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The volume discontinuity of cesium at 45,000 kg/cm' is attributed to a shift of the valence electrons
from the 6s zone to the empty 5d zones. A signer-Seitz calculation for the 6s and 5d bands supports this
explanation. The potential used is described and tabulated. The possible existence of similar transitions for
potassium and rubidium is discussed.

I. INTRODUCTION
' "N investigating the compressibility of cesium,
~ - Bridgman' found a volume discontinuity of 11
percent at 45,000 kg/cm'. Above the transition the
compressibility is unexpectedly small in comparison
with the other alkalies and decreases abnormally
rapidly with increasing pressure. Figure 1 shows the
volume as a function of the pressure.

In order to explain the phase transition, Fermi pro-
posed that the valence electron is forced into a vacant
internal orbit. This hypothesis is suggested by the large
volume change and the proximity of cesium to the
rare earths. The two available orbits are 4f and 5d.
The possibility that the 4f orbit becomes occupied can
be ruled out on the following basis. If this hypothesis
is to be accepted, the energy of the 4f state must be
close to that of the 6s band in the compressed metal
(about —0.3 Ey) This can .be true only if the effective
potential for 4f has an attractive trough' in the neigh-
borhood of r =0.5 an (r= distance from nucleus,
an=Bohr radius for hydrogen), as is the case for the
rare earths and for the heavier elements. Integration
of the Schroedinger equation shows that the trough
must be at least 7 to 8 Ey deep for the existence of a
stationary state. The first element for which the 4f
function is internal is cerium, Z=58. A change of
nuclear charge by one unit changes the potential at
r=0.5 cH by about 1 Ey, as is shown by an estimate
based on the Thomas-Fermi potential. Hence for
cesium, Z=55, the potential valley is insuflicient by a
few Rydberg units to give an internal 4f function. This
conclusion remains valid throughout the pressure range
studied by Bridgman, because in this range the com-

pression has a negligible eGect on the potential near
the nucleus.

A shift of the valence electron to 5d is made plausible

by spectroscopic evidence. Table I gives the energy of

con6gurations' involving d and s states of the I, Rb
and Cs atoms and of the corresponding alkaline earth
ions. The difFerence in energy between the d state and
the s state decreases with increasing Z and with in-
creasing ionization. In both cases, the potential acting
on the valence electron becomes more attractive. In the
compression of a metal, the valence electrons are
brought closer to the nucleus inside each lattice cell,
hence the distance between the 6s band and the 5d
band of cesium is expected to decrease with decreasing
volume. As is shown by the calculations (see Section II),
an overlapping of the two bands occurs at the smaller
volumes and aG'ords an explanation of the phase transi-
tion.

II. THE ENERGY OF THE 6s AND Sd BANDS

The pressure is given by BE/BV, where—E is the
energy and V is the volume per atom of the lattice. In
order to obtain E, the positions of the 6s and Sd bands
were determined by the method of signer and Seitz. 4

In this method the cellular polyhedron surrounding each
nucleus is replaced by a sphere of volume V which will
be called the s sphere. The lowest level of a band is
obtained by solving the Schroedinger equation inside
the s sphere, subject to the condition BP/Br=0 at
r = rp, where rp is the radius of the sphere. Somewhat
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~ M. G. Mayer, Phys. Rev. 60, 184 {1941).

Fxo. 1. Volume of cesium as a function of the pressure. The
ordinate P is the ratio of the volume to the volume at normal
pressure. (From Bridgman, reference 2.)

r 'From R. F. Bacher and S. Goudsmit, Atomic Energy States
e (McGraw-Hill Book Company, Inc. , New York, 2932').

4 E. signer and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).
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TAsLE I. Energy in Ey units of s and d states for K, Rb, and Cs
and the corresponding alkaline earth ions. The zero of energy
corresponds to ionization of the valence electron. (From Bacher
and Goudsmit, , reference 3.)

4s —0.3190
3d —0.1227

Ca II 4s —0.8725
3d —0.7478

Rb Ss —0.3070
4d —0.1306

Sr II Ss —0.8106
4d —0.6?64

Cs 6s —0.2862
Sd —0.1535

Ba II 6s —0.7350
Sd —0.6862

8'o'- 2h'
~
J'(oo grad|fo)P"'dr~'

Eoo=Eo+ 1—
2m mfa. " &"—&o

(2)

where Eo and Po are the energy and the wave function

~See, for example, F. Seitz, The Modere Theory of Solids
(McGravv-Hill Book, Company, Inc., New' York, 1940), Chapters
IX and X.

different potentials, V6,' and t/"~~', were used for 6s
and 5d. The determination of these potentials is de-
scribed in Section III. They are based on the Hartree-
Fock equations and are adjusted to give agreement
with the respective atomic levels, E6,= —0.2862Ry
and E&&= —0.1535 Ry. In Table II the energies E6,
and Eod of the bottom of the 6s and of the 5d band
are given as a function of ro. These energies are also
shown in Fig. 2. Below each ro, we have listed the cor-
responding ratio V/Vg„where V&o is the volume at
normal pressure obtained from the present calculations.
As shown below, t/'fy, corresponds to ro=5.92 aH, the
experimental value is 5.59aH. %e note that in an
accurate calculation, the atomic 5d level would split
into two levels for zero wave-number, one twofold and
one threefold degenerate. This splitting is not obtained
in the s sphere approximation. However, it is believed
that it mould not affect the essential results of the
present work.

The width of the bands will now be determined. For
each band we let po be the momentum for the highest
61led level and Ep the width of the occupied region. on
the assumption that all valence electrons occupy levels
in the band considered. For the 6s band,

po ——(9s/4) &(h/ro). (1)

For the Sd band, there are 6ve zones mhich correspond
in the present method to the values of the magnetic
quantum number M. On the assumption that levels
having the same wave number vector but different M
are degenerate, the density of states is Ave times the
density for the 6s band, and po is smaller than (1) by
a factor 5&.

The width Er would be Poo/(2m) if the electrons
could be considered as perfectly free. Wigner and Seitz'
have treated the effect of the ion cores on the band
width by perturbation theory. They found that the
energy E~ of the wave with wave number vector x is
given by

TABLE II. Position of the bottom of the 6s and of the Sd band
for various ro. Energies are in Ey units, r0 is in units aH.

6.0
5.8
5.6
5.4
5.2
5.0
4.8
4.6

4.2
4.0

B

0.4151
0.4217
0.4267
0.4303
0.4322
0.4308
0.4263
0.4140
0.3948
0.3617
0.3108

0.2371
0.2419
0.2473
0.2533
0.2598
0.2673
0.2764
0.2855
0.2972

with

po' 4I ~~
~

'
EF= 1—+-

2m & E"—Eo
(4'j

~rO

nq= 2s
~

~~ (Bfo/Br) cosgg"'r'dr sined8. (5)
0 0

Here 8 is the angle between the radius vector in the
integrand and the axis of quantization of the spherical
harmonics of Po and P". For the 6s band the'p states'
give,

+rp

nq= (1/VS)~I (dRo, /dr)Rq&»rodr (5a)

where R6, is the wave function for the bottom of the
6s band, Rq&» is the radial part of the p function p";
the normalization is

ro +7p

R~,orodr = I (Rg&») orodr = 1.
0

Table III gives the values of n) and the corresponding
energy denominators for several ro. The sign of 0.q
pertains to the choice in which all functions have the
same sign near r=0. In calculating the 6p, 7p and 8p
functions the potential Vo in Kq. (4) was taken as Vo.'.
For 4p the Hartree' function for Cs+ was used, and the
Sp functions were determined by means of the potential
Vo„described below. Including a correction for the p
states not listed in the table, one obtains the values of
the square bracket in Eq. (4) which are tabulated as
m/mo, *, mo, * is the effective mass for the 6s band.

' D. R. Hartree, Proc. Roy. Soc. 143, 506 (1934).

for the bottom of the band, respectively; the sum
extends over all eigenfunctions P" of the Schroedinger
equation,

($2/2m)gyle V Px —ExPx

which is to be solved inside the s sphere, subject to the
condition tP"=0 at r=ro, E" is the eigenvalue and Vo
is the potential representing the interaction with the
core. In Eq. (2) the integral extends over the s sphere.
If Eo and E" are expressed in Ry and lengths are in
units aH, one obtains
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and

Xs ——Xg Q
(Ex E )2

4I sl'
Xg= 1—m/ms, *——Q

jv&

(6a)

(6b)

The factor 1.315 Xp/rps is shown as 6 in Table III. It is
seen that the fourth-order correction is small, except
in the region of small rQ. It was not included in the
compressibility calculations.

For the 5d zone with magnetic quantum number M,
az is given by

W ~bp

(dRsd/dr) O~s cos80's *RE sdr sin8d8, (7)
Q ao

where E~~ is the radial function for the bottom of the
Sd band, Ol,~ is the spherical harmonic pertaining to
quantum numbers I. and M, E~ is the radial part of
f~, l is the azimuthal quantum number of P"; the
normalization is

'rp iso

j Rsg'r'dr =
j~ Rs'r'dr = 1 j I Op~! 'sin8d8= 1.

Q Q 0

assr vanishes unless /=1 or l=3; hence only p and f
states contribute. Because of the dependence of 0.~
on M, the degeneracy of the levels for the same wave
vector x is removed. By determining ~ for the highest
occupied state in each zone, it is found, for

I assr
I
'/(E" —Ep)«1,

that Er is given by Eq. (4), if one takes

I .I'=(1/5) 2 l~

As a check on the reliability of Eq. (4), the fourth-
order perturbation term was calculated. This term
gives the following contribution to the average energy, '

(3pp'/10m) (1.315Xs/rp'), (6)
where

m/ms~*. The contribution of the f states to the sum in
Eq. (4) is shown as Sf. The fourth-order perturbation
term is negligible for the Sd band.

When the appropriate width is added to E6, and
to EsP, one obtains the energy of the highest occupied
level on the assumption that all valence electrons are
in 6s or in 5d states, respectively; these energies are
given as E6,~ and Es~~ in Fig. 2. This figure shows that
at r0=5.22 aH, the curve for the bottom of Sd intersects
the curve for the top of 6s. As the metal is further
compressed electrons from the top of 6s move into Sd.
The fraction g of the electrons which occupies 5d can
be obtained from the following equation for the energy
E~ of the highest occupied level,

E&=Es,&+ (Ep,& Es,&) (1 g) 3

=EsP+ (Esa' —Ess )g' (9)

The shift to the 5d zones is rapid. The reasons are that
Esp' decreases, while Es,s increases with decreasing
volume and that the 5d band has a greater density of
levels than the 6s band. The diferent behavior of the
6s and Sd curves for the lowest states is due to the
smaller number of radial nodes of the Sd function (see
Fig. 3). The minimum of the energy curve arises from
the combined efFect of the kinetic and the potential
energy. The former increases with decreasing volume
because of the decreasing efFective wave-length of the
electrons, while the potential energy is lowered in a
compression. The volume at which the 6rst efFect
predominates is smaller for 5d than for 6s, because of
the relative position of the outermost nodes.

The average energy E~ of the valence electrons is
obtained by adding the mean translational energy to
the energy of the lowest level of each band. We have,

E"=(1—g)LEs +3/5(Er Epbe)]-
+g[EsP+3/5(Er Esse) j. (10)—

The curve of E" is shown in Fig. 2. The minimum at
re=5.86 cH corresponds to normal pressure. With de-
creasing ro, presumably between 4uH and 5eH, E"
ceases to be a good approximation to the total energy,
because of the repulsion of the 5s and 5p shells. Hence

We thus obtain
pp

——(9s/20) &Is/rp. (1a)

r 'ro

(2/15) &j ~ (dRs~/dr)Rsr'dr, (l = 1)

0

(1/5)& ~ (dRs~/dr)R~rsdr. (1=3).
~Q
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Table IV gives the values of 0.~ and the corresponding
energy denominators. Including a correction for the p
and f states not listed, one obtains the values of the
square bracket in Eq. (4) which are tabulated as

~ F. Seitz, Phys. Rev. 47, 400 (193$).

Eb

I
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Fzo. 2. Position of the 6s and Sd bands and average energy E",
as a function of ro or of YjV~.
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TABLE III. Values of exp and of E"—E0 for obtaining m jns6, *
and values of tn jere, for various radii rp. Energies are in Ry units,
ro is in units ua.

&"—&0

m jm6, '

5.8

0.214
—11.3

0.276
—0.84
—0.011

0.79
—0.087

2,62
—0.092

5.24
1.349

—0.012

5.2

0.216
—11.3

0.281
—0.83
—0.028

1.08
—0.095

3.45
—0.096

6.74
1.372

—0.017

4.6

0.274
—11.3

0.357
—0.83
—0.081

1.52
—0.128

4.70
—0.138

8.96
1.592

—0.056

4.0

0.466
—11.4

0.601
—0.89
-0.199

2.211
-0.258

6.58
—0.250
12.68
2.555

-0.479

(1$

o

5.2

0.159
—11.5
—0.034
—1.01

—0.044
0.89

—0.030
3.27

4.6

0.181
—11.4
—0.044
—0.98

—0.049
1.37

—0.033
4.55

4.0

0.212
—11.4
—0.060
—0.91

—0.055
2.19

—0.038
6.57

the second minimum at rp=2. 79aH has no direct
signi6cance.

In order to obtain some information on the effects
due to Ss and 5p electrons, the energies for the bottom
and the top of the Ss and Sp bands were calculated by
integrating the Schroedinger equation subject to the
conditions 8$/Br=0 (bottom) and /=0 (top') at r=rp.
The potentials Vs, and Vs~ used in these integrations
are obtained in Section III. Table V gives the energies
E5.~ and E~,~ for the bottom and the top of Ss and the
energies Eop~ and Eopr for the bottom and the top of SP.

The contribution E;,o of Ss and 5p to the total energy
E is given by

E; o(rp) =2Eo,"(rp)+6Eop" (rp) —2Eo,—6Eo,. (11)

TABLE IV. Values of o.'z and of E —Eo for obtaining m jm;z*
and values of Sy and te jm6q* for various radii r0. Energies are in
Ry units, ro is in units aH.

Here Es,~ and Es„" are the average energies of the
electrons in the Ss and the Sp band; Eo, and Eop are the
atomic levels for the potentials t/~, and V~„, respec-
tively. A theoretical determination of E; t, which would
require a calculation of the distribution of levels in the
two bands, was not carried out. E;„t is expected to
increase rapidly with decreasing rp at the smaller
volumes, since it includes the exchange repulsion. This
effect will be discussed below. Here we note that the
second estimate given in this discussion, which leads to
a repulsion energy of 0.024 Ry at rp =4.0 QH, can be cor-
related with the calculation of the bands, if one assumes
that the average energy in each band is related to the
energies for the lowest and highest levels by the fol-
lowing equations.

Eo,"——aEo.s+ (1—a)Eo.r,
Eo,"= aEo,s+ (1 a)Eo,r, — (12)

where n is a constant parameter independent of rp. One
finds that for a=0.39, E; t(rp) (see Kq. (11)) agrees
with the estimate of the repulsion energy throughout
the range of rp.

For the energy of interaction between the free elec-
trons we used the following expression, taken from the
treatment of signer and Seitz, ~

o.u~~ 0.458e~ 0.288e~
Ey

rp+5. 1 aHrprp
(13)

The terms in (13) represent, respectively, the Coulomb
repulsion, the exchange interaction and the electro-
static correlation.

The cohesive energy and the radius rp at normal
pressure will now be compared with experiment. The
curve of E~+Ey has a minimum of —0.3374 Ey which
lies at 5.92 uH. One thus finds a theoretical cohesive
energy of 16.1 kg cal./mole. The heat of sublimation'
is 18.8 kg caL/mole. Upon making the appropriate
temperature correction (300X(6—3) =900 cal./mole),
one obtains 19.7 kg cal./mole for the experimental
cohesive energy. The experimental value of rp is 5.59 uH.
Thus the agreement with experiment is comparable to
that obtained in similar calculations' for lithium,
sodium and potassium.

Table VI gives the energy E&&, defined by

Sf
m jmgg'

—0.025
6.56

0.085
0.57

0.079
1.41

0.017
3.23

0.077
0.913

—0.027
8.82

0.106
0.61

0.077
1.80

—0.004
4.10

0.095
0.897

—0.028
12.67

0.136
0.67

0.068
2.37

—0.041
5.47

0.128
0.865

and the increase of energy hE&p„

&En(ro) =Ra(ro) —Ka(5 92 on)

Ke note that E&y, and AE~g do not include the exchange
repulsion, which will be discussed below. The experi-
mental increase of energy, to be denoted by ~
will now be obtained from Bridgman's measurements.
In first approximation the increase of internal energy
in a compression through dV is EdV (/=pressure).

' J. C. Slater, Phys. Rev. 45, 794 {1934). ' F. Seitz, reference 5, p. 3.
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The heat released by the sample in this compression is

T(a—s/av), d v = T(ap/av), (av/aT) ~v,
where T is the temperature which will be taken as O'C,
and S is the entropy per atom. In order to evaluate this
term, (BP/av)r can be obtained from the observed
compression. The dependence of (av/BT)I on the
pressure is not known for cesium. (Bv/BT)r was

therefore estimated on the basis of Bridgman's measure-
ments" of the expansion coeScient for lithium, sodium
and potassium up to 20,000 kg/cm'. It was found that
the heat given up in the compression to 100,000 kg/cm'
is only 0.002 Ry per atom. %'e now dehne,

reHa-
Z

3—
rK

2K

CI
K

2

Oz+ -I—

k~
0

-4

-s
0

I l I I l t l

I I I I I I I I

lQ l$20 25 30 3s 40 4D

DISTANCE FROM NUCLEUS IN UNITSo

DE, ~ is given in Table VI. This table also lists the
average pressure P, (rp) for the region between rp and
rp+a (a= interval for which rp is tabulated), calculated
as follows)

P, (rp) = &&~p(rp) ~ip(~p+ &)

4pr(rp+-', a)'B

The value which P would have if the electrons were
restricted to the 6s zone is given as P6,. In the last
column P, p(rp) is the observed pressure, extrapolated

p vexp

hE, p(rp) =
Jl [P T(BS/a V—)r]d V, (14)

Vexp(r0/5. 92 aH)

where V, p
= (4Pr/3) (5.59 aH) P is the exPerimental

volume per atom at normal pressure and absolute zero.
Equation (14) implies that we compare points on the
experimental and the theoretical curves of energy es.
volume which correspond to equal ratios of the volume
to the volume for the minimum of the curve. Because
of the thermal expansion, V, p is a fraction (1+273P) '
of the volume at normal pressure and O'C, where p
is the linear expansion coefBcient; upon taking"
P=97X10 ' one finds a value of 0.925. Hence if $
denotes the observed ratio of volume to volume at
normal pressure (see Pig. 1), Eq. (11) becomes

~~.*p(rp)

0.925

[P—T(BS/a V)r]dp. (14a)
0.925 ~ 0.925(r0/5. 92 aa)

FIG. 3. Wave functions R6, and R5q for the radius r0=4.6 aH of
the s sphere.

to absolute zero, for the volume

V, p[(rp+ ,'a)/5 -92 an. ]'.
Since P does not include the exchange repulsion, it
cannot be compared directly with P, ~ at the smaller
volumes. However P6,—P depends only on the
position of the bands and shows the eGect of the 5d
states.

The volume discontinuity and the exchange repulsion
will now be discussed. The observed limits of the discon-
tinuity correspond to

V/V p=0.506/0. 925=0.547,
V/V p=0.449/0. 925=0.485.

Here 0.506 and 0.449 are the values of P at the limits
of the transition; the factor 1/0.925 takes into account
the thermal expansion at normal pressure. For the
existence of a volume discontinuity it is necessary that
the curve of total energy E vs. V have a region of
downward curvature; the volume changes discon-
tinuously between the two points with common
tangent. Figure 4 shows the energies AE p and AE~~.
The curve of AE&y, is approximately a straight line in
the region from V/V~p ——0.55 to 0.4. In order to obtain
the curvature of E, the ionic repulsion energy must be
added to AE~~. For an estimate of the repulsion term
we use the expression due to Born and Mayer" for the
interaction between two neighboring ions, to be denoted

TABLE VI. Energy terms and values of the pressure. Energies
are in Ry units, pressures are in units 1000 kg/cm~, r0 is in units
aH.

TABLE V. Position of the 5s and of the 5p band for various r0.
Energies are in Ry units, r0 is in units aH.

ro —&ca &exp

5.8
5.2
4.6
4.0

2.491
2.492
2.497
2.518

2.491
2.490
2.487
2.473

B

1.271
1.278
1.299
1.357

1.265
1.261
1.247
1.205

5.8
5.6
5.4
5.2
5.0
4.8
4.6
4.4

0.3369
0.3342
0.3292
0.3213
0.3073
0.2920
0.2757
0.2604

0.05&(10~
0.32
0.82
1.61
3.01
4.54
6.17
7.70

0.05' 10~
0.28
0.73
1.48
2.48
3.74
5.20
6,96

5.0 4.9
9.9 11

17 19
32 27
38 39
44 45
45 60

38
55
95

182

P. %. Bridgman, Proc. Am. Acad. 70, 71 (1934).
"International Critical, TaMes (McGraw-Hill Book Company,

Inc. , New York, 1926), 6rst edition, Volume I, p. 104. "M. Born and J. E. Mayer, Zeits. f. Physik 75, 1 (1932}.
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FIG. 4. Increase of energy le, ~ as a function of V/V, ~; the
theoretical results dZ~ and ~~, are plotted verses V/V~q. The
repulsion energy must be added to ~~ in order to obtain the
theoretical total energy.

by Eiony

E;.,=A exp[(2r; —D)/u]. (15)

"J.Bardeen, J. Chem. Phys. 6, 372 (1938)."M. I .Huggins and J.E.Mayer, J.Chem. Phys. 1,643 (1933).

Here D is the distance between the nuclei, r; is the
ionic radius, A and a are constants whose values will
be taken hrst from the work of Bardeen" A=1.25
)&10—~ erg, r;=1.75A, a=0,21A. It will be assumed
that the lattice is close-packed, in accordance with
Bardeen's explanation" of the transition at 23,000
kg/cm' as due to the change from the body-centered to
a close-packed structure. One 6nds that the repulsion
energy per atom, 6E;, , increases from 0.0047 Ey at
fp=4.6 uH to 0.072 Ey at re=4.0 uH. The increase of
E;,„ is sensitive to the constants in the exponent. The
constants obtained by Huggins and Mayer, "r;= 1.455A,
a=0.345A, A = 1.25)(10 '~ erg, would lead to an
increase of 6E;, from 0.0046Ey at r0=4.6uH to
0.024 Ey at ra=4.0 uH. These estimates are compatible
with the assumption that the repulsion energy does not
become important until the metal is compressed to
about rp ——4.5 an (V/Vip=0. 44). On this basis there is
a region between V/Va, ~0.55 and V/V~p~0. 44 in
which the curve of E, as obtained here, is approxi-
mately a straight line. This result may be taken as an
indication of the observed phase transition. It should
be emphasized that an exact agreement with the
details of the compressibility curve cannot be ex-
pected, on account of the approximations made in the
calculation of the energy.

According to the present picture, the repulsion energy
eGectively determines the lower limit of the transition,
which otherwise would extend to a smaller volume, as
is shown by the curve of E~ in Fig. 2. A comparison
with the increase of ~ ~ indicates that the repulsion
energy probably is suIIiciently large to account for the
low compressibility above the transition. %e note that
when the repulsion energy is added to LlEgp for V/V, p

=0.40, the resulting increase of the total energy is
between 1.2 and 1.5 times the observed value ~

It is believed that this disagreement lies within the
uncertainty of the calculations.

In Fig. 4 we have also shown the increase of energy
bE6„obtained by assuming that all valence electrons
are in 6s,

~p, (rp) =Ep,+(rp)+Ey(rp) —Egp(5.92 an),

where E6," is the average energy for the states of the
6s band. AE~~ is in much closer agreement with the
experimental curve than AE6, The repulsion energy,
which must be added to ~6„would further increase
the departure of the 6s curve from the experimental
results.

It is of interest to examine the behavior of E near
the volume at which 5d begins to overlap the occupied
region of 6s; this volume will be denoted by V&. It will
be shown that the term in E, associated with the
occupation of 5d, varies as (Vq —V)"'. In erst approxi-
mation, Ep.r EpP is—linear in V~ —V, so that the
number of 5d electrons is proportional to (V~—V)'".
Since the energy of these electrons is lowered by an
amount of the order of E6, —Eqd, , one ands a de-
pendence (V~—V)'" for the change of the average
energy. If the term in E is written as —g(Vg —V)"'
(pl) 0), we have

)d'E d'E q 15——~(V~—V)'+ ", («Vi) (16)
(dV' dV'] v& 4

for small V~ —V. The term d'E/d V') v~ is characteristic
of 6s and is positive. Because of the second and higher
terms in the expansion, d'E/dV' becomes negative
unless the exchange repulsion predominates. The limits
of the discontinuity lie outside the region where
d'E/dV'(0 and the upper limit is not expected to
coincide with V~. Thus for small g or strong ionic
repulsion, the transition rends to occur after the bands
have begun to overlap. %e note that the 6s—Sd over-
lapping occurs for V&/V&p=0. 686, while the transition
starts at V/V, ,=0.547.

If the present explanation is correct, the phase
transition is associated with a marked increase of the
magnetic susceptibility. For perfectly free electrons, the
susceptibility (per gram) xp due to spin paramagnetism"
ls

3Xp ~ eh q'
x.=

2AEv E2me)

(Ep Avogadro's ——number, A=atomic weight). Upon
taking Ep ——PpP/(2ppp*) (see Eq. (4)), we 6nd xp=0.090
/10 ' for the 6s band and 0.448&(10 ' for the 5d band,
at rp=4.40 Gn (lower limit of transition). For the total
susceptibility p we obtain

x=-'(0.45X10 ') —0.29X10 '=001X10 '.
Here the factor ~3 accounts for the diamagnetism of the

~ See, for example, F. Seitz, reference 5, p. 160.
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free electrons and the second term is the contribution
of the ion core."A similar estimate for normal pressure'~
gives y= —0.13&10 6.

The absence of similar transitions for potassium and
rubidium' in the range up to 100,000 kg/cms will now
be discussed. The separation of the atomic d and s
levels (Table I) suggests that a greater increase of
energy than for cesium is required to raise the s band
above the lowest d level. The work done in the com-
pression to 100,000 kg/cm', as obtained from Bridgman's
data, ' is 0.044Ey for potassium and 0.059Ey for
rubidium. %bile these values exceed the work for
cesium up to 45,000 kg/cd (0.037 Ey), the increase of
energy may be insufBcient to produce the transition.

This possible explanation will be considered in
greater detail. At 100,000 kg/cd the energy E per
atom is

E=—E; E.+W, — (Ig)

where E; is the ionization potential, E, and 5' denote,
respectively, the cohesive energy at normal pressure
and the work done in the compression, both extrapolated
to absolute zero. Kith E; as given in Table I and E,
obtained from the heat of sublimation, ' one Gnds
E= —0.343 Ey for potassium and —0.313Ey for
rubidium at 100,000 kg/cm', while the energy for
cesium is —0.312Ey at the start of the transition
(45,000 kg/cm'). In view of the results obtained for
cesium, it seems reasonable to expect that the start of
the transition will lie close to the volume at which the
average energy of the states of the s band equals the
energy of the lowest d level. On the assumption that the
ionic repulsion is small and that most valence electrons
occupy s levels at the pressure for which E has been
calculated, E gives approximately the average energy
of the s band. On this basis a comparison of the values
of E shows that a phase transition below 100,000 kg/cm'
is unlikely for potassium and rubidium, if the botton of
the d band at 100,000 kg/cm' lies at a higher energy
than the bottom of Sd for cesium at the start of the
transition. From the observed compression, one obtains
r0=3.92 aH for potassium and F0=4.14 ua for rubidium
at 100,000 kg/cm', while the radius for cesium at
45,000 kg/cm' is 4.57 uH. The energy of d levels is
lowered in a compression; the fact that ro is smaller
for potassium and rubidium tends to favor a lower
energy than for cesium. On the other hand, the relative
position of the d levels of the three alkalies for a given,
ro is not known. If the trend is the same as for the atomic
levels, the energy increases in the order of decreasing Z.
This effect would tend to compensate the effect of the
smaller radius. A deGnite conclusion cannot be drawn
from these considerations. If the present explanation is
correct, a volume discontinuity should occur above
100,000 kg/cm, in the region in which the shift of the

'fl A. Sommerfeld and H. Bethe, Hamfbuch der Physik XXIV/2
Uulius Springer, Berlin, 1933), p. 473.

» N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Clarendon Press, Oxford, 1936).

electrons from the s to the d states is most rapid, unless
the ionic repulsion predominates at the corresponding
volume.

GI. THE EFFECTIVE POTENTIALS

In this section the calculations leading to the potein-
tials Ve,' and V~~' will be described. The main part of
this work was concerned with the determination of the
potential energy terms in the Hartree-Fock equations
for the 6s and 5d wave functions.

The calculations were based on Hartree's Geld with-
out exchange' for Cs+. The wave functions for is, 2s,
~ 4d were taken from Hartree's work and the
Hartree-Fock equations were solved to a sufBcient
approximation for Ss'Sp'6s with boundary conditions
appropriate to the metal for r0=4.6 uH. In this calcu-
lation it was assumed that all free electrons occupy 6s
states. For Ss and Sp two functions were considered at
each stage of the calculation, namely, those for the
lowest and the highest state of the band, satisfying the
conditions 8$/Br=0 and /=0 at r=ro, respectively.
It was assumed that the electrostatic potential due to
Ss and 5p for the next stage of the calculation is the
same as if half the electrons of each zone occupied the
lowest and half the highest state. For 6s the effective
charge distribution was obtained from a single wave
function determined from the boundary condition,

(~4/~&)+ 1/2(4/r) =o

at r= ra, which is intermediate between the boundary
conditions for the lowest and the highest state of the
zone. The preceding approximations do not signi6-
cantly affect the potentials for 6s and 5d, because the
difference between the wave functions for the lowest
and the highest occupied state of each zone is small for
ro= 4.6 uH.

The potential due to the is, 2s, , 4d electrons was
obtained from Hartree's charge distribution. ' The
exchange of Ss, 5p and 6s with these electrons was rep-
resented by an added term in the potential, "obtained
as follows. Consider two free electrons with wave func-
tions (1/QQ) exp(iraq rq), (1/QQ) exp(ix~ r2); here x~

and+~ are the wave-number vectors, r~ and rm are the
position vectors of the electrons, 0 is the volume of
normalization. In the Hartree-Fock equation exchange
appears as a term"

e' p exp( —~(x&—~2) (r&—r2) exp(i«r&)
dr2 (19)

Q~ a (r,-r2) QQ

in the equation for electron 1. In the limit 0—+~ the
integral is independent of r& and its value, denoted by
E, is

&—4~/I~~ —~2I ~ (19a)

Hence (19) is just a constant times the wave function.

"Iam very much indebted to Dr. J. Steinberger and Professor
E. Teller who developed this treatment of exchange.

"See, for example, F. Seitz, reference 5, p. 339.
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This well-known result for free electrons suggests the
following representation of exchange of an outer
electron (Ss, Sp, 6s) with one of the inner shells at r.
The electrons are considered as free with wave numbers
corresponding to their classical kinetic energy. Thus
we have,

ass s/(2sss) = s,—V;(r), (s =1, 2)

2s (2ls+1)e'Ps'
log (20)es

where ~~ and ~2 are the wave-numbers, ~~ and e2 are
the Hartree eigenvalues, Vj, and Vg are the Hartree
self-consistent potentials for the outer and the inner

shell, respectively. It is assumed that the motion of the
inner electrons is isotropic and E is averaged over all
orientations of us. 1/0 is replaced by the density
(2ts+1)fs'(r) or the electrons of parallel spin, fs being
the normalized radial Hartree function for the inner
shell and lg its azimuthal quantum number. The re-
sulting value of the bracket in (19), to be denoted by
V,.„is

compared below with one obtained directly from the
Hartree-Pock equation.

In obtaining the exchange between Ss, Sp and 6s the
following approximation was made. Let E~ and E~ be
the normalized radial functions for the lowest and the
highest state, respectively, of Ss or Sp. At any stage
when R~ and E~ were obtained, E~+E~ was nor-
malized and the resulting function, to be denoted by
R", was used in evaluating the exchange terms in-
volving this band. The expressions for the exchange
terms were taken from the tables of Hartree and
Hartree" for closed shells, except for the exchange of 6s
in the equations for the Ss and Sp functions. For these
terms half the tabulated value was taken, since there is
a probability —,

' that the 6s in the atomic sphere has a
given spin direction. %'e thus obtain the following
equation for Ss, in which u5, is r times the Ss function,

d Q5

+ (V»+ V.», s.+ Us.+6'Us, + Us.)«s.
dr

KyK2 Kl IC2

Ps'-r'-dr = ],
0

with r in units ass, Eq. (20) becomes

I1' ex

(2l,+1)Ps' (s„—V,)&+ (s,—Vs) S

log
(ss —Vi) (ss —Vs) (si —Vs) —(ss —Vs)'

(20a)

In the region where ss —Vs(0, the limit of (20a) for
e2 —V2—4 was taken, giving

2(2ls+ 1)ass
(20b)

In the equations for 5s, 5p and 6s, one term V„was
introduced for each inner shell. When V, , e; and V; are
in Ey units and Ps is normalized according to

p2
=s,.u,.+ I

— u„"us„"r'dr'
E r'~o

+2r us, "us„" dr' jus~-"r" )

p1 t" I" 1

+ I i
us."us.«'+ ' us ""s «' lus (21)

Here us, ~ and u5„" are r times the functions E~ for 5s
and 5P, respectively; us, is r times the 6s function s'

V, is the potential due to the nucleus and the inner
electrons; V., 5, is the potential for exchange with Is,
2s, . , 4d; 'U5„'U5„, 'U6,, are the potentials due to 5s,
Sp, 6s, respectively, ss, is the eigenvalue. The potentials
and e5, are in Ey units, lengths are in units aH and the
normalization is

The potential for exchange based on Eq. (20) will be

TABLE VII. Values of rVp, ' Ve, ' is in Ey units, r is in units ua.

~rp pt p s'p

(us, ")'dr= (us ")'dr= u, 'dr=1.

0.00
0.01
0.02
0.03
0.04
0.06
0.08
0.10
0.15
0.20
0.25
0.30
0.35
0.4
0.5
0.6
0.7

110
104.41
99.83
95.32
90.68
84.08
78.49
73.91
61.65
53.05
47.02
42.26
37.47
32.61
27.30
23.05
19.58

0.8
0.9
1.0
1.2
1.4
1.6
1.8
2.0
2.4
2.8
3.2
3.6
4.0
5.0
6.0
7.0
8.0

17.47
14.19
12.45
9.79
8.03
6.70
5.78
5.35
3.13
2.95
2.69
2.51
2.41
2.25
2.15
2.10
2.05

At each stage of the calculation an equivalent poten-
tial V5, was obtained by adding to the Coulomb terms
on the left side of (21), —1/us, ~ times the exchange
terms in the square bracket. The Schroedinger equation
with V~, was solved, instead of the inhomogeneous Kq.
(21). The same procedure was used for Sp and 6s,
involving potentials denoted by Vs„and V6,. After a
reasonable V6, was obtained, the 6s function was kept
6xed, while the Ss and Sp functions were made more
self-consistent. The final Vs, and Vs~ of this calculation
are the potentials mentioned in Section II. The 6s
function was then redetermined. It is estimated that

'0 D. R. Hartree and W. Hartree, Proc. Roy. Soc. 156, 45 (1936).
"The terms involving Lagrangian parameters were omitted.

However, e5, and zc«were nearly orthogonal in the final stages
of the calculation; the integral over N5, "up, had values ~.03.
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the resulting V~, diBers by less than 0.04 Ey at r =1.0 aH

and 0.01' at r=4.6 uH from that of a completely
self-consistent calculation. Since this uncertainty is
smaller than the correction applied to Vq, (see below),
the approximation to self-consistency was sufhcient.

The exchange part of V6, was then improved by
replacing the potential for exchange with 1s, 2s, ~ ., 4d
(Eq. (20)) by 1/u&, times the corresponding terms" in
the Hartree-Fock equation for 6s. In evaluating the
exchange integrals, Hartree's is, 2s, , 4d functions6
were used. For comparison we shall list some values (in
Ry units) of the two exchange potentials; the Hartree-
Fock exchange is given in parentheses: 22.7 (25.3) at
r=0.08 an, 3.06 (1.15) at r=0.4 an', 3.15 (1.65) at
r=0.8 un, 0.884 (0.500) at r=1.2 un', 0.175 (0.181) at
r=1.6 aH. The values given by Eq. (20) are consider-
ably too large between r=0.4 cH and 1.2 uH. Ke note
that for the exchange of 5d with 1s, 2s, , 4d, Eq. (20)
gives a better approximation to the Hartree-Fock
values; the agreement is within 20 percent for r &0.8 aH.

The atomic eigenvalue for the resulting potential V6,
lies 0.03 Ey above the observed level. It is reasonable
to attribute a major part of the discrepancy to the
electrostatic correlation of 6s with the core electrons.

A smal. l term of the proper magnitude to give agreement
with the atomic level was added to V6,. The dependence
on r of this term was obtained from a classical model of
the correlation. The potential V6,

' thus determined is
given in Table VII.~

In determining Vqq the Coulomb interaction with
the core was taken from V6,. The exchange contribution
was obtained by evaluating the corresponding terms"
in the Hartree-Fock equation for Sd. As for 6s, a small
attractive term was added to the resulting potential, in
order to obtain agreement with the observed atomic
level.
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~ The rapid decrease of V6,'r between r =2.0 aH and r =2.4 aH
is not significant. The exchange potential changes from a large
positive to a large negative value, because the 6s function has a
node near 2.2 aH. However, the contribution of this term to
V6,'u6, ' remains small.
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The paper concerns the possibility of the path of a cosmic-ray a-particle, proton, or mesotron being bent
in the atmosphere by the earth's magnetic Geld in such a manner as to pass vertically upward through a
counter telescope.

In order to pass vertically upward through the telescope, it is necessary for the ray to have been hori-
zontal at some time during its path; and taking into account the minimum energies necessitated by absorp-
tion along the path, it appears that, for a telescope at an altitude comparable with 100,000 ft. , neither an
a-particle nor a proton would have "vertical room" between the telescope and the earth to describe the
angle (~/2} necessary to take it from the horizontal to the vertical upward direction. For a mesotron there
would be room, but in this case the mesotron "mean life" operates to prevent the phenomenon happening
in appreciable degree; it is shown that regardless of energy or the law of energy loss, only a fraction e " of
any assigned number of mesotrons can live long enough to travel through a right angle in the earth's mag-
netic Geld.

I. INTRODUCTION

HK importance of high altitude measurements
with Geiger counter telescopes has occasionally

raised the question as to whether such measurements

may be inQuenced by eGects of the earth's magnetic
field in bending the orbits of protons, a-particles, or
mesotrons to the extent of causing rays to enter the
telescopes from the under side. It has been thought well

to investigate this matter for the case of a vertically
directed telescope, the illustration in mind being the

* Assisted by the joint program of the ONR and AEC.

recent observations of Pomerantz. ' The calculations
for an inclined telescope may be carried out in an
analogous manner.

II. THE CASE OF PROTONS AND ALPHA-
PARTICLES

It is easy to show that for a fixed magnetic field H,
the situation is most favorable for resulting in upward
rays through the telescope when IJ is horizontal. Ke
shall consequently confine attention to this case.

'M. A. Pomerantz and M. S. Vallarta, Phys. Rev. 76, 1889
(2949); also M. A. Pomerantz, Phys. Rev. 77, 830 (2950}.


