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The exact solution recently obtained for the small-angle plural
and multiple scattering of fast charged particles is used to derive
several theorems of interest concerning scattering-produced
curvatures, and calculations are reported of the probability dis-
tribution of such curvatures. Formulas are provided for obtaining
the probability of occurrence of curvatures greater than any given
amount, for any scattering material and energy, as long as the

scattering is not too large. The types of curvature measurement
dealt with are: {a) three-point observation, (b) mean curvature
using the tangents to the track at each end, and (c) difference
between the two curvatures obtained in (b). Asymptotic formulas
allow the calculations to be extended for unusually rare events.

It is shown, first, that knowledge of the probability of a lateral
displacement x, after a track length z, is sufBcient to Gnd the
distribution of scattering-produced curvatures c obtained by
observing the ends of the track and any one interior point. The
appropriate relationship is x=z'c/2.

It is further shown that by introducing a lateral displacement
angle @=x/z the probability of observing @ in length z may be

obtained by a "duplication formula" from the distribution in &1
at any z1 &z and the distribution in p —@1in a track of length z —z1.

From the basic correlated distribution formula, we have ob-
tained distributions for the curvatures of the two circles tangent
to either end of the track and passing through the other end. The
mean C of these two curvatures (a special "four-point" curvature)
follows the same distribution law as the directional distribution
of the previous paper, with g=zC. The difference of these curva-
tures, D, follows the same law as the three-point curvature c,
above.

Finally, we have shown that the distribution in x and p, or in
c and 8, are nearly the same if we write q=A(x/z) or C=V3c/2,
although the exact solution yields different expressions for the
appropriate Fourier transforms.

Calculations are here reported and summarized in graphs of the
differential and integral distributions in p=x/z, in terms of
dimensionless units z/X and F5/qo as in the previous work. Integral
distributions in angular displacement, g, derived from the pre-
vious calculations, are included for completeness.

l. INTRODUCTION

HE multiple scattering of charged particles gives
rise to curvature of a particle track which inter-

feres with the determination of the momentum of the
particle as determined by curvature measurements in a
magnetic held. The quantitative treatments' of the
scattering-induced curvature have to this date been
based on the Gaussian approximation to the distribu-
tion function for the correlated angular and lateral
displacements of the scattered particles. In this paper
we solve the problem of the curvature distributions
without the introduction of the Fokker-Planck ap-
proximation to the Boltzmann diffusion equation.
Specifically, we calculate the probability distribution
for the curvature as measured by using three points on
the track. As Scott' has shown, the use of more than
three points for the Gaussian approximation case does
not greatly sharpen the curvature probability dis-
tribution. Bothe4 has shown, using the Gaussian ap-
proximation, that other methods of measuring curva-
ture lead to essentially the same results. He has, in
addition, dealt with the case in which the track bends
through a large fraction of a circle under the influence
of the magnetic Geld; for which our results are not
applicable. One wouM expect that the qualitative

*Work performed at the Brookhaven National Laboratory,
under the auspices of the AEC.

' H. A. Bethe, Phys. Rev. 70, 821 (1946}.' B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).
s K. T. Scott, Phys. Rev. 76, 212 (1949).
4W. Bothe, S. B. Heidelberg Akad. Kiss. , Math. -Naturwiss

Klg. 107 (1948),

aspects of these conclusions would not be upset by the
use of more accurate distribution functions. Further
remarks on this matter will be made in Section 4 of
this paper.

2. THE CORRELATED DISTRIBUTION FUNCTION

The paper on the multiple scattering of fast charged
particles by Snyder and Scott, ' which paper we shall
call A, contains an explicit expression, (A-7), for the
correlated probabilities of angular and lateral displace-
ments. Since all the pertinent information concerning
the distribution function is contained in A, we will

simply reproduce here those portions of A which are
applicable to the curvature problem without including
any unnecessary developments or proofs. Thus, from
(A-7, 8, 11—16), we have

oc oc

w(q, xmas)= ds I dt
4m'~

„

h(s+ts) —h(s)
Xexp i(qs+xt) (1)

FIG. 1. A scattered particle track referred to the initial direction,
illustrating the basic distribution (1).

'H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
This is referred to as paper A in the text.
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with vatures observed if a track of the same length is
measured at three points, equally or unequally spaced.
This result may be expressed in a theorem which wes= —gsssgs=8 "Pg will now prove.4p

gp

P(s) =
2(s'+ no')'

Theorem

The probability of ending a curvature between c and
c+dc is given by

QQ

137'(E'—1)f

1/X =4rrZ'tsZ"E(137r ) 'E'/(E' 1). —

From (2) and (3) one obtains
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dt exp ixt-
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p(c I z)dc = W(-', z'c
I
z)-', z'dc= -,'ztt|(lt

I s)dc;

P=-s, zc=x/z

+ ~ ~ ~

In the above equations, z is the distance the particle has
traveled through the scattering material, x is the lateral com-
ponent of displacement of the particle in a 6xed direction per-
pendicular to the original direction of the particle, and y is the
angle between the projection of the particle track on the xz plane
and the z axis. W(o, z~ z) is the probability per unit of rl and per
unit of s of obtaining a given angular displacement y and lateral
displacement x for a particle which has traveled a distance z if
it started out parallel to the s axis (see Fig. 1).p{g) is the prob-
ability per unit of p of scattering the particle through the angle

q in a single scattering. The constants in these equations are:
ttf, the mass of the scattered particle, c the velocity of light, E the
total energy of the scattered particle in units of its rest energy,
r0 the classical electron-radius e'/me~, Z' the atomic number of
the scattered particle and Z the atomic number of the scattering
atoms, m the mass of the electron, S the number of scattering
atoms per unit volume, and ) the mean free path for scattering.
We assume here that changes in the energy of the particle may
be neglected, so that ) and g0 are constants. The above relations
are valid only if

~ v~ &&i and ~z~ &&Z which conditions were used
in the derivation of (1).

W(xlz) is the probability of a lateral displacement x
at z, obtained by integrating (1) over rt (see Fig. 1).

~00 pOO

U(f, dlz)= dg
4x' 4

ds

z h(N) —h(s)
Xexp i(Pu+Ps) (9)I—s

Proof

Let us express the fundamental distribution (1) in
terms of the initial and 6nal angles between track and
chord, P and p (see Fig. 2). (z may equally well be
taken as chord or track projection in our approximation
of small angles. )' In Eq. (1) we set x/z=f, rt —lt =p,
and also s+tz= sr. Then if

W(rt, xlz)drtdx= U(P, pI z)de@,
we have

3. DISTRIBUTION IN CURVATURES

The main point of this paper is that a knowledge of
the distribution in lateral displacement x at a track
length z is sufhcient to yield the distribution in cur-

Pro. 2. A scattered particle track, referred to its chord,
illustrating the distribution (9).

Since the probability distributions are independent
of whether we specify a specific direction z or a chord
on the actual track, of length z, we see that (9) gives
indeed the correlated distribution of the angles P and

@ when the track is known to pass through the end
points of the chord z.

Now let us observe a track at three points, and ask
for the resulting distribution in scattering-produced
curvature. Let us apply (9) to two successive segments
of track, as in Fig. 3. The two chords are z~ and z2, and
the angle between them n=Pr+fs. Then we have the

~ To take care of large magnetic curvatures, while maintaining
small scattering angles, one would require an additional term in
the diffusion equation. See reference 4 for a different treatment.
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curvature of a circle through the three points

c=2a/(st+st).

The distribution in 0. is obtained by integrating

u(alz)dn=dn)t dPt) dPt I dPt

1 t' t'

dut) dst) due) dse
(2s') —oo —m —ca —m

&(4'tu1+ 41st 41u2+ 42s2+ au2)

zt h(ut) —h(st) zt h(ur) —h(se)
l t

Nq —sq X N2 —s2

da t
"

i st+sr h(ur)
du2 exp' io.e2 ——

2x &„Xu2

FIG. 3. A scattered particle track of two segments, with tangents
and chords, illustrating the curvature theorem of Section 3.

tion is narrower than the three-point distribution
function by a factor of VS/2. Although we shall not
prove it, it would not be surprising if the same situation
were essentially true for the distribution functions used
in this paper. In any event, we have the information
available for the calculation of the mean curvature as
determined from the directions of the tangent to the
particle track at the two ends of the track. This
information is contained in the distribution function
U(P, d l z) as it is given in (9). From Fig. 2 one can see
that the curvature of the circle which is tangent to

2.5

Hence, setting z=z&+zt, the curvature distribution is

sh(u)
p(clz)= — du exp i,'zcu-

4m ~ 2.0

which agrees with (7) and (8). Thus, all that is required
for a three-point curvature distribution is a two-point
lateral-displacement calculation, which we have carried
out in a similar way to the calculations of A. This
remarkable result holds for any type of elementary
scattering law and depends only on the small-angle
approximation.

Another remarkable theorem, which was necessary
for the calculations, is a similar duplication formula to
Eq. (23) of A. We have with

l. 5

'Tt'( c'I z)

I.0

(10)

For any z, this theorem is, in fact, a simple consequence
of the exponential character in z of the Fourier trans-
form of to. The right side of (10) is just a faltungs-
integral, corresponding to a product of the two cor-
responding Fourier transforms.

4. A SPECIAL FOUR-POINT CURVATURE
DISTRIBUTION

In the paper by Scott,~ it was shown that in the
Gaussian approximation the curvature distribution
function obtained by utilizing the directions of the
tangents to the particle track at the ends was the
sharpest curvature distribution function that could be
obtained. For the Gaussian case, this distribution func-

.2

C ANo C
FIG. 4. A comparison of 'Q(elsl, the distribution of the mean

of curvatures determined by the tangents of the two ends of a
track, with ~(c* s) the distribution of v3'/2 times the curvature c
determined by t.'hree points on the track. These curves also com-
pare the lateral and angular distributions derived from Eq. (j.).
(See Section 4.)
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FIG. 5. p(y'~z'), the probability of exceeding a lateral displacement angle p'=x'/z'=x/zygo, plotted as a function of the track length
z'=z/X, for values of ~=&'/(z')& from 0.25 to 10.0.

the particle track at point 0 and passes through P is
cq= (2ttt/s). Similarly, the curvature of a circle tangent
at point E and passing through point 0 is cy= (2fff/s).
The mean curvature of these two circles is 8= -', (c9+cs,)
= (1/s) (tiff+if ) and the difference of curvature is
D= (2/s)(P —IP). The probability distribution function
for 0 and D satis6es

y(c, Dls)d&D= U(y, ff ls)d+p

from which we get

0(&, Dls) =""U(lzL~+sDj, ssL&—sDjls) (11)

From (9) and (11) one can immediately verify that

It'(c
I s) = Ill(ct D

I
z)dD= zW(if I s); s = zc (12)

in which W(ti l s) is the angular distribution function for
the angle between the initial particle direction and the
particle direction at the end of the track. lt is this
function W(fels) which was tabulated in A. We now
wish to compare the curvature distribution function
g(t", ls) with the curvature distribution function p(cls).
Integrating Eq. (1) with respect to s and using (6) we
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s(c*lz)dc*=p(clz)dc we find using (15) that

s t" z (sgo)'
s (c*

l z) =— ds exp izc*s+
2m~ X. 2

(Sgo)
X Inl ~+0.0772 +xz ln3 —xs 1+ . ~. (16)i2) ' 'l

If we now compare the expressions for p(cls) and
s.(c*ls) as given by (13) and by (16) we see that they
are quite similar. In fact, the only di8erence in the
coefficient of z/X is that the constant which is added to
the logarithm is di8erent for these tmo expressions. Ke
now note that the major contributions to these integrals
come from very small values of sy if z/X is very large.
Thus,

l inssol is quite large compared to the constant
terms in either (13) or (16) for those values of s which
give appreciable contributions to the integrals for z&&X.

Thus, we see that the two distributions s(c*ls) and

Q(Vis) will approach one another in the»roit of large
z/X. From the above argument we thus expect that the
distribution function Q(Pl s) will have roughly the same
shape as the distribution function p(cls), and that it
will be narrower than the latter by a factor of VS/2. '
Figure 4 is a plot of both p(clz) and s.(c*ls) for
z/X= 100.

Another statement of the same relation is that the
function W(xl z) of (8) is closely approximated by the
W(mls) of A if we set A=VS@/z. This transformation
leads to exact equivalence in the Gaussian approxima-
tion, as is seen from Eqs. (11a) and (13) of reference 3.

By integrating Eq. (11) with respect to c, additional
information is obtained concerning the diBerence of
curvature, D.

y, (Dlz)= I y(c, Dlz)u

s )zD y z' /'s'c
~ l=—m

)

—~ l. (17)
2 (2 J 2 L2 J

Comparing (7) and (17) we see that the distribution
functions 'po(Dlz) and p(clz) are identical.

5. NUMERICAL COMPUTATIONS

As was the case in A, the results of our calculations
are expressible in a universal form which is independent
of the mass, charge, and energy of the scattered par-
ticle, and of the atomic number and density of scat-
tering atoms when we express the results in terms of
appropriate variables. This is readily done by ex-
pressing the distance z in units of the mean free path
for scattering X. We have thus used as a variable the
average number of times the particle is scattered, z',
for which z=z'X. We also measure angles in units of
qo and thus use for angular variables p', g', etc., with
@=&'qo, g= g'qo, etc. The curvatures c, D, and 8 will
have units which are reciprocal to the units for X and

~%. Bothe, reference 4, p. 12, gives the same result for small
magnetic de6ections.

(18)

For other values of z' the distribution function rc'(p'l z')
was computed by numerically integratingt the duplica-
tion formula (10) for small p' and using (18) for large p'.
Formula (18) is useful only if

2z'

I in'' —0.44691 I &0.2.
(~')'

For the purpose of presenting the information con-
tained in the distribution function rc'(@'l s') in a form
which is most useful for applications, we have computed
numerically the total probability that the scattering
angle p' will exceed in absolute value a given value
which we also call p'. Ke thus calculated

f'(4'lz)=2, " u(4'ls')4' (19)
J~i

The values of this function P(P'l s') are graphed in Fig.
5 as a function of z' for various values of an argument e

which is defined to be s= g'/(s')&. The probability that
the absolute value of the curvature will exceed a certain
value c may then be found on this graph by 6nding the
value of I' corresponding to the given value of z' and
e where c is connected to e through the relation

c= 2goe/7 (z') &. (20)

This same graph may also be useful in checking for
the presence, or absence, of signi6cant amounts of

t Tables of these functions for eleven values of z' from 100 to
102,400 are available from the Information and Publications
Division of Brookhaven National Laboratory, upon request.

can be expressed in terms of p', g' P—' and q' as
c=2&'go/z'X, D=2gp(p' —f')/z'X, and c=gog'/z'X We
also note that x= yo) x' in order ta have x'=P'z', and
c= goc'/) in order to have c'=2/'/z'. lt is in terms of
these universal variables x', p', z', q', etc., that all our
calculations were made. One must convert from the
system of primed variables to the unprimed variables
by computing the value of p& and X for any particular
problem by using Eqs. (4) and (5) and the above con-
nections between the two systems of units. The equa-
tions of the distribution functions in primed variables
are simply obtained by setting po and X equal to unity
in all of the preceding equations and playing a prime
on all the variables entering into these expressions.

In the numerical calculations we computed w'(p'l s')
for small values of P' for z'= 100 and z'= 3200 by using
Eqs. (7), (8), and (15). The values of these integrals
were obtained by numerical integration. For the larger
values of p' we used an asymptotic formula, which was
obtained in a manner identical to that used to obtain
(A-21), giving

z' 2z'
w'(g'

l
s') = 1+ {in/' —0.44691+

6(4')'- (4')'
5(z')'

I in2&' —1.953171np'+. 16715I+
(~')'
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turbulence in cloud chambers and distortion in emul-
sions. As was remarked at the end of Section 3, the
di8erence of curvature, D, between the two ends of the
track has the same distribution function as the cur-
vature measured by using three points. Thus, if we
connect D to e through the relation

D= 2gpp/X(z')», (21)

then the probability that the absolute value of D will
exceed the value of D given in (21) will be given by the
value of I' corresponding to the values of e and z' as
given in Fig. 5, provided scattering alone is responsible
for the induced distortion D. Improbably large mea-
sured values of D may reasonably be interpreted as due
to the presence of turbulence in a cloud chamber, or
distortion in an emulsion.

We have also included in this paper a graph, Fig. 6,
of the function

p 00

Q(g lz )=2J W(g lz )dg', (22)

which is the probability that the absolute value of q'

will exceed the value q'. The curves on this graph are
the values of $(s'{z') as a function of z' for constant
values of 8=s'/(z')». This graph may be used in the
same manner as one uses Fig. 5 to determine the prob-
ability that the absolute value of the mean curvature,
0, will exceed the value c determined by b through

~= &,S/X(z')».

6. MISCELLANEOUS FACTS AND FORMULAS

Although the graphs of Figs. 5 and 6 should be
extensive enough to cover most of the needs of experi-
mental physicists, it may be useful to give simple
formulas by means of which the type of information
contained in these graphs could be extended to the rare
events. To do this, we integrate u'(p'l z') with respect
to p' using the asymptotic form for w'(p'{ z') given in

Eq. (18) and obtain

~(p»'I") = 2J" ~'(~'(")dp»'

1+ {inp»' —0.19695 }
6(0')' - (p»')'

5 (z')'
+- {in'p»' —1.61984»@'

3 (~')'

—0.10282 }+
1 1

1+—{lnp(z')» —0.19695 }
65

5
+- {»'P'(z')» —1.6984 in&'(z')»

3P

with, of course, p= p'/(z')». One now sees by inspection
of (24) the reason for the curves of P(p'{z') for fixed p

being so nearly constant as a function of s' for large e.
We also note here that in the Gaussian approximation,
the corresponding curves would have been straight
horizontal lines. The distribution as a function of ~

would, however, have been very diBerent for large
values of e being determined by an error function of e

instead of an essentially inverse square power of ~.

We also give here the asymptotic form

z' 3s'
g(~'l z') = 1+ {»s'—0.6340}

2(q')' 4(g')'

15 (z')'
+— {In'q' —2.28667»g'

4 (s')'

+0.95952 }+
3

1+— {in' (z')» —0.6340 }
2P 482

15
+ {ln'b(z')» —2.28667 inb(z')»

4&4

+0.95952 }+ . . . (25)

The same comments hold for Q(g'{z') as for P(p»'{z').
In the paper of Scott' it was shown using the Gaussian

approximation, that the selection of tracks according to
a criterion of symmetry does not change the distribution
of scattering induced curvature. This conclusion no
longer holds true for the exact distribution given here.
To see this, we return to (9) and (11) and find for the
joint distribution functions for 8 and D the explicit
expression

~
00 00

$(c, Dlz)= ds ~ dtexp i(t',s+Dt)
4m'2 ~

z' t's —2t) (s+2ti
+—— tl

4Xt ( z ) 0 z J 1

~00 00

ds ' dt exp lt(Ps+Dt)

+
z' (( +st2)q qp'

24Xgpt E z )
(s+2t) sp

Xl » —0.25612 }
2z )

f (s—2t)gpss
'

I (s—2t)~p}I»
z ) E 2z

—0.10282 }+ (24) —0.25612 } + . (26)
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$0

X(vP+ gp') &

(27)

which appears in the diffusion Eq. (A-5) is, in the case
of mixtures, replaced

X;(g'+ gp) &

(2g)

The logarithm in the integrals (25) prevents the fac-
torisation of $(C, D~z) into the product of the dis-
tribution function of 0 by the distribution function of
D which was the origin of the theorem in the Gaussian
case. In fact, the Gaussian approximation is obtained
from (25) by replacing the logarithm by an appropriate
negative constant and neglecting all higher terms in
the expansion of Ip(s). Since we have not carried out the
numerical evaluation of joint distributions Q (8, D j z) we
cannot say how much a selection of tracks, according to
the requirement that D should be less than a certain
predetermined value, would sharpen the corresponding
distribution function in 8. Even a preliminary examina-
tion of this question for one value of s' would require
about ten times the amount of numerical calculation we

have carried out at this time. For the relatively meager
amount of information which would thereby be ac-
quired, it is not worth while to carry out such a program.
Also, from the fact that in the Gaussian approximations
no improvement is to be expected, one would expect
that very little improvement would be obtained for the
exact distributions.

In most practical cases the scattering atoms are not
composed only of a single atomic species, but there is

usually a mixture of diBerent elements. The results of
our calculations may, however, be applied to the case of
mixtures provided the constants po and X are properly
evaluated. To do this we note that the function

in which X; is the mean free path for scattering by the
pth type of atom having a charge Z, and density X;, and
p; is calculated by (4) using the value Z; instead of Z.
It is, of course, not possible for any function with
single values of X and yo to 6t exactly the more com-
plicated function involving a sum of such terms. How-
ever, if the distribution function W(q, x~z) is to ap-
proach the correct values for large g when we approxi-
mate (28) by (27), then these expressions must become
the same for large values of g, from which we obtain
the condition

Another condition which we may reasonably use is
that the mean free path shall be correctly given by
both expressions which gives us

1/) =P,(1/X;). (30)

c= (2p/z~) (gp/X&). (31)

In this form of the connection between c and e the
importance of the correct ratio for gp'/X is evident.

We wish to thank Miss Theresa Danielson and Miss
Jean Snover who are primarily responsible for the
numerical work and preparation of the graphs.

Actually, condition (29) is far more important than

(30) and a small departure of X from its value as given

by (3) makes very little difference in e.g. , the probability
distribution function p(c~z) when this is expressed in

terms of the actual curvature c and physical length s
rather than in terms of c' and s'. The reason for this
lies in the fact that the functions E(p'~ z') for fixed p are
nearly independent of 2'. A way of seeing the im-

portance of (29) is through the connection between p

and the curvature c in terms of the physically measured
track length s:






