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mhere the approximation holds for small values of 8.
This is evidently the number of +y dislocations per
unit length of boundary. Similar calculations lead to

j. 2 8 8 cosy
p, =—(sinn —sinP) =—cos p sin —='

8 a 2 c
(2)

for the density of +x dislocations. In applying formulas
like these, it is advisable to choose the axes so that 0& q

(~/2; otherwise difhculties associated with changes in
sign of the dislocation types are encountered.

The spacing between dislocations, D, and D„, are
given by the formulas

8 cosy
2 cosy sln—

2

0 8 sin&p

sing slI1-
2

(4)

At distances from the grain boundary larger than D,
and D„, the crystal will be substantially unstrained.
Hence the energy per unit area of the grain boundary
mill be concentrated near the boundary itself and will
be independent of the size of the crystal. These con-
clusions are veri6ed by the integration of the stress
energy which is given in Appendix B.

2. GRAIN BOUNDARY ENERGY

There are three methods of determining the energy
of an array of dislocations: (1) Take the volume inte-
gral of the strain energy density over the entire body,
(2) integrate the work done in producing the state of
strain by the surface forces over the comp/ete boundary,
mhich includes the surfaces of discontinuity, that is
slip planes, (3) determine the work done in creating the
dislocations and bringing them together against forces
of mutual attraction and repulsion. It can be shown
readily that these three methods give the same energy
and that the third reduces to the second, which is
mathematically simpler than the first, and involves
only integrating the shear stress over the slip planes;
since the external boundary, being stress-free, gives no
contribution to the work and since the relative displace-
ment of the surfaces adjoining the cut is tangential, the
work done on a slip plane is one-half the integral of the

@=constant) fiowing into the boundary from above is
the flux density (1/a) times the cosine of the angle of
incidence upon the grain boundary. This leads to a net
unbalanced Aux per unit length of boundary of

1 2 8 8 sing
py= —(cosP—cos(x) =—slnqr sln —=

Q 6 2 8

E=Eo8[A —in'], (5)

where Eo depends only on the orientation of the grain
boundary and the macroscopic elastic constants:

Eo Ga (cosy+ sin p——)/4s (1—o), (6)

where 6 is the rigidity modulus and 0 is Poisson's
ratio. * The factor (cosy+sing), which is proportional
to the total density of dislocations for a Axed value of 8,
is valid only for 0(y(~/2; within this range it
varies by 30 percent.

The quantity A depends upon q and upon the energy
of the atoms at the dislocation itself, where some atoms
do not have the correct number of nearest neighbors
and the strain lies well out of the Hooke's law range.
This energy may conveniently be expressed by a de-

vice used in Appendix 8, the procedure being summar-

* For an anisotropic material saith cubic symmetry and elastic
constants c», c12, c44, the quantity G/(1 —n) in {6)is replaced by

1 2(1-0.1pp)

1—0'1pp n 1+a(1—2o'Ipp)

~here a1pp=c12/(c11+c12) is Poisson's ratio referred to the crystal
axes and a=2C44/(C11 —c12) is the anisotropy factor. It is planned
to derive this formula in a later paper.

tangential, i.e., shearing stress, in the slip direction
times the relative displacement, which is constant and
equal to one atomic spacing. The factor of one-half
comes from the linearity of the stress strain law. The
stresses are determined from an inhnite sum of Airy
stress functions each representing one dislocation.

For a case like that of Fig. 1, it is convenient to
evaluate the stress system due to the x dislocations,
denoted by S(x), separately from that of the y disloca-
tions S(y). These stress systems individually give a
stress field at large distances from the boundary.
However, the combination leads to a stress field local-
ized near the boundary, as discussed in connection with

Fig. 1.
The energy is calculated by considering one of the

y dislocations and calculating the work done on its slip
plane by S(y) and S(x).Each of these energies is simply
one-half the lattice constant times the integral of the
shearing stress over the slip plane. Although S(y) and

S(x) individually give divergent terms, these cancel
so that a finite result is obtained. It is found also that
the interaction of the y dislocation with S(x) is inde-

pendent of the relative positions on the boundary
of the y dislocation and the set of x dislocations; conse-

quently, the mork done is the same for the slip plane
of each y dislocation. The same result is true for the
x dislocations. The energy of the grain boundary per
unit length is then simply the energy per slip plane
times the number of slip planes per unit length summed
over the two types of slip planes. Since the calculations
are made for unit length along the s axis, this gives the
energy per unit area of grain boundary.

The formula for the energy per unit area of the grain
boundary derived in Appendix 8 is
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FIG. 2. Energy as a
function of 8 for grain
boundaries. The points
show the data of C. G.
Dunn for silicon ferrite;
see text for orientation.
Theoretical curve has
A =0.231.
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ized as follows: The expression for elastic energy density
for a single dislocation varies as (1/r') from the center
of the dislocation and this gives a logarithmic infinity
if integrated to r=0. Actually it should not be inte-
grated inside of the radius r7 at which the linear Hooke s
law breaks down. The energy inside rg should then be
calculated on an atomic basis and added to the elastic
energy outside r~. As is discussed in Appendix 8, how-
ever, for small angles of misfit precisely the same
formula is obtained for the energy if the integration is
extended to a radius ro&r~ such that the elastic energy
calculated for the region r~&r&r(i has the same value
as the correct energy inside r~. In terms of ro defined
in this way the value of A is

sin2q sing in(sing)+cosy ln(cosy)
(7)

sing+ cos y
with

Ao ——1+1n(a/2s rp). (g)

The energy of atomic misfit, which enters through Ao,
occurs in the energy E with factors, given in (5) and

(6), which are directly proportional to the total density
p +p„of dislocations. This is to be expected since this
highly localized energy should. contribute additively.

From (7) A —Ao as a function of y is seen to be sym-
metrical about 45' and to vary between +0.13 and
—0.15. The maximum A occurs at q =6.5' or 83.5' and
the minimum A at 45'. The curve has a cusp at y=0
or 90', where A =Ao. The variation in A can be neg-
lected at small angles of misfit, where the —ln8—term
dominates the energy expression. (But not near the
cusps of Section 4.)

Equation (5) will be a good approximation for the
energy in a curved boundary if the radius of curvature
is large compared to the spacing between dislocations.
Letting ds be an element of length of a curved boundary,
then the right-hand side of (5) will give dU/ds where U
is the energy per unit length in the z direction. Remem-
bering that IdxI =dsIcosyI and IdyI =dsIsinqrI, we
then have

dU= L«/«(1 —~)jtlLA(~) —»e)L I
d& I+ I dy

I
].

If we can neglect the variation of A with p, we see that
dU is a perfect diGerential, so that the energy in a seg-
ment of boundary connecting two points P and Q will

depend only on P and Q, provided that no changes in
sign of dx/ds or dy/ds occur along the curve. Thus all
boundaries connecting P and Q have the same energy
for the same angle of misfit of adjoining grains. Actually
there will be a slight preference for a 45' boundary
since this gives the minimum A.

The quantity ro may be determined by using several
approximate but not very accurate methods of estimat-
ing the energy in a single dislocation inside the radius rl,.
Using Nabarro's4 result for a pair of dislocations in a
simple cubic model, we calculate that AD=0.8. This
estimate is not considered very reliable since it depends
on the assumption that the interaction between two
planes of atoms is based on a sine law of stress and
strain. ' Another estimate of Ao is obtained from the
requirement that the energy vanish when the disloca-
tions are close enough together to produce an angle of

' F. R. N. Nabarro, Proc. Phys. Soc. London LIX, 256 (1947).
~ It is shown that a sine law fails except over a narrow range of

angles; see %.M. Lormer, Proc. Roy. Soc. A196, 135 (1949).
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Fio. 3. Energy eerszss 8 for q =0 grain boundary showing t~vin
boundary cusp at 53' and 6ne structure.

misfit of 90'. This leads for p=0 to,4o=lnm. /2=0. 45.
However, this estimate is also unreliable since it in-
volves the extension of the formula to large angles
where the approximations used in its derivation are
no longer valid.

3. QUANTITATIVE PREDICTIONS

Fortunately, quantitative conclusions can be drawn
from the theory which do not involve the value of rip.
The first of these is related to Eq. (3) which gives the
spacing between dislocations. These spacings are large
enough for small angles 8 so as to be within the re-
solving power of light and electron microscopes. %e are
not aware of any electron-microscope observations of
suitable grain boundaries; however, it is very probable
that the spacings predicted from (3) have been ob-
served by P. Lacombe in connection with "veining"
in aluminum. ' Lacombe observes that in a single
crystal grain there are faint lines or veins which are
revealed as rows of separated etch pits under suitable
etching conditions. He has also observed that there are
small difFerences in orientation between the regions
separated by the veins. Ke have proposed that each
etch pit originates at a dislocation, where the free energy
of the stressed material will be somewhat higher than
elsewhere; the pit then grows to large size so that it is
observed optically. ' Xo attempt has been made to
calculate the spacings on the basis of a detailed disloca-
tion model for the actual orientation observed; how-

ever, the general order of magnitude for the angles of
10 ' radians or less and the spacings of 3X10—' cm or
less are in agreement with (3) when a reasonable value
for u is used. ' The behavior of the veins observed by
Lacombe is, in other respects, entirely in keeping with
the idea that they are widely spaced arrays of disloca-
tions: Under heat treatment they shif t to radicalIy
difFerent patterns, a result in keeping with the disloca-

' P. Lacombe, Report of Conference on Strength of Solids (The
Physical Society of London, 1948). Similar small angle grain
boundaries have recently been observed by R. Castaing and
A. Guinier in an aluminum-copper alloy. Comptes Rendus 228,
2033 (1949) and La Recherche Aeronatique No. 13, 3 (1950).

V We are indebted to Professor Lacombe for confirming, in a
personal communication, the conjecture of reference 3 that the
data studied there corresponded to a large angle for one specimen
and a large spacing for the other. Professor Lacornbe indicates that
the quantitative aspects of his observations are probably in
agreement with (3).
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' C. G. Dunn and F. Lionetti, Trans. A.LM.E. 185, 125 (1949)

cation proposal. In samples 0.2 cm thick, the vein
patterns on the two opposite sides are in register to
about &2/10 ' cm, the mesh size in the vein pattern
being about 2/10 ' cm. This suggests that the veins
represent cylindrical surfaces and are built up of parallel
elements which run perpendicularly (within 2X10 '/2
X10 '=10 ' radians) through the crystal. Again this
is just the behavior expected for an array of dislocations,
which must either close on themselves or terminate on
a surface. The dislocations in such an array would be
under tension and would be perpendicular to the free
surface.

The second quantitative conclusion has to do with the
energies of grain boundaries and depends only on the
energy where strains are small and linear elasticity
theory applies. The theory predicts that measured
values of grain boundary energy plotted as a function of
8 could be fitted by a curve of the form (5), the param-
eter Ep being determined without approximations by
linear elasticity theory.

Recently C. G. Dunn' has measured grain boundary
energies on a relative scale as a function of difFerence in
orientation, 8. Dunn s values of y are not given, it being
assumed that orientation of the grain boundary has a
small effect. The specimens used were silicon iron (iron
with 3.5 weight percent silicon, body centered cubic),
with the (110) plane in the plane of the specimen. The
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' R. D. Heidenreich and %V. Shockley, Report of a Conference
on Strength of Solids (The Physical Society of London, 1948),
page 57.

grain boundary was made as close as possible to per-
pendicular to the plane of the specimen and the angle
of misfit measured between the [001]directions in the
two grains. Viewed in the plane of the specimen the
atoms are not arranged in a square lattice but in a
rectangular lattice, one side being V2 times the other.
Consequently, 8=180' is equivalent to 8=0', 8=90'
constituting a considerable misfit. Dunn's data in rela-
tive units are plotted in Fig. 2. The plot has three
striking features: a rapid rise of energy with increasing
8 in the range 0' to 15', a maximum and relatively
constant energy in the range 20' to 30', and a dip at
about 70'. The first feature is predicted by the theo-
retical curve, Eq. (5), which has an infinite slope at
8=0. The position of the maximum of the theoretical
curve depends on A, the best fit to Dunn's data being
given by A =0.231, which is the order of magnitude of
the estimates. The theoretical curve is shown in Fig. 2
to 45' and is seen to fit the data surprisingly well even
at large angles —a result which suggests that compen-
sating errors may cause (5) to be valid over a larger

range than is justified by its derivation. We shall return
to the dips at 39' and 70' in the next section.

Dislocation models for grain boundaries in the
common crystal lattices would involve screw compo-
nents and possibly half-dislocations and extended dis-
locations. However, it is not considered worth while to

formulate a better theory until energies are measured
on an absolute scale for small angle grain boundaries.
If such measurements were available, particular dis-
location models could be tested by plotting the meas-
ured E/8 rs. log8. Then according to Eq. (5) the experi-
mental points should fall on a straight line" of slope ED.
The value of ED can be calculated without approxima-
tions and depends only on the known constants of the
material and the particular dislocation model assumed.
An agreement between the calculated and measured
values would constitute strong evidence for the disloca-
tion model.

4. LARGE ANGLE GRAIN BOUNDARY

In this section me shall consider certain general
features relating to grain boundaries for large angles 8,
the remarks still being restricted to the simple cubic
model and to values of y of 0' and 45 unless otherwise
stated.

Equation (5) was derived on the assumption that the
spacing of dislocations was uniform for all values of 8.
Actually this can only be the case when the spacing
determined by relations (3) and (4) is an integral
number of lattice constants; that is, dislocations must
be separated by an integral number of atomic planes.
For instance, if 8 corresponds to an average spacing of
3-,' planes the actual spacing will be irregular, alternat-
ing between 3 and 4. As a result the energy is not a
smoothly varying function of angle but instead has a
number of sharp minima or cusps. We shall show that
these cusps are of the 8ln8 form already discussed
for 8=0. A plot of E ~s. 8 showing the more important
cusps is given in Fig. 3. The deep cusp in the middle
corresponds to a boundary separating twins on the (210)
plane. The dashed curve corresponds to (5) and (6).
The maxima are treated in Appendix C. There will also
be minor cusps between those shown and additional
fine cusps for less than 10'.

We shall consider first the reason that cusps are
necessary at small values of 8. For p= 90' and 8= 9.4',
+y dislocations will be required once in every 6 hori-
zontal planes and no x dislocation would be required.
For a small increase of 58 in 8 from 9.4', however, dis-
locations mill be required somewhat closer so that oc-
casionally a dislocation will be spaced by 5 planes
rather than 6. Where this occurs, it will contribute, at
large distances from the grain boundary, the same
eRect as adding (1/6) of a +y dislocation at each loca-
tion of a "five" spacing. For small values of 88, these
"five" spacings will occur approximately at a spacing
of a/688. For small values of 88 and large spacings, the
energy due to the stress field of these dislocations mill
come from regions far from the grain boundary and
will contribute a term of the order —(Eo/6)881n88,
since the eRective strength of the perturbations is a/6.

"It is shown in reference 3 that Dunn's data plotted in this
way are well 6tted by a straight line —the zero intercept of the
line giving A.
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of Bow lines this interpretation of the atomic arrange-
ment can be described by writing

p= 0; c~—d; 0+~b,

meaning that the c planes running in at the left are
thought of as continuing as —d planes to the right and
that u and b planes are to be considered as representing
the same set in the undistorted crystal. This leads to a
density of dislocations of p +pg where the p's are the
Aux density of plane lines into the boundary. Precisely
the same atomic arrangement can be described by the
arrangement of dislocations shown in the lower part
of Figure 4 according to the scheme

+=45 ~
c~~—d) b~ c,

meaning that the a planes are to be considered as
continuations of —d and b as —c. The density of dis-
locations for the q =45' model is seen to be

p, —pq for c-dislocations
pd —p for d-dislocations.

Combining these leads to a total number of dislocations

(pz+ p.)—(p,+pb) =2(p,—p,), since by symmetry
pd —p. and p = pq. For the angle shown p, = 2p =2/a(5)&
and both models give a density of dislocations equal
to p, .

Now let 8&=90—82 deviate slightly from 53', for
example, by increasing to 60', as shown in Fig. 6a.
The density of c and b dislocations will increase for the
q =0 model so that there mill be on the average more
than one dislocation per plane of set c striking the
boundary. These extra dislocations will give rise to a
cusp in the energy curve about the twin angle. %'e shall
next show that for this case also the p=0 and p=45'
models are equivalent and shall evaluate the e6'ective
strength of the added dislocations which produce the
cusp. For the p=45' model, the density of dislocations
decreases as 8& increases from 53' to 60'; consequently
there will be less than one dislocation per plane of set c
striking the boundary, Fig. 6(b). We shall show alge-
braically that the number of c-planes having extra
dislocations according to the p=0' model just equals
the number of c-planes lacking a dislocation according
to the p=45' model, and we shall than show geometri-
cally that these two descriptions actually describe the
same atomic arrangement.

According to the p=0' model, the density of disloca-
tions is 2p, and the excess compared to the density of
c-p1anes is thus 2p —p, . According to the q =45'
model, the density of dislocations is 2(p.—p,) and the
excess of c-planes compared to this is p,—2(p, —p,)
=2p, —p„ this is the algebraic proof. Figure 6(a) shows
the 60' boundary with dotted lines joining atoms ac-
cording to the y= 0' dislocation model. In Fig. 6(b) the
atoms are joined according to the q =45 model. By
observing the diGerence between the two models of
the same atomic arrangement in the vicinity of a per-
turbation, or region where according to the @=0'

model two vertical rows end on the same plane, we see
that each pair of c—b dislocations on the same c-plane
in the p=0 model is equivalent to a missing c—d pair
on the same plane in the q =45' model. Although both
dislocation models represent the same arrangement of
atoms, the model consisting of the fewer dislocations is
to be preferred on physical grounds as giving the better
method of joining the grains, since the number of
atoms per plane having a missing bond is equal to the
number of dislocations.

In Fig. 6(c) we show the two surfaces which would be
formed if the 60' bicrystal were to be pulled apart.
It is seen that these are nearly perfect (210) planes
except for steps occurring at the perturbations. These
steps correspond to an offset of one (210) plane spacing
on each grain or a net normal displacement of two
plane spacings. Thus the perturbations are equivalent
to dislocations of magnitude 2a/(5)& with the slip
vector perpendicular to the grain boundary. Hence the
cusp will have the form of

[2/(5)&jEO(q =0)88(Ag —1n88)

by analogy with the @=0 calculation which has a
similar dislocation array but with strength a. The value
of A~ will be determined by the atomic misht on the
twin boundary and will. be diferent from A~.

Probably the most signi6cant feature of the above
calculation is that for small angles of deviation the
energy of the twin boundary will increase with angle
almost as fast [i.e., 2/(5)&=0.89j due to the —88 1nM-

term as for a small angle grain boundary.
It is also evident from the general reasoning presented

here that similar sects will be produced by varying y.
If the orientation of the two grains is maintained at 53'
and the value of q is changed from 0, the energy will
increase as —piny with a coeKcient again nearly
equal to Eo.

This last prediction of dependence of energy upon q

is in agreement with the observation of Lacombe"
that when two grains are separated by a boundary
consisting in part of a straight twin plane and in part
of curved boundary not along the twin plane, the etch
used will attack the curved boundary but not the plane
boundary, thus showing that large diBerences in energy
are produced by changes in orientation of the grain
boundary for the same orientation of the grains.

The dips in Dunn's data of Fig. 2 appear to corre-
spond to expected cusps for the orientation of his
crystal. It was seen in Section 3 that, when projected
in the plane of the specimen (110), the lattice structure
is rectangular with an edge ratio of 1:V2. The angle 8
is measured between [001$ directions (short edges).
If 8~ is the angle between the grain boundary and the
[001j axis of the first grain, the unit normal to the
grain boundary is seen to have components cos8~ cos 45',
cos8~ sin 45', sin8~. A similar result holds for the second

"Report of a Conference on Strength of Solids, University of
Bristol (July 1947) published by the Physical Society,.'1948.
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positions. In Appendix A we show that the force acting
on a unit length of a dislocation under these conditions
is simply v a, so that the pressure on the grain boundary
is ra/D„='rH. The same pressure is derived by con-
sidering the deformation of the crystal. If we imagine
the left grain to be held 6xed, then the work done when
the boundary moves a distance 8' is ST per unit area,
so that the pressure is Sr/W= r2 tan-', 8= rH for small
angles. This type of motion can thus permit relative
shear of the two crystals to take place across the grain
boundary.

Figure 7(a), however, is a very special case. A more
typical situation is shown in (b). Here there are two

Fro. 8. Motion of dislocations perpendicular to slip planes
produced by diffusion of atoms.

introduce a statistical fluctuation in observed angles.
Smith found that the statistics of the observed angles
were consistent, or at least not strikingly inconsistent,
with a single interfacial energy for the boundaries.
This at erst seems to contradict the predictions made
here that the grain boundary energy Quctuates violently
and that, as indicated in Fig. 2, energies of less than
half the average should occur in about 15 percent of the
cases; the impression gained from Fig. 2 is erroneous,
however, because it shows the energy as a function of
one angle only. If any of the three angles which specify
relative orientation of the grains is large, a relatively
large grain boundary energy will be obtained. If we
assume that the grain boundary energy for a general
orientation is the sum of three functions like that of
Fig. 2, one for each angle, then we estimate that ener-
gies less than 50 percent of the average will be obtained
in only about 3 percent of the cases. Consequently,
observations of grain boundaries for grains selected at
random would show such a small percentage of low

energy boundaries that their presence would have only
a slight efkct on the statistics.

5. DYNAMICS OF THE GRAIN BOUNDARY
MODEL

The dislocation model of the grain boundary appears
to have the potentiality of giving the "viscous grain
boundary" behavior studied extensively by Zener and
Ke."Two separate mechanisms are involved in shear
across the grain boundary, corresponding to motion
of the dislocations in their slip planes and motion
perpendicular to the slip planes. (The latter involves
diffusion of atoms in a way which we shall shortly
illustrate in Fig. 8.)

The two basic processes are shown in Fig. 7. A bound-
ary with q =0 is shown and the bicrystal is cut so that
the 1argest faces are parallel to the boundary. If a shear
stress T is applied as shown, the dislocations tend to
slide on the slip planes in the direction of the dotted

'I' C. Zener, E4sticity end Anelasticity of Metals (University of
Chicago Press, Chicago, 1948); T. S. K6, J. App. Phys. 20, 274
(1949).
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8 C AND EJECTION OF
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FIG. 9. Formation of a dislocation pair at a grain corner
under applied stress.

sets of dislocations and in this case if we move the grain
boundary to the right, by sliding the x dislocations to
the right and the —y dislocations down, no net shearing
motion of the crystal results. The reason for this is that
the prescription of dislocations of Eqs. (3) and (4) is
just that necessary to permit the two grains to join
with a fixed relative orientation; a proof of this state-
ment is given in Appendix E. The difference between
(b) and (a) is connected with the limiting behavior
as p—4. As p becomes very small, the spacing D„ is
given by u/Hp. Thus D„+~ as p—4. As the boun—dary
moves to the right a distance W, however, the —y dis-
locations move a distance W/p so that each y plane is
cut by (W/p)/D& WH/a dislocations ——of y type as it
moves. Each of these produces an onset "u" giving a
shearing motion of WH. Inspection shows that the sign
of this shear just cancels the 8'0 term due to the motion
shown in (a). Thus no net shear is produced by motion
of the boundary while any —y dislocations are present.



%. T. READ AND vr. sHOCKLEY

II~'

0 0 0 0 0 0 0

0 0 0 0 0 0

0w 0 ~w~» 0 ~~pa ~~0 0

—0—0—0--—0—0 —0— c'

0 0 a 0

0 0 0 0 0 0 0

at tisane t
f

aS ~.
-- g.-~» C

If a shearing stress is applied to (b), the dislocations
try to slip as shown by the arrows. As a result the x
and y sets pull apart until the increasing elastic energy
of the material between them balances the applied
stress. If the angle q is small, this will result in curva-
ture of the dense line of dislocations and resultant high
stress values. We shall return to the high stresses later
in this section in connection with grain boundaries as
stress raisers.

The processes which may follow the development of
the stressed situation in (b) are illustrated in a simpler
form in (c) and (d). Here we show a A= 45' boundary
with a shearing stress system which develops no shear
in the slip planes. The shear stress system is equivalent
to a normal stress system shown as dotted arrows.
These stresses tend to squeeze out (or pull in) the extra
half-planes of atoms. The mechanism whereby this may
be accomplished will be discussed below', however, if we
assume that the squeezing out actually occurs, then the
motion of the dislocations will be as shown in (d).
Here we consider two dislocations on a grain boundary
which divides the specimen in two; actually there mill

be many dislocations on the boundary. The normal
stresses on the half-planes cause one to shorten and
the other to lengthen, moving the dislocations to the
dotted positions. The dotted positions, however, corre-

spond to a relative motion of the arrays of the two types
of dislocations; and in order to keep the grain boundary
in a minimum energy condition, the dislocations will

slip in their own planes so as to move to positions in
the dotted grain boundary which are at the same height
as their original positions. These combined motions
produce a net horizontal motion of the grain boundary
in which no dislocations cut the (110) planes which are
parallel to the top and bottom of the figure. The result
is thus a yielding to the shear of amount S=W2 tane/2
as for Fig. 7(a).

The process which can produce motion perpendicular
to the slip plane is shown in Fig. 8, which corresponds
to 1(d) turned through 45'. We suppose vacancy di8u-
sion takes place, the process being initiated by jump
(1) in the figure which permits the half-plane to grow
by one atom, a vacancy being produced next to the
advancing edge. This vacancy diffuses until it is filled

by jump 7 which shortens the other dislocation by
one atom on the leading edge of the half-plane.

The shear produced across a general small angle grain
boundary will be a mixture of effects like those consid-
sidered in (a) and (c). For large angle grain boundaries,
such as are dealt with in most experiments, the density
of dislocations will be so high and the possibilities of
alternative descriptions so many that other approaches
may be better such as those of Mott" and Ke,"which
consider the boundary to be a mixture of good fit and
bad fit. However, the feature discussed in Fig. 8 has one
consequence in agreement with experiment: The mecha-
nism involved is that of self-diGusion and, consequently,
the activation energy for the process will be the same
as that for self-diffusion, in agreement with the findings
of Ke for aluminum, n-brass and n-iron. "

Even for small angle grain boundaries, however, the
theory discussed in connection with Fig. 7 is over-
simplified because it neglects the effects of screw com-
ponents of the dislocations and the possibility of half-
dislocations. "The screw components are discussed in
Appendix D and are seen to exert forces like those of
charged wires on each other. These forces will tend to
stabilize the dislocation arrays.

The pressure on a grain boundary suggests a mecha-
nism for the creation of dislocation pairs in the interior
of polycrystals. As mentioned earlier, an applied shear-
ing stress tends to pull the boundary apart, creating
regions of stress concentration. We now show how the
distortion of a grain corner under stress could lead to
the formation of a dislocation pair at the corner. Con-
sider the right-angle corner illustrated in Fig. 9(a),
where the grain in the upper right-hand quadrant is
disoriented by a small clockwise rotation relative to the
adjoining material. The grain boundary is symmetrical

Fro. 10. The force on a dislocation. (a) Single dislocation in a
cubic crystal, showing shearing stresses on planes C and C'.
(b) Plot of b=diBerence in displacement on C and C' at times t
and t+lK

"N. F. Mott, Proc. Phys. Soc. London 60, 391 (1948)."T.S. Ke, I. App. Phys. 20, 274 (1949).
's T. S. K8, Phys. Rev. 73, 267 (1948)."R.D. Heidenreich and W. Shockley, Report of a Conference

on Strength of Solids (Physical Society, London, 1948), p. 57.
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and runs along the +y and +x axes, which are rows of
+y and —x dislocations respectively, %hen an external
shearing stress is applied as shown in (b) the y disloca-
tions are pushed to the right and the —x dislocations
are forced downward. The entire pressure on the grain
boundary and the forces on the dislocations are held
in equilibrium by the corner, which alone prevents the
relative displacement of the two segments of the
boundary. The corner is thus a region of high strain,
the strain energy per unit applied stress being propor-
tional to the area of the boundary and the density of
dislocations. As the applied stress is increased, the
relative displacement of the two rows of dislocations
increases until the distortion of the corner is so severe,
as shown in Fig. 9(b), that it is easier energetically to
form a dislocation pair BC, Fig. 9(c), where 8 611s the
gap on the grain boundary and A and C are ejected and
move under the applied stress to the external surface,
thus contributing to the observed slip of the specimen.

In conclusion it may be pointed out that the idea of
pressure on a grain boundary due to applied stresses
constitutes a prediction from dislocation theory that
grain boundaries, and similarly veins like those observed
by Lacombe, should displace in a particular way under
the inhuence of applied stress.

The authors would like to express their gratitude
for suggestions and encouragement in connection with
this research to J. H. Hollomon, C. S. Smith, W. G.
Burgers, C. G. Dunn and C. Herring. %e are also
indebted to Mrs. G. V. Smith and Miss D. T. Angell
for computations and other assistance in preparing the
manuscript.

APPENDIX A

The Force on a Dislocation

When a dislocation moves under the action of an external stress
field, work is done on the boundary by the applied forces. Some of
this work goes into increasing the energy of distortion of the crystal
and is recoverable, and the remainder is dissipated at the disloca-
tion as heat or acoustical waves. De6ning the force on a disloca-
tion as the energy dissipated in moving the dislocation through
unit distance on the slip plane, we show, 6rst by an intuitive ex-
ample and then by a careful analysis of the physical phenomena,
that the force per unit length on a line dislocation is the lattice
constant times the applied shearing stress in the slip direction.

In the simple example, Fig. 10, let the dislocation move a dis-
tance L from one side of a crystal to the other, producing a rela-
tive tangential displacement of the upper surface through one
lattice constant a. Letting v be the applied stress on the slip plane
the work done is mal. . The elastic energy of distortion in the two
parts of the crystal above and below the slip plane is the same
before and after slip, so that all of the work has gone into heat.
Since an amount of heat v.aL has been produced in moving the
dislocation through a distance L, it would be reasonable to assume
that the force on the dislocation was ~a."%e shall 6nd by a more
thorough analysis that this semi-intuitive result is correct.

If we assume that inertial effects can be neglected, then the
energy dissipated is equal to the external work done minus the

20 This reasoning is very similar to that of N. F. Mott and
F. R. N. Nabarro, Report of a Conference on Strength of Solids
(The Physical Society, London, 1948},p, 1.

change in stored energy of distortion. The rate of change of in-

ternal energy is equal to the rate at which surface stresses are
doing work on the complete boundary of the crystal, which in-
cludes not only the external boundary but the internal surfaces
of discontinuity, or slip planes. Thus the stored energy is the sum
of the external work and the work done on the slip planes —from
which it follows that the energy dissipated is the negative of the
work done on the slip planes.

Now consider a single dislocation in a cubic lattice, Fig. 10.
Let C and C' be the atomic planes adjoining the slip plane. The
shearing stresses on C and C' are shown in the figure. Superposed
on this anti-symmetrical shear distribution we have the shear
stress due to the external 6eld. Figure 10(b}is an approximate plot
of the discontinuity in displacement 5 across the slip plane, the
atoms being in register at the extreme right and offset by one
lattice spacing at the left, with a transition region of a few atomic
spacings at the dislocation. The dotted curve shows the dis-
continuity in displacement at a time b, t later, when the dislocation
has moved a distance hx. Clearly the limit b,b jbf is a symmetrical
function of distance x along the slip plane. The rate of doing work
on the slip plane is the integral of the shearing stress times the
rate of relative displacement b.b/At of the planes C and C'. Since
the latter is symmetrical, the anti-symmetrical shear distribution
due to the dislocation itself gives no contribution, and we have
for the rate of energy dissipation

A8dx)
c

where 7 is the external shear stress, which may be considered
constant over the atomic dimension involved, and the integral
is the area between the two curves in Fig. 10(b) which is readily
seen to be aux. Thus, taking account of signs, the energy dissi-

pated in moving the dislocation a distance Ax is ~ah, x and the
force on the dislocation is va."

In this derivation it has been assumed for simplicity that the
slip ~ector is at right angles to the axis of the dislocation. How-

ever, this restriction is readily seen to be unnecessary. In the
general case the force on a dislocation is 7.a where r is the shearing
stress in the slip direction and a is the magnitude of the slip
vector or lattice spacing in the slip direction. Thus the result
derived applies to dislocations with screw components, which are
generally required in an actual face-centered or body-centered
cubic lattice.

APPENDIX 8

Derivation of the Energy us. Angle Formula

The shear stress v,„due to a single +y dislocation located at the
origin of the coordinate system is22

where for convenience lengths are expressed in units of "a" and

stresses in units of GjI 2+(1—o.}j.The shearing stress due to an
infinite row of dislocations, Fig. 1, spaced at a distance D„along
the line inclined at an angle y to the x axis is

X„(X„'—yn2)

(x 2+y 2)2

x~= x+sDg cosy
y„=y+nD„sin@.

"It may be noted that this differs by a factor of ~(1—o} from
the result computed by J. S. Koehler using linear isotropic two-
dimensional elasticity theory (Phys. Rev. 60, 400 (1941)). This
may be attributed to the fact that Koehler does not take account
of the work done by the surface forces.

22 J, S. Koehler, Phys. Rev. 60, 397 {1941).

. ="(x2 ~)
(x2+y')"
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From (3) and (4) of Section 1, D, and D,, are given by

D.= a/(e cos,}
D„=a/(8 sing).

The infinite sum (8.2) is readily transformed to

y„1 1+
8y 2 x„+iy„x„—iy„

(8.3)

n= —~ ~y p2 n2p

Since the terms ~vith n odd cancel in pairs, this can be expressed in
the form

t9 z l y —zD)&
Re ——

(ly „ul sing
ih'2 2 tl' 2n Mi

The sum of the infinite series is known and is equal to

(~/=, } cot(~z/z, }.'-

I,'sing the complex variable z=x+zy and the complex constant
zl =D„e'~ and letting Re mean "real part of," this becomes

y+nD„sin q
Re

8y z+nzl

3Iultiplying numerator and denominator b) ~ n l and aclding a
constant term ~vhich vanishes in the differentiation, ~ve have

(y+ nDy sin p}{z—nzl } Dy sing

found to be
—(m-R/2D, ) sing sin2y (8.7)

and is the same for all the +y dislocations. "
Since the self-energy per +y dislocation is obviously the same

for each dislocation, we consider the dislocation at the origin,
where y= 0, and integrate the shearing stress (8.5) due to the +y
dislocations from x=ro to x=R, where ro is the radius of a small
circle around the dislocation and, as previously explained, is a
parameter determined by the local energy of misfit which must be
calculated on an atomic basis. This integration gives for the
self-energy per +y dislocation

1 mR 2x'ro

2 D„
——sin2q cosy —ln +sin2y

Dy
(8.8)

It can be seen that varying ro changes the energy by a constant
amount, independently of the orientation of the adjoining crystals.
Thus adjusting ro is equivalent to adding the energy of local atomic
misfit to the angle dependent energy of the surrounding held.
This is a valid procedure provided the angle of misfit is small
enough that the local energy of atomic misfit is not depenclent on
the spacing between dislocations.

The self-energy of the set of +x dislocations is found in the
same ~vay to be

1 +R . . 2mro

2 D,
——sin@ sin2p —ln +cos"'p

D

This gives

Re —,—- (zly —D„sing)
P Oy

7'cot-
zi-

per dislocation.
The work done on a horizontal slip plane is (8.7)+(8.8)

(8 4) equals

for the stress caused by the infinite set of +y dislocations. Put. ting
this in the form

)l M ~ )l XM
Re —,Dy cosy cot——i(zly —zD, sing}—csc~, (8.5)

zi zi Zi Zl-

~ve see that at an infinite distance from the line of dislocations,
where z =.Vial and X~~, the stress approaches (m /D„) cosy sin2 p.
A similar analysis for the dislocations with vertical slip planes
gives a, stress at infinity of —(x/D, ) sing sin2q. From (8.3) v e
see that the sum of these is zero, so that the shear stress at in-
finity vanishes as required. 2'

YVe shall no~v calculate the self- and interaction energies of the
t~vo sets of dislocations.

The ~vork of interaction on the vertical slip plane of one of the
+x dislocations is found by integrating the shear stress (8.4) clue
to the set of +y dislocations, the integration being taken from
x, y to x, y+R &vhere R is very large and x and y are the coordi-
nates of the +x dislocation, with the origin at a +y dislocation.
3faking use of the fact that the equation of the grain boundary is
y=x tang, the integral of (8.4) with respect to y gives

—(m-R/2D„} cosy sin2y

for all points on the boundary. Thus the interaction energy is the
same for all the +x dislocations, In the same vvay the ~vork of
interaction on t.he horizontal slip plane of a +y dislocation is

'~ E. P. A(lams, 5&n)ths()nian AEathemat)'ca/ For))) ulae and. I'ables
of E/liPIical J'anctions, p. 129, No. 6.495, Smithsonian Institute,
washington, D. C. {1922).

"From (8.5} it is seen that the stress due to the +y disloca-
tions does not. vanish except when sin 4p=O or z=zl/2. Thus in
the general case there is a net force on the +x dislocations and the
assumed dislocation array is not in equilibrium. However, near
the boundary a small change in position corresponds to a relatively
large change in stress so that equilibrium could be satisfied by a
slight rearrangement of dislocations involving a deviation of the
boundary from a straight line. This woulcl have little effect on the
stress energy at, clistances from the boundary comparable to the
spacing between dislocations and therefore would not appreciably
aGect the calculated energy.

2 Dy D D, eDy D eD
(8;11)

or, using (8.3) the energy E per unit area of the boundary is

E=E„ef.4 —lnej (8.12)

~vhere Eo depends only on q and the constants of the material
and is given in dimensional units by

Ga
Eo ——— {cosy+ sing}4~(1—(T}

(8.13)

and;1 depends on ro and, therefore, on the energy in the imme-
cliate vicinity of the dislocation and is given by

sin2q sing ln(sing }+cosy In(cosy)
~ 4

(
2 sin q +cos rp

avhere .4o is the value of 3 ~vhen the boundary is along a crystal
axis and is given by

3 o ——1+lnLa/(2~) o) Q. (8.15)

"The interaction energies per unit area of the grain boundary
are, respectively, (8.6)/D, and (8.7)/D„, and these in general are
not equal. However this does not contradict the conservation of
energy because these energies represent the ~vork of interaction on
the slip planes only; the total interact. ion energies should inclucle
also the ~vork done on the external surfaces by the stresses at
infinity, which do not vanish for each set of dislocations indi-
vidually.

cosy sing 1 2~ro—R sin2 q
— —— In +cos'q, (8.10)

2 Dy D, 2 eDy

xvhere e is the base of the natural logarithms. The relationships
between D„, D„and q ~vhich caused the stress to vanish at ~ in
(8.5) causes the coe%cient of R to vanish so that the energy is
convergent.

The energy per unit length of boundary is found by dividing
the work done on a slip plane by the spacing between slip planes.
This gives ){8.7)+(8.8}j/D„ for the +y dislocations, and
L(8.6}+(8.9) j/D, for the +x dislocations. The sum of these is
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APPENDIX C

Energies of Irregular Arrays

In this Appendix we consider the case of a symmetrical bound-
ary for angles where the spacing of dislocations is not uniform
and the energy is not the same for every dislocation. Angles corre-
sponding to average spacings which are simple ratios like 4/3 or
3/2 can be represented by superposing two or more regular arrays
of dislocations with different spacings. For instance, the y=90'
model for 8=41' can be represented as the sum of two arrays as
follows

XXXOXXXO=XOXOXOXO+ OXOOOXOO,

where X represents a dislocation and 0 no dislocation and the
spacing between the symbols is one plane. The self-energies of the
two arrays are readily obtained from Appendix B, since each set
alone corresponds to a single boundary with angle of misfit de-
termined by the spacing. To obtain the interaction energy of two
regular arrays we determine a general expression for the energy
of interaction between a single dislocation on the y axis and a row
of dislocations spaced at regular intervals D along the y axis.
Taking the origin at one of the dislocations of the regular array,
we let y&D be the coordinate of the single dislocation and find
the interaction energy as a function of y.

The shear stress due to the regular array is

—Re (~x/D) csch'(m/D}(x+iy).

Integrating with respect to x from rp, y to E, y where E»D gives

—Re Lln2 sinh(m. /D) (rp+iy) —(mr p/D) coth(~/D) (rp+iy) ]
which resuces to the usual formula when y=0. When y»rp, we

have
ln2 sin(~y/D).

The energy of interaction is therefore negative for D/6&y &5D/6
and positive in the interval +D/6 about each dislocation of the
regular array, the distribution being symmetrical about the
minimum energy —ln2 at y= D/2.

For the 41' boundary the interaction energy per unit length
for the set spaced at 2a is ——,

' ln2. This can be checked by com-

paring with the interaction energy per unit length for the 2a
spaced set, which is

—-', Lln2 sin(m/4)+ ln2 sin(3m. /4) )= ——,
' ln2,

the two interaction energies being equal as required by the re-

ciprocal theorem. Adding the interaction energies to the self-
energies gives a total energy of 0.86 as compared with 0.75 given

by Eq. (5} on the assumption of a regular spacing of 4a/3.
For 8=37' the y=90' model is

XXOXXO =XOOXOO+ OXOOXO.

Here the interaction energy per unit length is (-,') ln2 sin(vr/3) for
each regular set giving a total energy of 0.83 as compared with
0.73 for a regular spacing of 3a/2.

APPENDIX D

Energy of Arrays of Screw Dislocations

The screw components give rise to shear stresses v„and v„,
acting in the = direction and on both sets of slip planes. There is
no interaction between screw and x and y components but the
t~vo types of screws interact with one another, since each set of
screws gives rise to shear stresses on the slip planes of the other
set. Formulas for the self- and interaction energies will be derived
and applied to the special case of symmetrical boundaries for
both regular and irregular arrays.

The component of displacement w, in the s direction, for a single
screw dislocation is given by

w= (b/2m) tan '(y/x), (O.1)

where b is the:. component of the slip vector. This formula shows

I

I

I

Q

Fio. 11.Interactions between screw dislocations showing that
stress fields of unlike dislocations cancel at large distances.

that the elastic behavior of the screw dislocation is the same no

matter what slip plane is involved. The stresses due to the dis-

location are

Bw Gb x
~y, ——G—=—

By 2m X~+y

Bzv Gb —y7.„=G—=—
Bx 2m x2+ y2

v.,y =0.
The calculations of the interaction of screw dislocations is greatly
simplified by the fact that one can show a direct correspondence
with two-dimensional electrostatic theory. We consider two dis-

locations with slip vectors bi and b2 and choose two coordinate

systems (xi, yi) and (x2, y2) measured from the dislocations. The
energy density in the stress field is then

(lG)(-..+;:)
1 (2by)' (2b2)' 2bi2b2

, x x+y y2)

aild
E,= 2b,/r„E, = 2b,/'

e= 4m-/G.

This shows that the energy density is formally the same as that
for two wires with charges per unit length of bi and b2 embedded

in a medium with dielectric constant e. We may, therefore, use

theorems from electrostatics to calculate the energies of arrays

of screw dislocations. (The Taylor type of dislocation cannot

be represented in this way, because the u and v displacements are

not solutions of Laplace's equation V'u=0, whereas w is a solu-

tion. }
The interaction of two screw dislocations is shown in Fig. 11.

It is seen that if the dislocations have opposite signs, their stress

fields cancel at distances from them comparable to twice their

separations, whereas if they are of the same sign the stress

fields add.
The problem of the infinite self-energy of a single dislocation for

small distances is again solved by cutting off the integration at
such a radius rp that the energy inside of the radius at which

Hooke's law fails is correctly given. Since the disturbance in a
screw dislocation is very different on an atomic scale from that in

a Taylor dislocation, the value of rp will be different. The same

qualitative arguments will apply, however. The use of rp corre-

sponds in the electrostatic problem to calculating the energy of

charges on the surfaces of hollow cylinders so that the field energy

inside the cylinders is negligibly small.

1=—pEi+E2]'
8xe

where Ei and E& are vectors directed away from the dislocations

with magnitudes
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tions will evidently be

I I'I I

8 /2

FIG. 12. Displacement of grain boundary by motion of dislocations
without relative motion of grains. (y dislocations not shown. )

The potential energy of an array of screw dislocations spaced a
distance D apart in a plane will be a minimum when the signs of
b alternate corresponding to a grid of alternately changed wires.
The potential of such a set of wires must behave as —(2b/e) lnr
near each plus wire and as +(2b/e) lnr near each negative wire.
If the wire centers are at x=0, D, 2D, etc. , the solution of Laplace's
equation which satisfies these requirements and vanishes at large
I xl ~s

Real Part of —(2b/e) ln tan~(x+zy}/2D.

We shall assume that the dislocations are so far apart that the
cylinders of radius ro are practically equipotentials; otherwise the
approximation that the energies of atomic misfit do not interact
is in error. Assuming that, the potential at x=ro, y=0 is

The self-energy per dislocation of the array is (&}b times this
potential and the self-energy per unit area, E., is (1/D} times this
latter:

1 b Gb'
E,=—-(2b je) ln2D /pro=- ln2D/~ro.

In many cases it will not be possible to have the simple alter-
nating scheme of screw components used for calculating E,.
For the q =0 and q =45' models, the regularity of the spacing
makes it possible and in that case a term of form E, can be
added to E.For small angles both terms are of the form E8(A —ln8)
and their sum is of the same form, the value of E and A depending
on the particular relationship of screw to Taylor components.

If screw dislocations are coupled to the x and y dislocations of
the boundary of Fig. 1, the interactions between them will be
such as to stabilize the position of the x set in respect to the y set.
For example, for the q =45' model, there are equal numbers of
x and y dislocations. The most stable arrangement will be that
which results in a maximum of cancellation of the screws, Fig. 11,
just as if one grid of alternately changed wires were placed next to
another so that the changes neutralized. Mathematically, this
reduces the screw energy to zero. Physically, it means that the
dislocations will draw together until non-linear interactions, which
are represented by the ro terms, become important.

ZS. (~&—»)/~= —dx ej~

for small values of 8. Hence, in order to fit the two grains together
with the proper number of +x dislocations, the spacing must be
8/e as projected on the x axis. Since sliding the dislocations on their
slip planes does not afFect this density, slipping the x dislocations
from L to L' still leaves the correct density. The same reasoning
may be applied to the y dislocations (not shown on Fig. 12).
Furthermore, the points Bi and B2 are unchanged and are cor-
rectly in register for both the distribution of L and I'. Hence the
same set of dislocations are the optimum set for both L and L'
and, since both L and L' preserve the registration at Bi and B2,
it is evident that shifting the dislocations from L to L' does not
produce relative motion of the two grains.

Any method of moving the boundary connecting B& and B2
to a new position leaves the number of required dislocations of
each type unchanged for the entire boundary, but only the sliding
of each dislocation on its slip plane preserves the correct number
for every segment of the boundary, that is, preserves the correct
density.

APPENDIX F

Energy vs. Angle Relations for Three Intersecting
Boundaries

In this section we obtain the formulas for the energy ratios in a
three grain specimen, taking into account the dependence of
energy on grain boundary orientation.

Figure 13 shows three grain boundaries intersecting in a line
normal to the plane of the drawing at 0. The grain boundary en-
ergies are Ei, E2, and E3, the angles between boundaries are
Pi, P2, and P3, and the average orientations of the boundaries
with respect to specified crystal axes in the two adjoining grains
are cpi, p2, and p3.

The energy-angle relations for this case have been derived by
C. Herringl from the minimum energy principle and in the present
notation are given by equations of the form

Ei+E2 cos$31E3 cosf2
+sining(F3/8q 3) —sin&3(BE2 /8q g} =0, (F.1)

where the partial derivatives with respect to boundary orientation
are measured in the direction of counterclockwise rotation about
the intersection.

Equation (F.l) expresses the vanishing of the first-order change
of grain boundary energy due to an infinitesimal displacement of
the intersection in the plane of the first boundary, it being assumed
that the second and third boundaries acquire angles at points
separated from 0 by distances which, although still infinitesimal,
are large compared to the displacement of 0. Two other equations
of which only one is independent are obtained from (F.1) by

APPENDIX E

A Theorem on the Displacement of Grain
Boundaries for Small 8

Consider two grains whose orientation difFers by a small angle 8
as shown in Fig. 12. Suppose that at two points Bi and Bg on the
boundary the two crystals are perfectly in register on the same
atom. We wish to show that sliding the set of dislocations which
compose the boundary to difFerent places on their slip planes, so
as to move the boundary to a new position, does not tend to
produce relative shear motion of the two grains. To prove this we
consider the number of +x dislocations required for the two
positions of the boundary, L and L'. If two unit vectors along the
cell edges, as shown, are ni and», then the number of +x disloca-

E, (y,)—

FIG. 13. Three intersecting grain boundaries.

~ C. Herring, "Surface tension as a motivation for sintering, "
a paper presented at the Symposium on Physics of Powder Metal-
lurgy, organized by Sylvania Electric Products, Inc. , Bayside,
Long Island, New York (August 24-26, 1949). Plans have been
made to publish the papers of this Symposium in book form.
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rotation of subscripts. These equations are satisfied by

E»

(1+epee) sinljk»+ {E3—c2} cosf» (1+e»e3) sin/2+ (4» —83) cosf2

(F.2)(1+~»e2) sin/3+ (~2—e») cosf3'
where

» = (1/E») (~E»/~y»)

with similar definitions for e2 and ~3. When the e s vanish (F.2)
reduces to the triangle of forces. When any one of the ~'s cannot
be neglected the triangle of forces gives erroneous values for both
of the two independent energy ratios. However if only one
boundary, say the first, is near a cusp position so that the other
two boundaries have small derivatives with respect to orientation,
then (F.1) gives to a good approximation

E» = —E2 costs —E3 cosf2, (F.3)

~vhere E2 and E3 are to be determined from the best fit curve to

data obtained from samples where none of the boundaries are
near energy cusps. Applying this procedure to Dunn's two speci-
mens each with one boundary near the 70.6' cusp 2~ we obtain
0.77 and 0.78 for the points at 70.5' and 71.5' respectively. As
discussed in the text, the triangle of forces gives unreliable values
for the energies of the other boundaries in these samples.

For a simple cubic lattice with none of the three boundaries
near a cusp position, the a's can be determined by differentiation
of (5) of the text, making use of (6) and (7) for the dependence of
Eo and A on y. When the variation in A can be neglected, we have

8 cosy» —sin y» 1—tan y»
~ =—1~.(y) =

8 y» cosy»+ sin y» 1+tan y»

with similar expressions for ~~ and e3. This formula is valid for
0g y(x/2.

"C. G. Dunn and F.Lionetti, specimens S10 and S11,reference
8, Table I, p. 128.


