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Nuclear Co~&gurations in the Spin-Orbit Coupling Model.
II. Theoretical Considerations
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The assumption of short-range attractive forces between identical nucleons in the jj coupling model of
nuclear structure is in agreement with the empirically observed spins.

' T has been pointed out previously that the magic
& - numbers in nuclei can be understood if one assumes
the existence of a strong spin-orbit coupling. ' The sign
of this is such as to lower the energy of the higher total
angular momentum. Observed and theoretical spin
values of odd nuclei are in good agreement. ' Detailed
investigation of the empirical material indicates that
the following three rules are obeyed:

1. An even number of identical nucleons in the same orbit with
total angular momentum j couple such that the resultant total
spin is J=o.

2. An odd number of identical particles in an orbit with angular
momentum, j, couple to a resultant total spin J=j.

3. Of two orbits in the same nucleus, that of higher angular
momentum has the greater magnitude of the {negative) pairing
energy.

No attempt is made to explain the strong spin-orbit
coupling.

The object of this paper is to investigate if there are
any theoretical reasons for these empirical rules.

For this purpose, it was assumed that an attractive
potential acts between identical nucleons. For reasons
of definite and easy evaluation this was assumed to
have the shape of a 8-function. Only the interaction of
several identical nucleons in the different degenerate
eigenfunctions belonging to the same total angular
momentum quantum-number j was investigated.

The assumption of a 8-function attraction between
identical nucleons is perhaps in contradiction with the
square-well and single-particle orbit picture. Neverthe-
less, it might be of interest to note that this assumption
can explain qualitatively the empirical rules.

The calculation was made in a straightforward but
inelegant manner, for eigenfunctions up to j=7/2.
The results have a much more simple form than the
method would lead one to expect. However, no general
proof, for all j values, of the simple result (11) and (12)
is given here.

II. METHOD

(half-integer) angular momentum quantum number is

j, its projection on the z axis m;, the eigenfunctions will
be written Pm;. The f's are the well-known linear com-
binations of products of spin functions with purely
orbital functions, x, in a spherically symmetric potential

nl —(2~)—$&imyQ~ l(g)g (&)

Here 8 and y denote the Euler angles and 0„'(0)are
the normalized Legendre functions with integer /. The
P-functions for given j contain only either /=j+
or l= j——,'.

The radial part of the wave function R(r) depends on
the precise shape of the well, and nothing will be
assumed about it except that it is normalized.

It is now assumed that there exist attractive forces
between identical particles 1 and 2 in the single-particle
quantum state of the same j value. For the purpose of
definite and easy calculation the attractive potential
(1, 2) was assumed to be a b-function, i.e., zero if the
position of the two particles does not coincide, so that:

V(1, 2) = —g8(yq —q2)8(cosset& —cosr9~)r,
—'8(r, —r2), (2)

~
IV(1, 2)r2'dr~ sin82d82d ym ———g.

The strength of the interaction, g, is positive for
attractive forces. For a 8-function potential, ordinary
and Majorana forces are identical.

GI. CALCULATION

The calculation was done in a straightforward way
up to 1=3, j=7j2. The interaction energy between a
pair of identical nucleons 1 and 2 in single-particle
eigenfunctions fm and P~,"belonging to the same j is

F, ,'=A;,'& —B, ,'&,

where

I 4-i(1) I'V(1, 2)
I 4 ~'(2) I'd(1)d(2) (5)

J

is the direct integral, and
It was assumed that the single-particle eigenfunctions

of a nucleon are determined by coupling of the spin to
orbits in a spherically symmetric potentiaL If the total ' ' J

' Haxel, Jensen, and Suess, Phys. Rev. 75, 1969 {1949);M. G.
Mayer, Phys. Rev. 75, 1766 (1949).

~ M. G. Mayer, preceding paper. the exchange integral.

X /mal*(2) /mal'(2) d (1)d (2) (6)
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rI'
I"'= (g/4s)~~ E„~'(r)r'dr.

0

(7)

In this expression, p is the nuclear radius. Since attrac-
tion was stipulated, g as well as I are positive. Since the
radial wave function is assumed to be normalized over
the volume of the nucleus it is seen that I ~ is inversely
proportional to the volume of the nucleus, or to the
total number, A, of particles, in the nucleus,

I„&is then roughly independent of n and l, but varies
with the size of the nucleus. This will be indicated by
leaving off the subscripts l and n in I.

A straightforward but tedious calculation of the
interaction was undertaken. The integration over 8
contains expressions of the type

[0 '(0)]'[0 '(8)]' sin8d8;

and occasionally such hybrids as

$12$ Ol (~)[02'(d) j'0&'(0) smDd8 (10).

Such integrals were evaluated up to 1=3 (f-functions)
and appropriately inserted into (4). The interaction
between any pair of identical particles is thereby
known. For more than two identical particles with
angular momentum j the interaction energy is simply
the sum of that for all possible pairs.

For several identical nucleons in orbits of the same j
a number of total spins J are possible. However, for
antisymmetric eigenfunctions up to j=7/2, each pos-
sible J value occurs only once. It is consequently
possible to calculate the binding energy associated with
each of the J values from the diagonal elements (4) of
the interaction by the method of traces. ' The energy

'See, for instance, Condon and Shortley, Theory of Atomic
Spectra (The MacIIOan Company, ¹w York, 1936).

For evaluation, the Pm; are expressed in terms of spin
functions and the orbital functions (1). It is seen that
then the integration over spin, and. over the two angles
8 and q can. be performed directly. The radial function
E(r), however, is unknown, and consequently all terms
(3) and (4) will be proportional to the same integral over
the radial part of the wave function

for the antisymmetric linear combination of product
Pm, 's associated with a total spin J is the following
expression: The diGerence between the sum of the
energies of all product eigenfunctions for which Zm, =J,
and the same quantity for all products with Znz, =J+1.
In this manner, the energies associated with all total
spins J were computed.

Ea —(n/2) [——(2j+1)/2]I.

(2) For n odd, J=j. It has the energy

Ei = [(~—1)/2j[(2j+ 1)/231 (12)

The calculation predicts then that the lowest state is
the one which appears empirically in the spins (rules
1 and 2, Section I).

The interaction energy is proportional to the number
of pairs in a shell; an odd nucleon is not bound by the
shell at all. Since I (Eqs. (7) and (8)) is roughly inde-
pendent of n and l, the binding energy of a pair at
given nuclear volume, or mass number A, is propor-
tional to 2j+1.This is in conformity with the empirical
rule 3 of Section I.

In addition, this calculation also contains the varia-
tion of binding energies for even and odd nucleons.
Equations (11) and (12), upon inserting the value (8)
for I, show that the extra binding energy for an even
nucleon compared to that of an odd one is

E. ..—E,pg= —[(2j+1)/2A j.C, (13)

where C depends on the strength of the interaction. The
empirical expression for this quantity is4

E. E~~ —(36/A—3") m—i—llimass units. (14)

Since the average j value increases with A, the de-
pendence on the nuclear size of expressions (13) and
(14) is not very diiferent. If one wanted to attribute
the odd-even variation in binding energies numerically
to (13), C would be about 25 Mev.

' N. Bohr and Y. A. Wheeler, Phys. Rev. 56, 426 (1939).

IV. RESULTS

The results have the following simple form:
The state of lowest energy for n identical nucleons in

orbits with total angular momentum j is the one with
(1) For n even, J=O. It has the energy


