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studies and the latter in studying atmospheric ionization at
ground level. These increases in ionization are considered to be
due to radioactive matter brought down with the rain. Between
0935 and 1900 hr. GMT on November 29 at Ottawa precipitation
was falling. The precipitation started as snow and changed to rain
about 1400 hr. Compared with the results of Doan and Wait and
McNish the 35 percent increase in the soft component registered
at Ottawa by counters seems too high to be explained in the same
way, unless there was an exceptionally high density of radioactive
matter in the atmosphere at the time. An alternative, but not
very likely explanation, might be that there was a burst of hard
gamma-rays or some other radiation which would increase the
number of soft shower particles without any appreciable effect on
the hard component.

An interesting feature of the November 19 increase is the dif-
ference between the measurements at the various stations, par-
ticularly between Resolute and Godhaven (geomagnetic latitude
80'}. These two stations are about 900 miles apart and the dif-
ferences conflrm previous indications that sudden increments in
cosmic-ray intensity occur over a limited area. The lack of a
sudden decrease after the increment is unusual, since a decrease
has been reported on previous occasions.

The cooperation of the Department of Transport of the Govern-
ment of Canada is appreciated for supplying facilities at Resolute
and for weather information.
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T has been recently proved by Dyson' that all divergencies in
- ~ the S-matrix of electrodynamics may be removed by a re-
normalization of mass and charge. Dyson defines certain funda-
mental divergent operators F„,Sg', Dy' and gives a procedure for
the calculation of their flnite parts F„I, Szi', Dzl' by a process of
successive approximation. It is then shown that

I'„=Zl 'I'„I(el), Sp'= Zmspl(el), DJ '= Z3D~I(el),
eI=ZI 'Z2Z3&e,

where Zl, Zs, and Ze are certain infinite constants and el is the
renormalized electronic charge. Dyson conjectured that ZI=Z~,
and it is proposed here to give a formal proof of this relation.

In the first place, with any proper electron self-energy part 8',
may be associated a set of proper vertex parts V' obtained by
inserting a photon line in one of the electron lines of 8'. Now
consider the operators A„(V', p, p} in which the two external
electron momentum variables p have been set equal, and the
external photon variable made to vanish. Then A„(V', p, p) may
be obtained from Z(W, p) by replacing Sz by Sz&„S+ at one
electron line of W'. Because of the identity

—(1/2m-) BSy/8p„=Sy y„sy,

on summing A„(V', p, P) over all vertex parts V' associated with
W, one finds

&~'~t (V'~ P P) =—(1/2~}(~&(&,P}/~pt )

(One can verify that any closed loop in 8' gives zero total efFect. )
Finally summing over all proper electron self-energy parts 8', one
flnds

~i (P P) =—(1/2~) (~&*(P)/~Pt ).
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N a recent article' (the notation of which is retained here, except
- - that subscripts 4n and 4s refer to normal Quid and superQuid,
respectively, in place of 1 and 2}, I have considered the thermo-
dynamics of liquid helium on the two-fluid theory, taking account
of the fact that if two "phases" or "components, " the normal
Quid and the superQuid, exist together they must be in equilibrium
with each other. On this basis, using the assumed relation which
states that the total molal entropy S at any temperature is the
mole fraction x4 of normal Quid times the molal entropy S& at
the X-point

S=x4 Sy=(1—x4,)S)„

using the empirical relation for S as a function of temperature

s=s&(r/T'&)' (2)

(with r 5.6), and assuming that the partial molal enthalpy of
superQuid, H4„ is independent of temperature (at essentially
constant pressure), and independent of x4, (i.e., there is no heat
of mixing), I derived the equation for the partial molal entropy of
superQuld

84,=S),x4„/(r+1). (3)

However, as I remarked in reference 1, there are some approxi-
mations involved in this procedure. Equation (1) is based on the
assumption that below T& the entropy is contributed solely by
the normal Quid, whose molal entropy is always set equal to the
constant Sp, thus neglecting any temperature dependence. Fur-
thermore, there is an implied inconsistency, since Eq. (1) assumes
no entropy of mixing while Eq. (3) implies that there is a mixing
entropy. In fact, in the following letter we shall show that we may
derive a somewhat difFerent expression for S from Eq. (3). We
shall, therefore, discard Eq. (1) and turn to a consideration of the
enthalpies.

If II4, is independent of x4„ then H4„must be also, and we have
84 =II4„, where H4„ is the enthalpy of pure normal helium. We
can write for the total molal enthalpy'

H=x4„H4 . (4)

We will now proceed to derive an expression for 84„ in a
somewhat more direct way than in reference 1, using Eq. (4} in
place of Eq. (1). Since F=H —TS and p4, =H~, —T84,~ —T84,
the condition for internal equilibrium, P= p4„gives

84,=S-H/T. (5)

Now substitute this identity into Eqs. (91}and (95) of reference 1.
One finds

~p=Z& 'I (1—ZI)V„+Apt.-j, Z*=Z2 'L(Z2 —1}sg '+SP 'Sg/2x).

We have

—(1/2~}Z,—I (Z,—1)2~p„+y„sg+(p),p), —sEO) (asg/8p„) I

=Z, -II(1—Z, )&„+~„&(p,p) I.
Now put

v),p), =~&o, (p))'= —&o'.

The convergent parts of these equations then vanish and t here
is left the relation

(1/2&}Z2 '(Z2 1)2m'&I, =Z& '(1—Zi)y„

which reduces immediately to Zl=Z2.

t F. J. Dvson, Phys. Rev. 'l5, 1736 (1949).
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Equation (2) implies, from the relation between S and H (see
footnote 10 of reference 1} that

with

Using Eq. (4)

H/H), = (T/Tg)'+',

H},=rS),Tg/{r+1).

x4 =(Hg/H4 )(T/Tg)'+'.
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'N a recent letter Gorter and de Boer' have discussed mixtures
of He3 and He4, modifying somewhat the earlier views of de

Boer.s Their new formulation is in accord with the ideas of Rice,'
but differs in one respect from what is found by a logical extension
of his treatment of pure He4.

Equation (3) of the preceding letter leads to the following
expression for the total entropy of A&4„+m4, moles of pure He'
below the X-point.

s=gng„sg„gggg„sg(r+1) ' 1n[gggg /(—gggg„+gN4, )]. (1)

Here nz4„and m4. are the number of moles of normal and super-
Quid, respectively. S4, the molal entropy of pure normal helium,
cannot be directly determined below the X-point, where pure
normal He' is unstable, but its magnitude can be estimated.

From Eqs. (2), {5)-(7),

84,=S),(T/Tg)'/(r+1).

This equation, of course, holds only at equilibrium. However, if
H4 were independent of T (hence equal to H&) we could write,
using Eq. (8) 8.=P') /(r+1) 3 ""+" {10}

which expresses h4, as a function of x4 independent of T. If H4.
is temperature independent, then (8S4,/8T)z4„=0 (at constant
pressure), so 84, cannot depend explicitly on T. Equation (10),
since it gives 84, at all equilibrium concentrations, must thus be
the correct general form for 84„ if H4„ is constant. If H4„depends
on T the proper equation for 84, can still be obtained by eliminating
T between Eqs. (8) and (9).

The determination of H4 as a function of T offers some dif-
ficulty. I have suggested that the superQuid appeared above the
)I-point in the form of globules, and below the P-point principally
in a sort of 6broid form. The 6broid form would not occur at all
above Tg but there would be some persistence of the globules
below Tp. The fibroid form on1y is actually included in the mole
fraction x4, below Tg. Below the X-point then the globules should
be considered as part of the normal Quid, and they will alter its
properties. However, it is unlikely that the globules are important
at temperatures appreciably below Ty, and it seems reasonable to
suppose that we can get a good idea of the temperature dependence
of H4„by extrapolating the speci6c heat from above the tem-
perature ( 2.5'K) of appearance of the )-anomaly. 4 If we do
this we conclude that H4 certainly does not vary much more
rapidly that T itself, and the dependence of 84, on x4„probably
lies somewhere between proportionality to x4„&"+'&t' and
x4 '~("+'&. Equation (3), then, should give an approximation which
may be used without fear of serious error.

r O. K. Rice, Phys. Rev. V6, 1701 (1949). C. J. Gorter, Physica 15, 523
(1949) has independently stated the basic principles, but we diHer in sub-
sidiary assumptions and in method.
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~ Compare W. Band and L. Meyer, Phys. Rev. 74, 386 (1948), Eqs.
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«O. G. Engel and O. K. Rice, Phys. Rev. VS, 55 (1950).

F=m4„F4„+nsgF3 —TS34—TS„„ (4)

where F3 and F4 are molal free energies of pure He' and pure
normal He4 respectively; F4, is zero. The terms ns3F3 and —TS34
are essentially like corresponding terms of Gorter and de Boer.
However, these authors would make (m4„F4„—TS„,)/m4„
(equivalent to their 64) a function of T and m4„/{nt4„+ns4, )
instead of T and {m4~+m3)/(m4, +m3+m4, ).

From Eq. (4) with (2) and (3), we get the chemical potentials
p«, p4, and p3 by partial differentiation with respect to m4» rn4»
and m3, respectively. The p's can be expressed as functions of T
and the mOle fraCtiOnS X4, X4„and X3, prOVided Fs and F4 are
known as functions of T. F4, cannot be obtained directly, but can
be found if the speci6c heat of pure normal He4 can be estimated
(see preceding note). The values of x4 and x4, in an equilibrium
mixture at any given T and x3 can then be found by setting
p4 =@4, (or, alternatively, by minimizing F), together with
x4„+x4,+x3=1. Thus the p, 's become functions of T and xa
only. The partial vapor pressures of He' and He4 can then be
found, provided the vapor pressures of pure He3 and He4 and the
equations-of-state of their vapors are known.

A solution with properties determined by Eqs. (2)—(4) we shall
call a "quasi-ideal" solution, since the mixture of He' and normal
He' follows the ideal solution law, while the superimposed mixture
of normal and superQuid follows the same law as pure He4. If
deviations occur in practice' it would seem reasonable to try first
to explain them as deviations in the terms other than TS~&. Ke
may add terms

mgRT lny3+ns4 RT lny4

to Eq. (4), where p3 and p4 (activity coefBcients for He3 and
normal He') depend only on p =x3/x4„, where y~1 and

dy3/dp ~ as x4 ~0, and y4 ~1 and dy4 /dp 0 as x3~, and
where

m3d lny3/dp+m4„d lny4„/dp =0.

Such terms will not affect p4„but will change the equilibrium
between normal and superQuid He' because of the effect on p4„.
However, this equilibrium would not be changed in suKciently
dilute solutions of He' and He4 where He' obeys Raoult's law

(p4 =1) even though He' obeys Henry's rather than Raoult's law.
If there is heat of mixing of He' and He4 it mill be reQected in the
temperature coeKcients of lnys and iny4 .

~ C. J. Gorter and J. de Boer, Phys. Rev. 77. 569 (1950).' J. de Boer, Phys. Rev. 76, 852 (1949).
'O. K. Rice, Phys. Rev. 75, 1701 (1949); 77, 142 (1950).
4 Taconis, Beenakker, Nier, and Aldrich, Phys. Rev. 75, 1966 (1949);

Physica 15, 233 (1949).
~ Weinstock, Osborne, and Abraham, Phys. Rev. 77, 400 (1950).

Equation (1) yields Eq. (3) of the preceding note by partial dif-
ferentiation with respect to m4, . It has the correct form (it is con-
sistent with the Gibbs-Duhem relation for entropy) and fulfills
the correct boundary condition for m4, =0. It is thus uniquely
determined by Eq. (3) of the preceding note.

Below the X-point He' appears to be soluble only in the normal
part' of He'. There is therefore an entropy of mixing, S34 which
can be supposed to be independent of m4, .Assuming Raoult's law

sgg gggg R 1gg[gggg„/(gggg„+gggg)] —ggggR bg[gggg/(gggg„+gggg)]. (2)

However, there is still a superimposed entropy of mixing, S~„of
normal and superQuid. Rice's suggestion of a separation of normal
superQuid in ordinary space makes it seem reasonable to suppose
that S„,will not depend on the relative amounts of He and He4
in the normal Quid. %le simply substitute m4„+m& for m4„ in the
mixing term in Eq. (1):
S„,= —{ns „+m )Sg(r+1) '

)& lnt (m4„+m3)/(m4„+m3+ pÃ4 )j, (3)

S& has the same constant value; it is the entropy of pure He4 at
its X-point. For the total Gibbs free energy of m4„+m4, moles of
He' and ms moles of He' we write


