a deviation of the
boundary from a straight line. This would have little effect on the
stress energy at distances from the boundary comparable to the
spacing between dislocations and therefore would not appreciably
affect the calculated energy.
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found to be
—(7R/2D,) sing sin2¢

and is the same for all the 4y dislocations.?

Since the self-energy per +y dislocation is obviously the same
for each dislocation, we consider the dislocation at the origin,
where y=0, and integrate the shearing stress (B.5) due to the +v
dislocations from x=r, to x=R, where 7, is the radius of a small
circle around the dislocation and, as previously explained, is a
parameter determined by the local energy of misfit which must be
calculated on an atomic basis. This integration gives for the
self-energy per 4y dislocation

1[1rR . <2m) ) ]
bl so—1 2,1
2D, sin2¢ cosg—In D, +sin?e

(B.7)

(B.8)

It can be seen that varying ro changes the energy by a constant
amount, independently of the orientation of the adjoining crystals.
Thus adjusting 7o is equivalent to adding the energy of local atomic
misfit to the angle dependent energy of the surrounding field.
This is a valid procedure provided the angle of misfit is small
enough that the local energy of atomic misfit is not dependent on
the spacing between dislocations.

The self-energy of the set of +x dislocations is found in the
same way to be

1[7rR . . (27rrg) . ]
21D, sing sin2¢—In D, +cos?e
per dislocation.

The work done on a horizontal slip plane is (B.7)+(B.8)

equals
T . cosg sing| 1 2mro
—R [-—~————]——[l ( ) 2 ], B.10
3 sin2¢ D, ~ D. Sl D, +cos?ep ( )

where e is the base of the natural logarithms. The relationships
between D,, D,, and ¢ which caused the stress to vanish at « in
(B.5) causes the coefficient of R to vanish so that the energy is
convergent.

The energy per unit length of boundary is found by dividing
the work done on a slip plane by the spacing between slip planes.
This gives [(B.7)+(B.8)]/D, for the +y dislocations, and
[(B.6)+(B.9)]/D, for the +x dislocations. The sum of these is

l[cos%p_}_sin%__l_ m(z’"")—i ln(Zwro)] (B.11)
2L'p, "D, D, '\eD,/ D, '\eD,

(B.9)

or, using (B.3) the energy E per unit area of the boundary is

E=E6[1—1n6] (B.12)
where E, depends only on ¢ and the constants of the material
and is given in dimensional units by

o ﬂ—) (cosp-+sing) (B.13)
-0

4r(1
and /1 depends on r¢ and, therefore, on the energy in the imme-
diate vicinity of the dislocation and is given by
sin2¢ sing-In(sing)+4cose-In(cose)

A=d¢— .
! 2 sin g+ cos¢

(B.14)

where A, is the value of 4 when the boundary is along a crystal
axis and is given by

Ao=14Inla/(2mro)]. (B.15)

25 The interaction energies per unit area of the grain boundary
are, respectively, (B.6)/D. and (B.7)/D,, and these in general are
not equal. However this does not contradict the conservation of
energy because these energies represent the work of interaction on
the slip planes only; the total interaction energies should include
also the work done on the external surfaces by the stresses at
infinity, which do not vanish for each set of dislocations indi-
vidually.
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APPENDIX C
Energies of Irregular Arrays

In this Appendix we consider the case of a symmetrical bound-
ary for angles where the spacing of dislocations is not uniform
and the energy is not the same for every dislocation. Angles corre-
sponding to average spacings which are simple ratios like 4/3 or
3/2 can be represented by superposing two or more regular arrays
of dislocations with different spacings. For instance, the ¢=90°
model for §=41° can be represented as the sum of two arrays as
follows

XXXO0XXX0=X0X0X0X0+0X000X00,

where X represents a dislocation and O no dislocation and the
spacing between the symbols is one plane. The self-energies of the
two arrays are readily obtained from Appendix B, since each set
alone corresponds to a single boundary with angle of misfit de-
termined by the spacing. To obtain the interaction energy of two
regular arrays we determine a general expression for the energy
of interaction between a single dislocation on the y axis and a row
of dislocations spaced at regular intervals D along the y axis.
Taking the origin at one of the dislocations of the regular array,
we let y<D be the coordinate of the single dislocation and find
the interaction energy as a function of y.
The shear stress due to the regular array is

—Re (wx/D) csch?(x/D)(x+1y).
Integrating with respect to x from ro, ¥ to R, y where R>D gives
—Re [In2 sinh(w/D)(ro+1iy) — (wro/ D) coth(w/D)(ro+iy)]

which resuces to the usual formula when y=0. When y>>r,, we
have
In2 sin(wy/D).

The energy of interaction is therefore negative for D/6<y<5D/6
and positive in the interval #=D/6 about each dislocation of the
regular array, the distribution being symmetrical about the
minimum energy —In2 at y=D/2.

For the 41° boundary the interaction energy per unit length
for the set spaced at 2a is —} In2. This can be checked by com-
paring with the interaction energy per unit length for the 2a
spaced set, which is

— 1[In2 sin(7/4)+1In2 sin(3w/4) ]= — ; In2,

the two interaction energies being equal as required by the re-
ciprocal theorem. Adding the interaction energies to the self-
energies gives a total energy of 0.86 as compared with 0.75 given
by Eq. (5) on the assumption of a regular spacing of 4a/3.

For 6=37° the ¢=90° model is

XX0XX0=X00X00+0X00X0.

Here the interaction energy per unit length is (}) In2 sin(wr/3) for
each regular set giving a total energy of 0.83 as compared with
0.73 for a regular spacing of 3a/2.

APPENDIX D
Energy of Arrays of Screw Dislocations

The screw components give rise to shear stresses 7. and 7.
acting in the s direction and on both sets of slip planes. There is
no interaction between screw and x and y components but the
two types of screws interact with one another, since each set of
screws gives rise to shear stresses on the slip planes of the other
set. Formulas for the self- and interaction energies will be derived
and applied to the special case of symmetrical boundaries for
both regular and irregular arrays.

The component of displacement w, in the z direction, for a single
screw dislocation is given by

w=(b/27) tan~\(y/x), (D.1)

where b is the 5 component of the slip vector. This formula shows
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Fi1c. 11. Interactions between screw dislocations showing that
stress fields of unlike dislocations cancel at large distances.

that the elastic behavior of the screw dislocation is the same no
matter what slip plane is involved. The stresses due to the dis-
location are

_Oow Gb x
Tye= oy " 2n gy
L Nt
T 0x 2wt
72y =0.

The calculations of the interaction of screw dislocations is greatly
simplified by the fact that one can show a direct correspondence
with two-dimensional electrostatic theory. We consider two dis-
locations with slip vectors b, and b, and choose two coordinate
systems (x1, ¥1) and (x2, y2) measured from the dislocations. The
energy density in the stress field is then

(3G6) (r22+ 71122)

__ 1 [(2_”1)_’ (262
“8r@r/G)L 2 T 2

2b12b,

ri?re

+2

(x102+ )'1}'-2)]
1
=—T[E+E,P,
8me

where E; and E, are vectors directed away from the dislocations
with magnitudes

E\=2by/ri, E2=2bs/rs
and

e=47/G.

This shows that the energy density is formally the same as that
for two wires with charges per unit length of b, and b, embedded
in a medium with dielectric constant e. We may, therefore, use
theorems from electrostatics to calculate the energies of arrays
of screw dislocations. (The Taylor type of dislocation cannot
be represented in this way, because the # and v displacements are
not solutions of Laplace’s equation V2u=0, whereas w is a solu-
tion.)

The interaction of two screw dislocations is shown in Fig. 11.
Tt is seen that if the dislocations have opposite signs, their stress
fields cancel at distances from them comparable to twice their
separations, whereas if they are of the same sign the stress
fields add.

The problem of the infinite self-energy of a single dislocation for
small distances is again solved by cutting off the integration at
such a radius 7o that the energy inside of the radius at which
Hooke’s law fails is correctly given. Since the disturbance in a
screw dislocation is very different on an atomic scale from that in
a Taylor dislocation, the value of ro will be different. The same
qualitative arguments will apply, however. The use of 7o corre-
sponds in the electrostatic problem to calculating the energy of
charges on the surfaces of hollow cylinders so that the field energy
inside the cylinders is negligibly small.
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N=n,=ig

Fi1c. 12. Displacement of grain boundary by motion of dislocations
without relative motion of grains. (y dislocations not shown.)

The potential energy of an array of screw dislocations spaced a
distance D apart in a plane will be a minimum when the signs of
b alternate corresponding to a grid of alternately changed wires.
The potential of such a set of wires must behave as —(2b/¢) Inr
near each plus wire and as +(2b/e) Inr near each negative wire.
If the wire centers are at x=0, D, 2D, etc., the solution of Laplace’s
equation which satisfies these requirements and vanishes at large
[3] is

Real Part of —(2b/¢) In tanw(x+1y)/2D.

We shall assume that the dislocations are so far apart that the
cylinders of radius 7, are practically equipotentials; otherwise the
approximation that the energies of atomic misfit do not interact
is in error. Assuming that, the potential at x=7,, y=0 is

—(2b/€) In(xre2D).

The self-energy per dislocation of the array is (3)b times this
potential and the self-energy per unit area, E,, is (1/D) times this
latter:

2

E,=Il)§(2b/e) In2D/mro= Gb In2D/mro.

4rD

In many cases it will not be possible to have the simple alter-
nating scheme of screw components used for calculating E,.
For the ¢=0 and ¢=45° models, the regularity of the spacing
makes it possible and in that case a term of form E, can be
added to E. For small angles both terms are of the form E6(4 —In#g)
and their sum is of the same form, the value of E and 4 depending
on the particular relationship of screw to Taylor components.

If screw dislocations are coupled to the x and y dislocations of
the boundary of Fig. 1, the interactions between them will be
such as to stabilize the position of the x set in respect to the y set.
For example, for the ¢=45° model, there are equal numbers of
x and y dislocations. The most stable arrangement will be that
which results in a maximum of cancellation of the screws, Fig. 11,
just as if one grid of alternately changed wires were placed next to
another so that the changes neutralized. Mathematically, this
reduces the screw energy to zero. Physically, it means that the
dislocations will draw together until non-linear interactions, which
are represented by the 7, terms, become important.

APPENDIX E

A Theorem on the Displacement of Grain
Boundaries for Small 6

Consider two grains whose orientation differs by a small angle §
as shown in Fig. 12. Suppose that at two points B; and B: on the
boundary the two crystals are perfectly in register on the same
atom. We wish to show that sliding the set of dislocations which
compose the boundary to different places on their slip planes, so
as to move the boundary to a new position, does not tend to
produce relative shear motion of the two grains. To prove this we
consider the number of +zx dislocations required for the two
positions of the boundary, L and L'. If two unit vectors along the
cell edges, as shown, are 7, and #,, then the number of + x disloca-
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tions will evidently be
dS-(ni—n2)/a=—dx-6/a

for small values of 6. Hence, in order to fit the two grains together
with the proper number of +x dislocations, the spacing must be
6/a as projected on the x axis. Since sliding the dislocations on their
slip planes does not affect this density, slipping the x dislocations
from L to L’ still leaves the correct density. The same reasoning
may be applied to the y dislocations (not shown on Fig. 12).
Furthermore, the points B; and B, are unchanged and are cor-
rectly in register for both the distribution of L and L’. Hence the
same set of dislocations are the optimum set for both L and L’
and, since both L and L’ preserve the registration at B, and B,
it is evident that shifting the dislocations from L to L’ does not
produce relative motion of the two grains.

Any method of moving the boundary connecting B; and B.
to a new position leaves the number of required dislocations of
each type unchanged for the entire boundary, but only the sliding
of each dislocation on its slip plane preserves the correct number
for every segment of the boundary, that is, preserves the correct
density.

APPENDIX F

Energy vs. Angle Relations for Three Intersecting
Boundaries

In this section we obtain the formulas for the energy ratios in a
three grain specimen, taking into account the dependence of
energy on grain boundary orientation.

Figure 13 shows three grain boundaries intersecting in a line
normal to the plane of the drawing at 0. The grain boundary en-
ergies are E;, E,, and E; the angles between boundaries are
Y1, Y2, and s, and the average orientations of the boundaries
with respect to specified crystal axes in the two adjoining grains
are ¢1, ¢2, and @;.

The energy-angle relations for this case have been derived by
C. Herring? from the minimum energy principle and in the present
notation are given by equations of the form

E1+E2 COS¢3+E3 COS\PZ
+siny2(9Es/0 @s) —sinys(dE2/d¢2) =0, (F.1)

where the partial derivatives with respect to boundary orientation
are measured in the direction of counterclockwise rotation about
the intersection.

Equation (F.1) expresses the vanishing of the first-order change
of grain boundary energy due to an infinitesimal displacement of
the intersection in the plane of the first boundary, it being assumed
that the second and third boundaries acquire angles at points
separated from 0 by distances which, although still infinitesimal,
are large compared to the displacement of 0. Two other equations
of which only one is independent are obtained from (F.1) by

Ez(¢z)

¥
E 1 (¢|) wl

kA E3(®s)

Fi16. 13. Three intersecting grain boundaries.

% C. Herring, “Surface tension as a motivation for sintering,”
a paper presented at the Symposium on Physics of Powder Metal-
lurgy, organized by Sylvania Electric Products, Inc., Bayside,
Long Island, New York (August 24-26, 1949). Plans have been
made to publish the papers of this Symposium in book form.
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rotation of subscripts. These equations are satisfied by
E, E;
(1+ ezes) singr+(es—e2) cosgs (14 eres) singat(e1— €s) cosy
E;
- (14 ere2) sings+ (e2—e1) cosys’

(F.2)

where
e=(1/E1)(8E:/d¢1)

with similar definitions for e, and ¢;. When the ¢’s vanish (F.2)
reduces to the triangle of forces. When any one of the €’s cannot
be neglected the triangle of forces gives erroneous values for both
of the two independent energy ratios. However if only one
boundary, say the first, is near a cusp position so that the other
two boundaries have small derivatives with respect to orientation,
then (F.1) gives to a good approximation

E1= —Ez COS\[/a"'Es COSlﬁz, (F3)
where E; and Ej; are to be determined from the best fit curve to
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data obtained from samples where none of the boundaries are
near energy cusps. Applying this procedure to Dunn’s two speci-
mens each with one boundary near the 70.6° cusp,?” we obtain
0.77 and 0.78 for the points at 70.5° and 71.5° respectively. As
discussed in the text, the triangle of forces gives unreliable values
for the energies of the other boundaries in these samples.

For a simple cubic lattice with none of the three boundaries
near a cusp position, the €’s can be determined by differentiation
of (5) of the text, making use of (6) and (7) for the dependence of
Eyand A on ¢. When the variation in 4 can be neglected, we have

Cos @1 —sineg;
cosg1+sine;

1— tang;
14tane;

with similar expressions for e; and es. This formula is valid for
0< p<7/2.

a
€ =T 111E0(¢1)=
de1

7 C. G. Dunn and F. Lionetti, specimens S10 and S11, reference
8, Table I, p. 128.



