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Neutron-Deuteron Scattering at High Energies*
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Stationary-state perturbation theory is applied to the problem of n-d scattering at high neutron energies.
The Born approximation is used and exchange, but not tensor, forces are considered. It is shown that the
e-d cross section, even in the case of general exchange forces, is made up of three distinct contributions:
the cross sections for the scattering of the incoming neutron from the bound proton or neutron, respectively,
averaged over the momentum distribution of the particle in the deuteron; and the cross-terms due to irtter-
ference and the Pauli principle.

HIS paper is an attempt to establish a general
formulation for the n-d cross section at high

energies, assuming an exchange but not a tensor type
of nuclear interaction and using the Born approxima-
tion. The usual time-dependent perturbation theory
leads to some difIiculties when applied to this problem.
Hence our emphasis shall be to show that a stationary-
state perturbation theory, using a symbolic expansion
for certain operators, can be used to derive the desired
formulas.

It will be shown that one can always split the n-d
cross section mto three parts: (I) the cross section for
the scattering of the incoming neutron from the bound
proton, averaged over the momentum distribution of
the proton in the deuteron; (2) the cross section for the
scattering of the incoming neutron from the bound
neutron, averaged over the momentum distribution of
the neutron in the deuteron; (3) cross-terms due to
interference because of the presence of two scattering
centers and due to the operation of the Pauli principle.

We shall illustrate our method by treating the
problem with signer forces alone, i.e., we assume no
exchange forces of any kind.

I. WIGNER FORCES

In order to efFect the separation of the scattering
from the proton and the neutron, we shall retain the
laboratory system of coordinates, although we occa-
sionally make use of the relative coordinates between
any two of the particles.

I,et particles 1, 2, and 3 denote the bound proton,
bound neutron, and incoming neutron, respectively,
each of mass 3f. Then the coordinates are designated
rj, r2, and r3, respectively. ' We shall further introduce
relative coordinates between particles 1 and 2, i.e.,

system.

before collision: pp

Incoming neutron
after collision: p

+before collision: zero
Deuteron +particle 1:p'

fter collision+
particle 2: p".

We define iP;(r, t) and iPf(r, l), respectively, as the
initial and final wave function of the three-particle
system. Further, E~ and E; are total final and total
initial energies of the system. We shall have occasion
to use the quantity Ef', the Anal energy of binding
between particles 1 and 2. Thus we have

&f'= (&/22if )(p'+ p"+p'") (2)

E = (po'/2M) —e,

where M is the average mass of the nucleons and e is
the binding energy of the deuteron.

It turns out that, if we wish to find an expression for
0„~by means of the usual time-dependent perturbation
theory, this procedure leads to diS.culties when the
Pauli principle is considered. These arise from the fact
that, in such a treatment, the small magnitude of the
potential between the particles in the deuteron, com-
pared to the Hamiltonian of the entire system, is con-
sidered at a very late stage of the treatment. We shall
here use a stationary-state perturbation theory that
makes use of this fact as early as possible.

Denote the nuclear potential between neutron and
proton by V„~(ri—r&), and set

V d= V.„(ri-rs)+ V..(r2 r3).

Also introduce the notation

Introduce the foHowing momenta in the laboratory
where

H=Hf)+ VI2,

*This paper is based on a portion of a thesis presented in partial
ful6llment of the requirements for the Degree of Doctor of Phi-
losophy in the Department of Physics at Harvard University.
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Mexico.

'We shall omit making a distinction between the writing o
vectorial and scalar quantities, since the meaning should be clea
from the context.

H, = (—I '/2ilf)(V'P+ V P~ V,') (6)
and

Vi2 ——V„~(ri—r2).

The wave function iP of the entire system will be
understood to contain a spin-dependent part, but the
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potentials are spin-independent. Thus, let

1p= exp L
—(i/h) (E,+ig) t]1tA,

Now we may set

V124;= (—» —T12)4;, (16)

i.e., p describes the wave function with the time sup-
pressed. Here q denotes a small imaginary contribution
to the energy E;, and eventually we shall let p go to
zero. In essence then, g will serve as a convergence
factor in our integrations. Thus,

(E'+2n)4=(II+V d)4

Thus, if we write p; for the solution of the homogeneous
equation corresponding to Eq. (9), we may write
symbolically

4 =4,+
E,—H+ig

If we set
4 =4.+4-

and recall Eq. (8), we get, in the Born approximation,

where T~2 is the kinetic-energy operator corresponding
to the potential operator V». Now re-express P; as a
superposition of plane waves:

1 (2
exp~ pp rp )x(r—1—r2),

W2

where we recognize y(r1 —r2) to be the wave function
of the deuteron and lV denotes a large volume to which
we normalize. Thus if we denote the momentum trans-
form of x(r) by C (p"), we may write

z

exp —
pp rp

1 k

W2

V„gp;.
E;—Hp+ig —V»

Expanding, because V» is so small, we And

(12)
Hence,

where
2 124' ' T 12(pd) 4 '

T»(Pd) = Pd'/M. (2o)

X I exp —pd (r1—r2) C(pd)dpd. (1g)

4"o=
.E;—Hp+ig Symbolically we may write

+ V» V„&;. (13)
E;—H p+sg E;—H p+&g-

so that

exp pd (r, r—2)—
m k m

(21)

Thus, we hand that @„getsbroken up into a main term
and a correction term to it.

Now we examine the commutability of Hp and V».
Ke know that

(&pV12—V»&p)EE = (E—E')(V»)EE,

where E and E' are eigenvalues of H p. Now if we choose
any model for V» (say a Yukawa potential, for in-

stance), we see at once that (V»)« is signi6cant' only
when E E'((pd')Ay/M. Th—us t Hp, V»] is almost but
not quite zero. Consider now, however, that V» occurs
only in the correction term of (13). Thus the non-
commutability of V» with Hp is only a correction to
the correction and we shall ignore this in the approxima-
tion to which we are working.

Recall now that, for the purpose of this section, we
have assumed only signer potentials so that V» and
V„~ commute. Further, V„~ and Hp commute, so far
as the second term of (13) is concerned, by an argument
analogous to that presented above for V» and Hp. Thus
@„becomes

V d 1+ V» 4'. (15)
E;—H p+ig E;—H p

—ig
~ Here we have set P"'=Pq to indicate more clearly that we are

dealing with the relative energy in the deuteron.

V„d 1—
m E' Hp+ig

T,.(Pd„)+»

E;—Hp+ig
(22)

If now we write E;=E P—~ and recall that Ty2 is small,
we may say that

V~&s~,
Ei +T12(pdna) ff 0+ 2'9

(23)

1
P, =—L4;(3, 12)—@,(2, 13)j, (24)

1
0-=—L4-(3, 12)—4-(2, 13)j

v2
(25)

The fact that the normalization constant of P is indeed
1/V2 to an approximation consistent with the solution
of our problem is proved in Appendix 3,

where we have permuted V„& in analogy with our
previous argument.

%e must now meet the condition laid down by the
Pauli principle and antisymmetrize the wave function
p in particles 2 and 3. Let us call the antisymmetrized
wave function P= P,+P„.Then denoting the particles
in the deuteron by a bar, we have
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The derivation of the cross section now proceeds as
follows: the probability of ending the system in a
certain anal state "f,"where the deuteron is disrupted
and all three particles have certain definite momenta,
is given by

is unchanged, yielding
pdk p

We may therefore rewrite (34) as

(35)

or
lbrl."= I(4~', 4.) I'

I
bi

f

"-= exp(23tt/h)
I
(+f', p„) I

'-'.

Thus the total transition probability is given by

(27)
X — . (36)

E,'+ T,3(p") Efp+—iit

8
pp= —,f

I (4f P )I pxjexp(2rlf/h)dEf,
Now let us permit g to approach zero. Use the relation

(28)

where pzf is the density of states with energy E~, i.e.,
Then

pvfdxf = W'dpdp'dp"/h' (29)

lim = prb(X).
~o x2+g2

(37)

Hence,
a..d

———,
' Q, (W/Pp/M)(Dpi/R), (30)

where the factor p P, merely expresses the fact that
we must average over the six equally likely initial spin
states of a three-nucleon system.

Our next task, therefore, is the evaluation of the
quantity

I
(pip, p„.) I'. For this purpose, we shall recall

that, by Eq. (23), P„ involves V„q and, further, that
V„q is made up of V „and V I

see Eq. (4)]. Thus
there will be contributions to P„ from V v and V„„
which we shall denote by P,„"and P,P, respectively.
These will give rise to contributions to o.„q which will

be denoted by o.~ and o-~, respectively. In addition, o. ~

will have a cross-term oq arising from the mixing of

p,." and p, ,e. We shall first consider ir~

1. Evaluation of o~

Here we need to examine

e"p (P '3+ P "3+—P "3)''
A

(32)

1
(@~' &-")=

I
@r' —~

v2 Ep+ T,p(pd ) Hp+irl—
( I33

v2 P E,'+T33(Ppp) Hp+iq J—

Now examine the first matrix element in (31). This
involves the wave function

1 t W y2~ t- l(4P, (1—I»)V„v@;)I"-

6 ' (p,/M) h J 2

(P+P P Po 'I

X hl I p@Id' (38).
2M

so that
(1—I»)'= 2(1—I33), (39)

(y, ', V„„y—;)(@;,V „„Ip,y, ') (40).
In analogy with Eq. (40), we shall break up a& into
ops and t7g2.

First examine o.g~. Since it is our aim to reduce this
cross section to one equivalent to the collision of two
particles, we must reduce out the extraneous space
coordinate r2 referring to the neutron not concerned in

V„v(r, rp). For this purpo—se, let

(41)

where v denotes the spin function of the three-particle
system.

Using Eq. (1), the momentum transform for x(r),
writing the 8-function in terms of its integral repre-
sentation, and finally replacing —p" by p&, we get

Now note that (1—I») may be applied to @r' by virtue
of the commutability of (1—I33) with Hp. Further, we
have the operator

z

exp p„„(r, r,) . — —
k

M

6; ~ hh p.W. ~
Ffvr V„„(ri r3) I'; v,dr,dr3—

Ke see that the momentum of coordinate r2 is un-

changed, and thus
PrjrN P (34) where

Further, the second matrix element of (34) involves PyP

hand I&3&;I„and again the momentum of goordjnate r2

X
I
4 (pd) I

' expDiX/2M)(p'+ p" pd' pp
"—)]-—-

Xd Xdpdp'dpp, (42)

I r
——exp) —(i/h)(p r,+p' r,)], .(43)

F, =expL+(i/h)(Pp r3+Pd ri)]. (44)'
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X J Pg(gV, ~(ri ro)I';$;d—r,dro

Xexp[(A i'2M)(p'+ p
'—po' —p~')]dkdpdp, (45)

where $ is the spin wave function of this two-particle
system, each particle having spin —,'.

In case V„„ is spin-independent, it is evident that

o 2'Zfl(rff V-. lr ) I'=o 2'Z~l(bl V-. I 6) I'-' («)
Thus we see that

r I po pdl—
J "(po p) I

~(—p.) I
'dp. , (47)

P0

i.e., ~~i ——(i»„,)A„where (~„„)A, expresses the cross
section for the collision between the incoming neutron
of momentum po with the proton of momentum pe
averaged over the momentum distribution of the
proton.

It may be worth noting in passing that (a „„)A,can be
expanded for the case of high po, to yield

( -.)"= -.(po)

+-'.((pd');) po')(d'/d p') { p'~o..( p)oI. (4&)

An examination of 0~2 shows that it is a correction
term arising in the Pauli principle treatment only by
virtue of the finite binding between particles 1 and 2.
%e can easily verify that o.~2 vanishes for the case of
no binding between particles 1 and 2. This is a result we
must require physically, since the mere presence of the
extra neutron number 2 should not influence the n-p
scattering in the case where we have three free particles.

On the other hand, consider now the collision of a
neutron of momentum po with a proton of momentum

p~. It is easily verified that, in the Born approximation,
the cross section for this two-particle collision is given by

1 M
~-d(po pd)—=

4 ' f hb'lpo —pdllI'

3. Cross-Term

(p'+p ' p' p—o'lt-
xbl {I,fdic, (5o).

2M )
Professor Hans A. Bethe has recently shown4 that

this cross-term can be evaluated in good approximation
using elementary interference theory. The method used
in this evaluation corresponds to neglecting the second
term in Eq. (48) and the corresponding term in the
expression for the n-n portion. In particular, Professor
Bethe finds that the interference term depends strongly
on the spin dependence of the forces. For the case of
spin independence, the cross-term is of the order of 0.

Assuming a reasonable spin dependence, he finds that
the cross-term is probably smaller than 0„„.

II. SPIN AND SPACE EXCHANGE FORCES

Let us consider the potentials to be given by

V„„(ri—ro) = (ai+ biai. pro)(c, +diPio)A „„(ri—ro), (51)

(»." »3) (&2+boo 2 &3)(co+d2P23)B (»2 »3) (52)

where P stands for space exchange. In this case, P,. is
more complicated and may be written as

with
0"= 0*., o+ 0-, i, (53)

The cross-term with which we are left is given by an
expression that involves the product of two matrix
elements of type (31), with the first one containing V„„
and the second one V„„.Thus the first matrix element
yields Pe„p" a——nd the second one p&„——p', which
seems to present complications. Recall now, however,
that the cross-term is of the order of a correction term
to 0-„&. In first approximation, therefore, we may set
pe„=pe~ and obtain

1 )W y2~
I

—Re (@»o, (1 Ioo) V—„oQ;)
6 i Epo/M) b

X (Pi', (1—Ioo) V„@;)*

1 1
,.o=—2

K2 ~ E o+Tio(pe~) Ho+i»1—
2. Evaluation of e~

V„&y;.

1 1——I„g V„A;o (54)
& Ko+ T'n(Pdo) Ho+in—t Ipo pdl-

oe= J~ o~~(po —pa) f4'(pe) I'dp~, (49)
and

PO

By an analogous but slightly more involved treat-
ment than that for 0~, we can show that

where o (po —pe) represents the Born cross section for
the collision of a neutron of momentum po with a
neutron of momentum pd, taking due account of the
Pauli principle operating between the two neutrons.
Thus ee= (e..)A, .

'Actually, it can be proved that relation (46) holds for any
pofential where the spin-dependent part is of the form
(+1++241'&'1).

$8C, X

Thus the cross section is proportional to

1(4v', 0-) I'=
I (e»', o-.o) I'+1(@P, 0*., i) I

'

+2Re(4»', P„,o)(P„.g, 4r'), (56)
4 H. A. Bethe (private communication).
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and we may introduce an equivalent notation for the
cross section,

oro+ork+oro, s (57)

—1 (MS'4y
&0, A2—

6 o I E)shspoj

The 00 part yields the usual terms corresponding to
OO, A1 &0, A2 &0, 8 8nd 00, Q. The term 00, A1 can be iden-
t16ed SS (Wet)so j Ors, n aS (rroo)Ao i Orc iS giVen by Eq. (5(})
and ro, A2 is given by

APPENDIX A

Theorem. '

If B&A, then in first approximation
I

(e"+ )aat=(e )aat+(B)aot

Proof:
We know that

" S"e'= Z —.
n~o +.f

Using (A2}, expand (A1), keeping first powers of B. Then

1 n-1
(eA+B),—g —(g n),+ g g (g n-1~}

n 0" attotlt

(A1)

(A2)

Xexp[(i}/2M)(Ps+P" P"' —Po)5d—XdPdP'dP". (58)

Again, this term is due solely to the introduction of the
Pauli principle and vanishes for the case of no binding
between particles j. and 2.

Upon examining @„,z as given by (55), we note that,
on squaring this term, it is of order V . Now the chief
terms of 0„~ are of the order V'; the correction terms
in which we are interested are of one order higher,
namely V', thus we may drop terms of order V4. Hence
we shall neglect cr~.

Lastly, we examine the 00, )k term. It does have a con-
tribution of order V' and we must retain this portion,
namely,

—1 ( W )2or f 8
i (d&f' V.sd ~)6; (Po/M) js „BEIo'l

X{B).-.-.(~-).-... , {A3)

Thus

(A )aa'(B)a"a"' (& )a"'o' =& (B)oat~ o (A4)
otlol tt

css n-1 On-1-mOtts
(eA+B), (eA) +(B)

n-o sn-0 f
(A5)

Now consider
I,= (e —e")/(a —a'). (A6)

Suppose first that a'(a; then

L,=Z gn urn

n-p (a—a')e!'
or

anI1 (e'/a)nl " 'a" 1 c' ~
I.=Z, =Z Z

„pmfa)1 —(a'/a} j -p -p ef. u

(A7)

(A8)

The condition clearly holds also for a'&a by reversing the
grouping, i.e., considering (a/a') as a unit. When u'=a, the
condition is self-evident since then I.= 1.

X(4f p [V12) Vod54j) 'pgfo(Et E )dEf (59)'

Summarizing, we note that we are again successful
in separating out (or„s)s„and (or„„)s„representing the
cross sections averaged over the appropriate momentum
distribution. The term 00, A2 is, as before, due to the
Pauli principle. The main cross-term 0'0, g ls unchanged
and a term 0-0 ~ is added due to the added complexity
of
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APPENDIX B

In this Appendix we shall prove the normalization constant
of fi. By assumption, most of the wave function fi is due to ff&.

Thus it will be sufficient to determine the normalization of fi;.
We have

fi; =c(1—Iso) 4;, (B1)
where c is the normalization constant to be determined. Making
use of Eq. (39), we may write

2"(~' ~') -2e'(S', I»~') =1. (B2)

We shall now prove that (p;, I23&;) is zero to the approximation
in which we are interested. In particular, this means we must
prove that terms arising from {ft;,I23ft;} are not of order (1/pp)'
or lower. Consider now that

(p;, Iooos;) = (1/m)Z, f expL —(i/)1) po. rojx*(rq —ro)

Xexp| +(i/A) pp r2)y(r1 —r3)1;(s)v;(I23s) dr1drgra. (B3)
Now let

x(ri —ro) = (1/fo&)f exp/+(i/A) pa(r; r))C'(po)dp —o(8o4)

Substitute in (83), carrying out integrations, which yields

(4;, I 3$;)=C'(pp)C*(po)Z, ;(s);(I s). (B5)

We know that J'~C(po)
~

dpo must be ffnite, since in a deuteron
there must be finite total chance of finding the given momentum
state. Thus

~
C (po} ~

' must go at least as (1/po}' to have the integral
converge. Hence, to our approximation, (p;, Igloo;}=0 and c= 1/V2.


