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The 6rst part of this paper gives a simple quantum-mechanical derivation of Kittel s formula for the
resonance frequency of ferromagnetic materials. The interactions between the elementary dipoles are
handled directly, rather than through the ad hoc introduction of macroscopic demagnetization factors, as
is usually done. In Section 3, Kittel s corrections for the effect of anisotropy on frequency are derived from
the microscopic standpoint with a model having quadrupolar coupling between atoms. Section 4 discusses
qualitatively the effect of exchange narrowing on the line-width. In Section 5 it is shown that Kittel s
relation g—2=2—g connecting the spectroscopic splitting factor g and the gyromagnetic ratio g is a
general consequence of 6rst-order perturbation theory. Throughout the paper it is stressed that ferro-
magnetic bodies may have important short-range forces of dipolar structure which arise from anisotropic
exchange rather than from true magnetic coupling. It is shown that in the Grst approximation, inclusion
of these anomalous forces does not modify Kittel's results.

1. INTRODUCTION

N interesting development in microwave spectro-
~

~

~

~
scopy is the discovery of sharp resonance lines in

ferromagnetic bodies in the presence of a constant
magnetic field perpendicular to the oscillating or
"measuring" field. At first thought, one would expect
the resonance to occur at the Larmor frequency
gHe/4~me, provided, of course, that one includes the
Lande factor g in defining this frequency. Actually, the
resonance frequency depends on the shape of the
specimen and involves the demagnetizing corrections.
Kittel' shows that if the constant field is applied along
the s axis, and the measuring field along the x direction,
as we suppose throughout the paper, then the resonance
frequency is

v= I [H+ (lV„iV.)M][H+—(lV,—'V, )M] I ', (1)
ge

4n-mc

where M is the s component of the intensity of magnet-
ization, and where X„X„,X, are respectively the
demagnetizing corrections for fields applied in the x, y,
and s directions. The case most commonly investigated
is that in which the specimen is much thinner in the x
than in the y and s directions. Then (1) reduces to the
simple and by now well-known formula

v = (ge/4s. mc) (BH)&.

In evaluating the shape of the specimen, allowance
must be made for any diminution in the effective size
which results from limitation of penetration by the
skin eGect. The direction perpendicular to the wall
of a wave guide is thus usually to be classed as short
even though the material may extend indefinitely in
this direction.

Kittel derived his fundamental formula, our Eq. (1),
by a very ingenious method based on classical theory.
Although his type of argument is such that one expects
it to hold also in quantum theory, nevertheless, it is
desirable to have a quantum-mechanical derivation of
(1). The quantum eigenvalues for the entire specimen
regarded as a single unit have been obtained by Lut-
tinger and Kittel, ' and by Richardson. ' Their resulting
derivation of (1), however, still utilizes the classical
macroscopic theory of demagnetizing corrections.
Polder' has given a general formal proof of the equiva-
lence of the classical and quantum-mechanical results,
so that there is no loss of rigor in using classical de-
magnetizing fields. Any approach of this character is,
however, a little devious. In Section 2 we shall give a
simple quantum-mechanical proof of (1) in which the
demagnetizing corrections follow as a direct conse-
quence of the inclusion of the interaction between the
elementary dipoles.

2. DERIVATION OF KITTEL'S FORMULA

For our purpose any terms can be dropped from the Hamiltonian function which do not depend on spin orien-
tation. The Hamiltonian matrix can hence be taken to be

K=HgPQ; &z+Pa» ~;6,"SI+P~» D,7,[S, S, 3r;; (r,, S,)("r,~ S~)7, — (2)

where P is the Bohr magneton he/4s one, and S, is the spin moment vector of atom j, measured in multiples of
the quantum unit h/2s. The first right-hand member of (2) is the Zeeman energy associated with the constant
magnetic field applied along the s axis. It is unnecessary for us to include explicitly the energy associated with the
alternating magnetic field directed along the x axis, inasmuch as the method of moments which we use evaluates

' C. Kittel, Phys. Rev. 71, 270 (1947); 73, 155 (1948).
2 J.M. Luttinger and C. Kittel, Helv. Phys. Acta 21, 480 (1948).
s J. M. Richardson, Phys. Rev. 75, 1630 (1949).
4 D. Polder, Phil. Mag. 11, 99 (1949).
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the resonance frequencies directly without requiring examination of the work performed by the alternating 6eld.
The second member of (2) is the spin-dependent part of the exchange energy, and, except for a constant factor,
the coeKcient A, k is identical with the exchange integral. The third member of (2) embodies the ordinary dipolar
interaction, i.e., the mutual magnetic energy of the spins, and in addition any other coupling which has a dipole-
like structure as regards dependence on spin alignment. %ith conventional dipolar coupling, the value of the
coeScient D;I, is

D, k = g'p'/r, k' (3)

Actually, however, the interplay between spin-orbit interaction and orbital valence may give an energy of dipolar
type as regards dependence on spin alignment, an effect sometimes called anisotropic exchange coupling. In
other words, in the language of nuclear physicists, there may be "tensor" forces not of purely magnetic origin.
This non-magnetic, pseudo-dipolar coupling (which is closely related to what is called rho-type tripling in the
spectra of diatomic molecules) was discussed in considerable detail in a paper' of the author on ferromagnetic
anisotropy, and so will not be elaborated here. SuSce it to say that such coupling is of comparatively short range.
Thus the deviations of D,k from the value (3) may be expected to be important only when atoms j and k are
adjacent, or nearly so. In a previous article, henceforth referred to as l.c., in which we treated the width of para-
magnetic (not ferromagnetic) resonance lines, we assumed that the coeKcient of the term of dipolar structure
had the normal, purely magnetic value (3). This supposition was quite warranted in the case of nuclear para-
magnetism, but may not be in that of electronic paramagnetism if the magnetic ions are closely spaced. In the
latter event, the mean square line-breadth may be higher than that calculated on the basis of purely magnetic
coupling, and correspondingly there will be an increase in the amount of "exchange narrowing" (a term explained
in l.c.) which is needed to explain the sharpness of paramagnetic resonance lines.

The first part of the term of (2) involving D, k merely introduces a coupling of the same structure, wks. a scalar
product, as that involved in the exchange member of (2), and hence may be omitted if the coefficient A;k is rede-
6ned. This we henceforth tacitly suppose done.

The equations of motion
dS,/dt = (2zrt/k) [XS,—S,X]

along with the commutation relations
Sx;Syq —SyI„Sx;=i 81,'Sz; etc.

give immediately
(k/2') 8,= HgPS„+3+—k ~, D,k(a, kSz +P,kSwz+ y, kSz, ) ( P,kSzk+ y, kSwk)—

(k/27r)8w= +gPSz+3+kwi Djk(zwjkSzj+PjkSwj+'YjkSzz)(zxjkSzk rjkSzk)

(k/2w)8, =3+k~, D,k(n;kSz, +p, kSw, +y,kSz;)( n;kSwk+—p, kS k). z

(6a)

(6b)

(6c)

Here S denotes the total spin vector P, S,, and n, k, P;k, y, k are the direction cosines of r, k We through. out suppose
the wave-length long compared to the effective extension of the sample in the direction of propagation, so that
the important vector for the absorption is the sum S,=g, S*, of the x components of the individual atomic spins.

%e now proceed to make certain approximations which are usually well warranted, and whose physical meaning
is clarified to a considerable extent by the calculation itself. We omit from (6) all terms involving products S,S*k,
S~;S~I„Sy,SyI, . This omission can be justihed in either of two counts. In the 6rst place, in ferromagnetic media,
the material will be magnetized practically to saturation in the s direction, and so the matrix elements of S~; or
SfI; will be small compared with those of Sz;. Also, quite irrespective of magnitude, the e8ect of the omitted terms
is to introduce satellite lines falling in a di6erent frequency region than that in which we are interested. These
satellites correspond to harmonics of the frequency (I), and will be faint compared with the fundamental.

In the remaining terms, involving S*,S*k or S»Szk, we replace S*k (or S*,) by its mean value —M/gPX. Here
M is the macroscopic intensity of magnetization, and X the number of atoms per unit volume. The e6ect of
including a correction for the difference [Sz,—( M/gptV)] w—ould be to introduce oscillations which are of im-
portance for the width of the line, but not its central frequency.

With the approximations explained in the two preceding paragraphs, Eqs. (6) become

(h/2zr)8 = HgPSw 3(M/gPV—)gg, g, D—,k[ n, kP, kSz, +. P,ky, k—(M/gP1V)+(y, k' P,kz)Sw, j, —(7a)

(k/2~)8w=&gPS * 3(M/gP»')z— k~5 Dzk[~zkv k( M!gP&)+—~JkPJkSwz+(~zk' VJk')S j,— (7b)

(k/2ir)8, = 3(M/gptV)pk w, D,k(n, ky, kSw, p, ky, kSz,). — (7c)
~ J. H. Van Vleck, Phys. Rev. 52, 1178 {1937).' J. H. Van Vleck, Phys. Rev. 74, 1168 {1948).
7 For further details on the satellites see reference 6, p. 1170.

The minus sign appears here because the ratio of magnetic moment to angular momentum is negative for electron spin. The
state of lowest energy is consequently that in which the spin angular momentum is antiparallel to the Geld.
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Now if there are planes of symmetry at each atom,
sums involving products of di8erent direction cosines
wiB vanish. Thus we have

Qa araP, aD,a=0, etc (8)

(If there are not such symmetry planes, sums such as (8)
will alternate in sign as one goes from one lattice point
to another, and when the summation over j is per-
formed, the eGect is substantially the same as though
(8) were satisfied, at least as far as the short-range forces
are concerned. )

The classical demagnetization factor Ã in the x
direction has the value'

X,=tV 'Qa [1 3n, a']—r, a '+( 4w/3), (9)

where S is the number of atoms per unit volume. This
formula presupposes that the sum in (9) is independent
of j, or in other words that the concept of a uniform
demagnetization factor for the specimen is valid. A
similar assumption is also necessary to make the long-
range forces satisfy (8). Only an ellipsoidally cut body
fulfills this criterion, and the Kittel formula (1) applies
rigorously only for this shape.

If the coeKcients D;~ have the "normal" or classical
values (3), the non-vanishing sums in (7) can be
evaluated by means of (9). Even if there are anomalous
short-range forces which add a correction term to (3)
for closely spaced atoms, nevertheless these corrections
will disappear if the atoms are spaced with cubic
symmetry, for then the anomalous contributions will
cancel out of differences such as Pa (y, aa —P,a') D, a

which are involved in (7). Fortunately, the common
ferromagnetic materials, e.g. , iron or nickel, have cubic
lattices. "It is not necessary that the body be cut in a
cube, and it is, in fact, the deviations from cubic or
spherical symmetry which make sums of type in (9)
diGerent from zero, and the demagnetization factors
different from 4w/3. Boundary effects, which are evi-

denced by the usual demagnetizating 6eMs, are not
influenced by anomalous short-range forces of dipolar
structure, since these forces fall o8 much more rapidly
than those caused by true magnetic coupling, and so
give rise only to sums which converge much more
rapidly than the inverse cube type entering in (9).

If we use (3), (8), and (9), the double sums in (7)

S,=5*a exp(2wivt), S„=Swa exp( —2wivt).

Then (10a) and (10b) yield a pair of simultaneous
homogeneous linear equations in the amplitudes Sso, Syp.
For a non-trivial solution, the determinant of the
coef5cients must vanish, and so one obtains the standard
expression (1) for the resonance frequency.

3. EFFECT OF ANISOTROPY ON THE
RESONANCE FREQUENCY

Kittel has considered how the resonance frequency is
influenced by the addition of an anisotropy energy
macroscopically of the form

E=Xg(XPta, '+ta, 'v a+A, 'v, '), (11)

where 'A„p,„v, are the direction cosines of the magnet-
ization relative to the principal cubic axes. Kittel
handles this anisotropic term by showing that its eGect
can be included by proper alteration of the demagnet-
ization factors to be used in (1).

We will derive Kittel's anisotropic corrections in a
diGerent fashion. He does not investigate the micro-
scopic origin of the energy of anisotropy. We will
instead start with an explicit microscopic potential. As
our potential is somewhat special in character, our
calculation is less general than Kittel's. Also it is more
complicated. Nevertheless, despite the power and sim-
plicity of the macroscopic method, it is perhaps worth
while to give our microscopic derivation of Kittel's
results since it starts more basically and since it reveals
somewhat more clearly the approximations inherent in
obtaining the 6nal formulae.

The simplest model of anisotropy is that in which
there is a coupling between spins of the quadrupolar
type

Qa); IC,ar, a
—'(S,"r,a)'(Sa r, a)' (12)

reduce to single ones over j which can immediately be
simplified by using the relations S„=g,Sw, etc. Thus
Eqs. (7) become

(h/2s)8, = gPB—Sw+(tV. Xw—)gPMSw, (10a)
(It/2w )Sw =gPHS, (X—, X—)gPMS, 8.=0. (10b, c)

These are precisely Kittel's equations. To solve them,
we set

The addition of (12) to the Hamiltonian (2) adds the following member to the right side of Eq. (6a):
—Jaw; Era(a;aSa+P;aSw~+y;aS~~) P(~;aS*a+PyaSwa+y;aSaa)( P,aSaa+—y;aSwa)

+( P,aS*a+y,aSwa)(a;—aS*a+P;aSwa+y, aS*a)j. (13a)

There are corresponding additional members (13b), (13c), which we shall not write down, for the remaining
equations of motion (6b), (6c).

We now proceed to simplify the expressions (13) as follows. We replace each term which involves the square

' See, for instance, J. H. Van Vleck, J. Chem. Phys. 5, 326 and 327 (j.937).
» In non-cubic crystals such as cobalt, the effect of anomalous short-range forces does not drop out because of symmetry con-

siderations. Then these forces presumably have an important influence on the resonance frequency. They also, however, give
rise to anisotropy. Presumably their contribution to the frequency is indirectly included, at least approximately, in any macroscopic
theory giving the correction to the resonance frequency caused by the phenomenological energy of anisotropy in the non-cubic case.
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of a spin component by its average value, and assume that the averages can be taken over the diferent atoms
independently. We suppose that the quantization is dominantly with respect to the direction of the applied
magnetic Geld, and that any distortion caused by demagnetization corrections or anisotropy is subordinate. The
averages are then symmetrical around the s axis and we have

%'e can take
(S*k).=(5.k) .= l P'(5+ 1)—(5») .].

Ss;Sy;+Sy;Sx; =0

(14)

since this type of product is small in value and since also it averages to zero if there is symmetry about the z axis.
Unless the spin quantum number of an individual atom is very large, it is an inadequate approximation to replace
-,'(5*,5*,+5~,5*;) by (—M/XgP)5*;, one's first guess. Instead it is necessary to use the better approximation

& (5~&5*~+Sg~S*,) = D 5)A,+-,'] 5*,= [(™/1Vgp)+»]5*i (16)

The justification of (16) is that if one is close to saturation the important switches in the magnetic quantum number
of an atom are those between state S,= —5 of alignment of magnetic moment parallel (i.e. spin angular momentum'
antiparallel) to the field, and the next most parallel state 5*;=—S+1.In other words, the effect is more or less"
neglected of transitions to states having S~;= —S+2, —S+3, etc. An analogous approximation is surreptitiously
made, for instance, in Moiler's extension" to the case S&—,'of Bloch's spin wave treatment of magnetism at low
temperatures. Since it is necessary to suppose that one is close to saturation, the assumptions which we are making
in connection with the anisotropic corrections are probably more drastic than those we employed in Section 2
to obtain Kittel's formula for the isotropic case.

When we use (14), (15), and (16) (along with a relation identical with (16) except that x is replaced by y),
the expression (13a) becomes

2L25(5+ 1)—2(5")k ]L(—~/g&-'"7)+ 2]P'vrk &Jk(v k' 3P "—v,k')

+35,+k E;k(a,k'p, k+p, k'a, k)]+2[—',S(S+1)—$(Szp)A, ]'gk K,ky;k'p;k. (17a)

In writing (17a), we have utilized simplifications afforded by the fact that sums of the form pk E,k(a, k' p,k')—
or pk E,ke, kp, k must vanish for a cubic crystal, since a quadratic dependence on direction cosines is incompatible
with cubic symmetry. Also we have assumed the atoms similarly situated, so that the sums over k are independent
of j.

The direction cosines n;k, p, k, y, k which we have used so far are those of r, k relative to a set of axes x, y, » such
that the applied Geld H is along 2' and the oscillating Geld along x. We must now express these direction cosines
in terms of those X,I„p,;~, v;I, of r, I, relative to the principal cubic axes X, I', Z, together with the direction cosines
connecting the x, y, s and X, Y, Z systems. We shall use the notation ) „p,„v,for the direction cosines connecting
the x axis with the X, I', Z ones, with an analogous signiGcance for X„, p„, v„etc. Now because of the equiva-
lence of the principal cubic axes, there are relations of the form

pk Ic kh'k' —3p k'y k') = sQk E kp '+p.'+ v,'—37.2li„'—3k'„'ki.2—3v„'v,k]L1—5(li k'v k'+ p, k'v, k2+ v, k2z, k'],
Qk EjkPjk rjk'= —',Qk Kjk[Xvhs'+Ikvps'+ vvvz']L1 —5 (Xjk'll jk'+pjk'vjk'+ vjk9 jk') ].

If we use these relations and introduce the abbreviations

f(a, b)=X.'+p.'+v.'—3Pk9, '+pk2p '+vk'v ') g(a, b)=like. '+vklk. '+vkvJ, (a, b=x, y, »).
Q= lZ & L1—5( ' '+ ' '+ '7 ']I -'5(5+1) '(5*') ]L( —7vl-l&gP)+ '—]-

=
t lS(5+1)—l(5*') .]/L( —3f/gP&)+ l],

the expression (17a) becomes

(18)

(19)

Qf(» y)5.+3QLg(*, y)+g(y, *)]5*+Qg(»,y)~

The corresponding expressions added to the y and s equations of motion are

—Qf(», *)S —3QLg(x, y)+g(y, x)]5„—Qg(», x)w, Qg(», x)5„—Qg(», y)S . (20b, c)

When (20a), (20b), (20c) are added to the right sides of Eqs. (10a), (10b), (10c) respectively, it is seen that the

"The relation (16) is rigorously correct if the spins are aligned completely antiparallel (see reference 8) to the field, so that the expecta-
tion value of Ss; is —S. If, instead, (Szg}p„—(—S) is not identically zero, but small compared with S, use of the familiar relation
{Ss;&AS@;){M8,My&1) =)S(S+1)-Ma(&8&1)j& shows that the matrix amplitudes connecting a state of given Sz; with Sz;+1
will be considerably larger than those connecting it with Sz;—1. Hence (16) is a somewhat better approximation for the case of
incomplete alignment than might appear at first sight.

I' C. Moiler, Zeits. f. Physik 82, 559 (1933}.
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equations of motion are of the type form

8.=aS~+bS„+ci, 8„=cS. aS„+c2, 8.=iv- [—ciS,—cmSv]. (21a, b, c)

The presence of the terms ci, c2 in (21a), (21b) is caused by the fact that when one of the principal cubic axes
does not coincide with the direction of the applied field, the equilibrium position for the direction of magnetization
is not the same as that of the applied field. These c&, c2 terms can be electively eliminated by shifting the location
of the z axis. To first powers in c~, c2, the direction cosines of the angles which the new z axis makes with the
original x and y axes are respectively

(—Gc,—beg)

( M/—XgP) (a'+ bc)

( CCi+ GCn)

and
( M/.V—gP) (a'+ bc)

If second powers of c& and c2 are disregarded, this rotation makes the equations of motion in the new, i.e. slightly
rotated coordinate system the same as in the old except that all terms in c&, c2 are entirely suppressed.

In virtue of the preceding paragraph we can set ci= c2=0. The roots of the secular equation are &i(bc+a') &

The resonance frequency is therefore

v=gPh '{[H+(X —iV )M Qg 'P—'f(s y)][B+(X —X )M Qg 'P —'f(s x)]+9g 'P 'Q'[g(x y)+g(y x)]'}& (22)

The constant Q involved in (22) is intimately connected with the proportionality factor ICi appearing in the
energy of anisotropy (11). In an earlier paper the writer calculated the amount of magnetic anisotropy to be
expected from the present model. This calculation showed that if there is quadrupolar coupling of our type (12),
and if Q and w are defined as in (18) and (19), then the relation connecting Ki and Q is"

Q = 2Ei/Xui. — (23)

If the atomic dipoles are nearly all parallel to the applied field, then (S,')« is very nearly equal to S', where S
is the spin quantum number of an atom. Also then M is practically the same as —XgPS. Under these circum-
stances (23) reduces to

Q = 2EigP/M. — (24)

The formula (22) for the resonance frequency, as it stands, is rather cumbersome, because we have assumed
that the constant magnetic field is arbitrarily oriented relative to the principal cubic axes. Our calculation is
consequently somewhat more general than Kittel's. He assumed that both the applied and measuring magnetic
fields are in the 001 plane, so that in our notation Xv = pv = v, = v, =0. With this specialization (22) becomes

v=gPh '{[II+(Xv Ã,)M+2K—iM '(~3+ 4cos48)][P+(X, $.)M+2EiM—' cos48]}&. (25)

where 8 is the angle between the constant magnetic 6eld and the 100 axis. Equation (25) agrees exactly with the
corresponding formula of Kittel, after correction of the latter for a minor algebraic error" which, incidentally,
was detected by comparison of his calculation and ours. For the case that the x and z axes are in the 011 plane,
Eq. (22) reduces to an expression given by L. R. Bickford. *

4. EFFECT OF DIPOLAR INTERACTION ON THE
WIDTH OF THE ABSORPTION LINES

%'e now turn to the subject of the width of the
microwave resonance lines in ferromagnetic media.
Four possible mechanisms of line-broadening are (a)
interatomic forces of dipolar structure (b) spin-lattice
interaction (c) damping caused by the eddy currents
involved in the skin effect and (d) dependence of the
anisotropy corrections in Eq. (22) on the orientation of
the magnetic field relative to the principal cubic axes.
We will be concerned primarily with (a). As a matter
of fact, (d) is not a true broadening at all, but gives an

"J, H. Van Vleck, Phys. Rev. 52, 1195 (1937), especially
Eqs. (38), (42), and (43). The quantity 8& entering in Eq. (42)
is the same as (Sgg)A„ in the present model. The following error
is to be noted in Eq. (38); it should contain a factor $ multi-
plying 08."See reference 8 of C. Kittel, Phys. Rev. 76, 743 (1949).

* L. R. Bickford, Phys. Rev. (to be published).

apparent line-width in powders because the specimen
is composed of differently oriented microcrystals whose
resonance frequencies consequently do not quite coin-
cide. Thus (d) is inoperative in a single crystal. Also,
even in a powder, it is negligible in a substance such as
supermalloy whose anisotropy is very small. The im-
portance of (b) is a mooted question. Akhieser" actually
obtains line-widths due to (b) which are comparable
with, or even greater than, the observed widths, but
his calculation has been criticized by Polder4 on the
ground that the spin-waves important for resonance
are not as short as supposed by Akhieser. Consequently
(b) may be less important than Akhieser's results
would imply.

If perturbations by eddy currents are neglected,
ordinary, i.e., isotropic exchange coupling does not

"A. Akhieser, J. Phys. U.S.S.R. 10, 217 (1946).
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broaden the resonance line, since this type of interaction
commutes with any component of the total magnetic
moment, and so does not spoil the latter's constancy.
The simplest kind of non-isotropic potential is that of
dipolar structure. Quadrupoles and other higher order
poles mould be more complicated to treat and would
presumably not give any materially different results.
It is considerably more dificult to discuss dipolar
broadening, even qualitatively, in ferromagnetic than
in paramagnetic media. In loc. cia. , the writer studied
breadths in the latter at some length. Even then, it
was not possible to obtain an explicit formula for the
line-shape. The best that could be done was to calculate
the second and fourth moments of the deviation of the
frequency from its mean value, and deduce qualitative
conclusions from these computations. In the ferro-
magnetic case, however, the application of the method
of moments strikes a snag if the field is applied in an
arbitrary direction. The essential feature of the method
which we employed was the use of the invariance of
the diagonal sum, but with the exclusion of certain
parts of the Hamiltonian, vis. the portion non-diagonal
in the total magnetic quantum number M, because this
portion dehnitely had the effect of introducing satellite
lines' rather than of broadening the main line. In
ferromagnetic materials, however, the dipolar inter-
action cannot be regarded as a small perturbation. The
gist of our calculation in Section 2 was, in fact, to
show how the demagnetization corrections caused by
dipolar coupling influence the central resonance fre-
quency. The component of magnetic moment in the
direction of the applied field ceases to be a constant of
the motion unless two of the demagnetizing factors are
equal, and the field is applied along the direction of the
third. Unless these conditions are satisfied our previous
method cannot be used. We are therefore able to give
a formula for the second moment only for the special
case of axial symmetry. For this case, the calculation
can be made by the same general method as that used
in l.c., but with two important changes in detail, as
follows:

(a) It is no longer allowable to take

(Szz' )Av
—(Szz )Av

—(Svvj )Av zS(S+1), (Szj)Av
—0 (26)

since the magnetization cannot be supposed very weak
in ferromagnetic bodies.

(b) The coupling of dipolar structure need not be
supposed to have a true magnetic origin, or in other
words, the coeKcient D;z in (2) need not necessarily
have the value (3).

The formula for the mean square deviation of the
frequency from the Kittel value (1) (with .V, =&V„)
turns out to be

(»')z. =h 'L(S z')"—(S z)"'3E~ »~'. (27)

As is to be expected, this expression reduces to Eq.
(10) of reference 6 if one can use (26) and (3), as one can
for paramagnetic media with purely dipolar coupling.

The corresponding formula for the mean fourth
power deviation would be tedious and unrepaying to
calculate. Suffice it to note that (hv')A„would surely
contain terms of the order A'D'/h', which will be very
large compared to 3[(dv')ave' D'/h' inasmuch as the
exchange coupling coe%.cient A will be very large in
ferromagnetic media. As a result, the lines will have a
far smaller half-breadth than one would calculate from
(27) under the supposition of a Gaussian shape, for
with a given second moment, enhancement of the
fourth moment makes the line more sharply peaked.
This is the phenomenon of "exchange narrowing" which
we explained more fully in /. c. Much of the contribution
to (27) comes, in fact, from transitions in which the
energy change is of the order of magnitude of the
exchange integral. Such transitions give rise to absorp-
tion lines of vastly higher frequency than the Kittel
resonance frequency in which we are interested. The
only reason that the expression (27) still remains of the
order D'/h' rather than A'/h' is that these transitions
are down by a factor of the order A'/D' in intensity as
compared with those having nearly the resonance fre-
quency. Lines having frequencies of the order A/h.
clearly should be regarded as satellites whose contribu-
tions to (27) are spurious for our purposes Excha.nge
narrowing is essentially an expression of the fact that
the square root of the expression (27) furnishes a gross
overestimate of the effective line-width because these
spurious contributions have not been striken out.

Despite the inutility of (27) for quantitative purposes,
certain qualitative conclusions can be drawn from (27)
as follows:

(I) Exchange narrowing should in general be even
more pronounced in ferromagnetic than in paramagnetic
media, all other things being equal. The basis for this
statement is that the second moment is of roughly the
same order of magnitude in both types of media, but
ferromagnetic materials will presumably have larger
exchange integrals and hence larger fourth moments.
There is thus no difficulty in understanding why ferro-
magnetic substances have much sharper resonance lines
than one would calculate from the root mean square
deviation of the dipolar Geld.

(II) Part of the line-breadth may be caused by
short-range pseudo-dipolar forces rather than those of
true magnetic origin. In another paper' the writer
stressed the fact that in ferromagnetic materials the
coupling coefficients in the potential of dipolar structure
usually has a value materially larger than (3). Conse-
quently one must not be surprised if sometimes lines
are, despite (a), more diifuse in ferromagnetic than in
paramagnetic substances. This situation could arise if
the ferromagnetic material has such anornalously large
coeKcients D, I, as to more than offset the tendency
towards more narrowing caused by larger exchange
integrals. In I.c. we did not mention the possibility of
anomalous dipolar coefFicients in paramagnetic bodies.
If the magnetic density is high, such anomalies are
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possible, but in general presumably less common than
in ferromagnetics. Since effects (I) and (II) work in
opposite directions, there is obviously considerable
leeway in explaining line-width phenomena.

(III) There should be no discontinuity in the line-
width at the Curie point. This is one point on which
the theory makes a dehnite prediction, and is in accord
with experiment. Theoretically, as the Curie point is
approached from below, the mean values involved in

(27) approach the limits (26), and so (27) passes con-
tinuously into the corresponding formula of /oc. cit. for
the second moment for the purely paramagnetic case.
The same is also true of the higher moments. Experi-
mentally Bloembergen Gnds that in nickel and super-
malloy, the two materials so far studied in this regard,
the line-width does not change at the Curie point. This
fact, however, does not distinguish between the broad-
ening mechanisms (a), (b), and (c), for all three involve
no abrupt changes at the Curie temperature.

(IV) The line-breadth caused by dipolar effects
should decrease as the temperature is lowered from the
Curie point to the absolute zero, for the expressions

&SNP)A, and (Ss,)A,
' involved in (27) approach equality

as the magnetization approaches its maximum value
XgPS. The dipolar line-breadth should hence vanish at
the absolute zero. Existing experimental data do not
extend to very low temperatures, but are of such a
character as to make it highly unlikely that the line-
width vanishes at T=O. In supermalloy, for instance,
Bloembergen" 6nds little, if any change in line-width
between 300 and 600'K even though the magnetization
changes by a factor changes by a factor over 2 in this
interval. At 300', the magnetization is almost as high
as at T=O, and one would hence expect little further
contraction in dipolar broadening to set in below room
temperatures. In nickel Bloembergen Gnds that the
line-width actually decreases when the anisotropy in-

creases. These various experimental facts indicate
pretty clearly that dipolar coupling between similarly
situated atoms, such as is embodied in Kq. (27), is not
the main cause of broadening in ferromagnetic ma-
terials. Nor can spin-lattice interaction be the chief
mechanism of line-broadening at room temperatures
and lower, for any broadening of such origin should

vary drastically with temperature, and disappear com-

pletely at very low temperatures. This difliculty would
not arise if the line-width were caused by the interaction
of the spins with the eddy currents involved in the skin
eGect, but unfortunately a calculation by Kittel and
Herring" shows that this process fails to give the
observed width by a factor 10 or so. It is thus at
present something of a mystery what is the actual
mechanism of line-broadening in ferromagnetic media.
It is just possible that theoretically a 6nite breadth of
dipolar origin should persist even at T=O because of
crystalline imperfections, or in other words, because

'~ N. Bloembergen, Phys. Rev. (to be published).
'7 C. Kittel and C. Herring, Phys. Rev. 77, 725 (1950).

the crystal is composed eGectively of somewhat dis-
jointedly connected microcrystals, each with slightly
diGerent resonance frequencies. It is conceivable that
large enough breadths at low temperatures might be
obtained if this fashion if there are large short-range
pseudo-dipolar forces due to anisotropic exchange.

In this connection one can try generalizing (27) by
abandoning the restriction that all atoms are similarly
situated, so that P& D,& is no longer independent of j.
By a calculation of the same general type as that in
l.c., but whose details we omit, it is found that the
mean resonance frequency and mean square deviation
are then given by

(v)g,
——(He/4m me)+% 'b, 'Q, p D,p(5.,)A„(28)

&~")"=& '& '2; D "L&5 ')"—(&5')")'j
+& 'L% 'Py (ga D;a)'

—& '(2 ~ D ~)'j(&5')A.)' (29)

where % is the total number of atoms in the crystal.
This formula is unfortunately rather hard to interpret.
If P& D,z is not independent of j, the expression (29)
does not vanish at T=O, and so gives the impression
that the resonance line can remain disuse even at T=0.
However, the non-vanishing of (29) at T=O is caused
by transitions involving changes in the total spin 8 of
the crystal from %5 to QS—1.Most of these transitions
are associated with energy changes of the order of
magnitude of the exchange integral A, and so their
contributions to (29) are irrelevant since they represent
weak satellites of completely diGerent frequency than
the resonance line. Some of these transitions, however,
may be more intense than the rest, and involve rela-
tively small changes in exchange energy, so that they
should be classed as wings of the central resonance line
rather than as satellites. In fact, the lowest Bloch spin
waves for 5,= —(%5—1) have almost the same ex-
change energy as that of the sole state S.= —%5. It
is thus conceivable that with dissimilarly situated
atoms, some breadth persists even at T=O. When,
however, the atoms are similarly situated, the resonance
line at T=O will consist of but a single component, as
evidenced by the behavior of (27). Physically, this is
because it is immaterial energetically which atom has
Ss,= —(S—1) in a state S~;= —(%5—1) when g~ D;~
is independent of j. Under this condition the dipolar
interaction does not break down the selection rule
68=0 for the matrix elements of 5, connecting
$.= —%5 with S,= —(%5—1) and the absorption
arising from the deepest state S.= —9tS consists of
but a single line.

5. THE PROBLEM OF THE g-FACTOR IN
FERROMAGNETIC RESONANCE

Doubtless we have given the impression that Kittel's
formula (1) 6ts the observed resonance frequencies very
well. Actually it does so only if the g-factor be given
anomalously large values. For instance, in nickel the
values of g yielded by experiments on ferromagnetic
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resonance range from 2.j.9 to 2.42. On the other hand,
the gyromagnetic ratio found by Barnett for nickel is
1.93. The discrepancies for other materials are set forth
in detail in an interesting paper by Kittel. "

As Polder, ~" Kittel, ' and the writer" have inde-
pendently pointed out, there is no reason why the
g-factors yielded by microwave and magnetomechanical
experiments need be the same. Conceptually, they
relate to different quantities. The absorption measure-
ments determine the factor g in the formula E=EO
+MgPH for the Zeeman energy states. Kittel aptly
calls this kind of g the spectroscopic splitting factor.
%e shall also follow Kittel in using the letter g' for the
anomaly (as compared with the classical orbital value
—s/2m') in the ratio of magnetic moment to angular
momentum, which is the ratio which enters in gyro-
magnetic experiments.

Although it is quite possible in principle to under-
stand why g and g' should be different, the theory
strikes a snag as soon as one tries to explain quanti-
tatively the discrepancy between g and g'. One can
show quite generally that in the 6rst approximation,
the deviations of g and g' from 2 should be equal and
opposite, so that

g
—2=2—

g . (30)

'g C. Kittel, Phys. Rev. 76, 743 {1949)."D.Polder, Phys. Rev. 73, 1116 (1948)."J.H. Van Vleck, Physica 15, 197 (1949)."H. Brooks, Phys. Rev. 58, 909 (1940).As Kittel notes, Brooks
purports to calculate g', but really computes g. However, because
of a counterbalancing error, the numerical result which Brooks
gives for g' (g in his notation), is correct, as one suspects since
he obtains g'&2. The compensating sign change arises because
he does not allow for inversion of the spin-orbit parameter for d'
as compared with d. He implies that use of negative frequency
denominators for transitions to un61led states of lower energy
incorporates the efkct of this inversion, but actually this is not
the case, for the sign behavior of the frequency denominators is
the same for d and d'.

This relation has been discovered independently by
Kittel and the writer. Kittel has already published his
derivation. "Ours is rather more general, as it is not
based on a particular model, and so it is perhaps not
superQuous if we give it here.

Proof of (30). Let us fictitiously imagine that there
are 6elds IIO and H8 acting solely on the orbital and
spin magnetic moments respectively. The actual phys-
ical case has, of course, HO=Hq. Let us 6rst consider
a one-atom or one-electron system in which the orbital
angular momentum is quenched by the crystalline
field, i.e., consists solely of non-diagonal elements, and
in which spin-orbit coupling is disregarded. It is not
necessary to specify anything about the crystalline 6eld.
The model can, for instance, be the usual one of a single
atom with one or more bound electrons employed in the
theory of magnetism by Schlapp, Penney, and others,
or it can be the itinerant electron model of conduction
band theory, used in magnetic problems by Mott,
Brooks,"et u/. If we disregard squares of II0, the energy

levels are of the form

E=ED+ 2MsPHs, (31)

where MB is the spin equatorial quantum number. Now
introduce as simultaneous perturbations the interaction
of the orbital magnetic moment with the 6eld Ho, and
the spin-orbit coupling. The portions of the Hamiltonian
function corresponding to these two perturbations we
denote respectively by V& and V2. Both of these pertur-
bations involve only non-diagonal elements, and so the
energy is affected only in the second approximation

DE=+i ( V&+ Vm~ yP/hv;&.

In microwave spectra we are concerned with the linear
Zeeman effect, and for this the only relevant part of

~
V~+V~~' is the cross term V~V2+ V2V~. Now V~ is

independent of Mq, and so the only matrix elements of
V~ which can contribute to the cross term are those
which connect states j and / having the same values of
Mg. These elements arise from the part AI.,S, of
AL S and are proportional to Mg. Therefore

AE= const. +aHoMs+O(Ho'). (32)

The constant term we can assume independent of M8,
as we suppose the lowest spin multiplet is not decom-
posed in the absence of a magnetic 6eld. Because of the
Kramers degeneracy, this will always be the case if the
spin is —,'. For spins of 1 or -'„ the multiplet will not be
decomposed if there is cubic symmetry. Apart from
squares of the magnetic 6elds, the total energy, which
is the sum of (31) and (32), is of the form

E=Eo+PMs(2Hs+aHo). (33)

The spectroscopic splitting factor is obtained by setting
Ho ——Hg, and is hence

g= 2+a. (34)

In terms of the partition function Z= P, exp( —E,/kT),
the anomaly in the gyromagnetic ratio is

[8 logZ/BHo+B logZ/BHs]Hs =Ko
g=

P logZ/BHo+kB logZ/BHs]&s=&o

inasmuch as the derivatives BE,/BHo and —BE,/BHs-
are respectively the orbital and spin magnetic moments
of the state of energy E;. Furthermore we have
aBE,/BHs 2BE;/BHo, and we ma——y suppose a to be a
small quantity, for otherwise the perturbation calcula-
tion has no basis. Hence

g'= (2+a)/(1+a) = 2 —a. (35)

Equation (30) follows immediately from (34) and (3&).
The preceding calculation assumed that the indi-

vidual atoms or itinerant electrons could be regarded as
isolated magnetic units. As long as the Zeeman effect
is linear, inclusion of exchange or dipolar coupling
between these units does not, however, spoil the validity
of (30). Such coupling does not influence the relative
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contributions of the orbital and spin moments, and so
does not change g'. Exchange interaction commutes
with all spatial components of the total magnetic mo-
ment, and so does not influence g. The gist of Kittel's
calculation, of ours of Section 1, is that the spectro-
scopic splitting factor is unaltered by dipolar interaction
provided one takes for the effective 6eld that given by
the radical in Eq. (1).

Inadequacy of (30). Unfortunately, the approximate
equality of g

—2 and 2 —g' predicted by (30) is not
conhrmed by experiment. The table in Kittel's paper
shows that g

—2 always exceeds 2 —g', and is often
twice as large. It is improbable that the discrepancies
are caused by the fact that (30) includes only the first-
order e6ect of spin-orbit interaction. The higher order
perturbations, in the 6rst place, are presumably small.
What is more, they act in the wrong direction. If, for
instance, one went to the extreme of assuming the
crystalline field small compared with the spin-orbit
coupling, a model based on the con6guration d, 'the,
one most appropriate to nickel, would have g'=6/5
a value far too low.

How, then, can one explain the fact that the observed
values of g are too high to fit (30)? Kittel reviews a
number of suggestions made by various authors, all of
which he dismisses as rather unlikely. %e should like
to add to this list one more remote possibility. In all
the derivations of Kittel's fundamental formula, our
Eq. (1), the effect of the dipolar and pseudo-dipolar
forces on the frequency is included only in the 6rst
approximation. This approximation is doubtless ade-
quate if the dipolar coupling is only of true magnetic
origin. However, it is just conceivable that higher order
corrections might alter the central frequency appreci-
ably if there are large short-range forces of dipolar
structure caused by anisotropic exchange. Our calcu-
lation shows that in the first approximation, such forces
are without inhuence on the resonance frequency if the
atoms are cubically spaced, but there is no assurance
that this is true in higher orders. If these pseudo-
dipolar effects are large, one would expect that there
should be a large anisotropy, since forces of dipolar
structure lead to anisotropy in the second approxima-
tion, ' as has been shown by van Peijpe" and by the
writer. On the other hand, the mean resonance fre-
quency for a powder composed of cubic crystals is

2' W. F. van Peijpe, Physic3. 5, 465 (1937}.

influenced by these forces only in the third approxima-
tion (apart, of course, from the demagnetization cor-
rections contained in Kittel's formula). The experi-
mental data are not complete enough as yet to reveal
whether there is a correlation between the amount of
deviation from the formula g

—2 = 2 —g' and the amount
of anisotropy. Supermalloy is a material with almost
no anisotropy. It is unfortunate that no gyromagnetic
measurements are available for supermalloy, so as to
test whether formula (30) holds much more exactly
than usual for this substance. One's guess is that it
does not, for such a behavior would be out of line with
that for other materials.

It should be pointed out that in Section 3 we derived
the expression (25) for the e6ect of anisotropy on the
resonance frequency only for a model in which the
anisotropy is caused by the quadrupolar coupling (12).
Actually, however, anisotropy can arise from the
second-order e6ect of dipolar interaction, and this is
the only mechanism operative if the atomic spin is —,.
The reason that we employed the dipolar rather than
quadrupolar model in Section 3 is that the latter yields
anisotropy in the 6rst rather than second approxima-
tion, and so is easier to handle. The great merit of
Kittel's macroscopic derivation of (25) is that it does
not require any particular model, and so the relation
between anisotropy and frequency given in (25) is
presumably valid for dipolar as well as quadrupolar
coupling. Yet the macroscopic approach by means of
eBective demagnetization factors is to a certain extent
phenomonological. It would be interesting to treat the
higher approximations of the dipolar model from the
microscopic standpoint, and see whether it gives (25)
in the second order, and especially whether it yields a
significant shift in the resonance frequency in still higher
orders if there are large anisotropic exchange forces. It
looks as though we are between Scylla and Charybdis;
presumably the higher order corrections yield either
e6'ectively isotropic coupling which commutes with the
magnetic moment and so does not inQuence the fre-
quency, or else an anisotropy already included in
Kittel's phenomonological approach.

All told, the explanation of the anomalously high
spectroscopic g-factors is at present an unsolved
problem.

In writing the present paper, the writer has benefited
greatly from stimulating discussions with Dr. C. Kittel
and Dr. N. Bloembergen.


